
Lecture 16: Parallel Computing

Simultaneous Resource Classes

Def: ATIME-ALT[t(n), a(n)] is the set of problems solved by alternating Turing machines in timeO(t(n)), while
making at most a(n) alternations between existential and universal states, starting with existential.

Example: ATIME-ALT[t(n), 0] = NTIME[t(n)]

Similarly, define the simultaneous classes:

ASPACE-TIME[s(n), t(n)], ASPACE-ALT[s(n), a(n)]

1



LH and PH

Define the LOGTIME hierarchy (LH) and the PTIME hierarchy (PH) as follows:

LH = ATIME-ALT[log n,O(1)]

PH = ATIME-ALT[nO(1), O(1)]

Thm: PH = SO

Proof: [idea] Follows from Fagin’s Thm: NP = SO∃. �

Fact: LH = FO

2



CRAM[t(n)] = CRCW-PRAM-TIME[t(n)]-HARD[nO(1)]

synchronous, concurrent, nO(1) processors and memory

PP

PP

PP

PP

PP PP

Memory

Global

r

2

3

1

4

5

priority write: lowest number processor wins conflict

common write: no conflicts allowed

3



Thm: For all t(n), CRAM[t(n)] = AC[t(n)].

Proof: (Sketch)

CRAM[1] ⊆ AC[1] = AC0 = FO:

Only the global memory is tricky: all else is sequential.

B(i, w, b) means that bit i of global memory word w is b.

B′(i, w, b) ≡ B(i, w, b) ∧ ∀p (“p didn’t just write into word w”)

∨ ∃p (“p just wrote into word w ” ∧R(p, i, b))

4



CRAM[1] ⊇ FO:

∀x(α(x))

1. w := 1

2. Each processor Pi in parallel, do {
3. if (¬α(i)) then Write(0,w)

4. }

∃x(α(x))

1. w := 0

2. Each processor Pi in parallel, do {
3. if (α(i)) then Write(1,w)

4. }

�

5



Def: sAC1 (semi-unbounded sAC1) is the subset of AC1 where the and-gates are binary and only the or-gates are
unbounded.

Fact: [Ruzzo] sAC1 = log(CFL) = FO(CFL) =
{
S

∣∣ ∃CFLC (S ≤ C)
}

Thm: NC1 ⊆ L ⊆ NL ⊆ sAC1 ⊆ AC1

Proof:

6



Alternation as Parallelism

Fact: [Ruzzo and Tompa] For t(n) ≥ log n,

ASPACE-TIME[log n, t(n)] = NC[t(n)]

ASPACE-ALT[log n, t(n)] = AC[t(n)]

Cor: ATIME[log n] = NC1

7



ASPACE-TIME[log n, t(n)] = NC[t(n)]
ASPACE-ALT[log n, t(n)] = AC[t(n)]

Proof: (sketches)

The computation graph of an ASPACE-TIME[log n, t(n)] machine on an input of size n is an NC[t(n)] circuit.

The computation graph of an ASPACE-ALT[log n, t(n)] machine is a series of t(n) computation graphs of NL or
co-NL machines.

We can modify the ASPACE-ALT[log n, t(n)] machine to make a series of alternating guesses: ID1, ID2, . . . IDt(n)

of the endpoints of each of these NL or co-NL computations, and check only once that IDi+1 follows correctly
from IDi.

Since NL ⊆ AC1, the whole thing is an AC[t(n) + log n] = AC[t(n)] circuit. �

8



Arithmetic Hierarchy FO(N) r.e. complete
Halt

co-r.e. complete
Halt

FO∃(N)
r.e.

FO∀(N)
co-r.e.

Recursive

Primitive Recursive

SO[2n
O(1)

] EXPTIME

QSAT PSPACE complete
FO[2n

O(1)

] SO[nO(1)] PSPACE

PTIME Hierarchy SO NP complete
SAT

co-NP complete
SAT

SO∃ NPSO∀co-NP
NP ∩ co-NP

P complete
Horn-
SAT P

FO[nO(1)]

FO(LFP)

FO[logO(1) n] NC“truly

feasible”FO[log n] AC1

sAC1FO(CFL)

NL2SAT NL comp.FO(TC)

2COLOR L comp. LFO(DTC)

NC1FO(REGULAR)

ThC0FO(COUNT)

AC0FO LOGTIME Hierarchy


