Lecture 16: Parallel Computing

Simultaneous Resource Classes

Def: ATIME-ALT[t(n), a(n)] is the set of problems solved by alternating Turing machines in time O(t(n)), while making at most a(n) alternations between existential and universal states, starting with existential.

Example:

ATIME-ALT[t(n), 0] = NTIME[t(n)]

Similarly, define the simultaneous classes:

ASPACE-TIME[s(n), t(n)], ASPACE-ALT[s(n), a(n)]

LH and PH

Define the LOGTIME hierarchy (LH) and the PTIME hierarchy (PH) as follows:

Thm: PH = SO

Proof: [idea] Follows from Fagin's Thm: $NP = SO\exists$.

Fact: LH = FO

 $\mathbf{CRAM}[t(n)] = \ \mathbf{CRCW}\text{-}\mathbf{PRAM}\text{-}\mathbf{TIME}[t(n)]\text{-}\mathbf{HARD}[n^{O(1)}]$

synchronous, concurrent, $n^{O(1)}$ processors and memory

priority write: lowest number processor wins conflict

common write: no conflicts allowed

Thm: For all t(n), CRAM[t(n)] = AC[t(n)].

Proof: (Sketch)

 $\mathbf{CRAM}[1] \subseteq \mathbf{AC}[1] \ = \ \mathbf{AC}^0 \ = \ \mathbf{FO}:$

Only the global memory is tricky: all else is sequential.

B(i, w, b) means that bit i of global memory word w is b.

 $B'(i, w, b) \equiv B(i, w, b) \land \forall p ("p \text{ didn't just write into word } w")$ $\lor \exists p ("p \text{ just wrote into word } w" \land R(p, i, b))$

```
CRAM[1] \supseteq FO:

\forall x(\alpha(x))

1. w := 1

2. Each processor P_i in parallel, do {

3. if (\neg \alpha(i)) then Write(0,w)

4. }
```

 $\exists x(\alpha(x))$

- w := 0
 Each processor P_i in parallel, do {
- 3. **if** $(\alpha(i))$ **then Write**(1,w)

4. }

Def: sAC^1 (semi-unbounded sAC^1) is the subset of AC^1 where the and-gates are binary and only the or-gates are unbounded.

Fact: [Ruzzo] $sAC^1 = log(CFL) = FO(CFL) = \{S \mid \exists CFL C (S \le C)\}$

Thm: $NC^1 \subseteq L \subseteq NL \subseteq sAC^1 \subseteq AC^1$

Proof:

Alternation as Parallelism

Fact: [Ruzzo and Tompa] For $t(n) \ge \log n$,

$$ASPACE-TIME[\log n, t(n)] = NC[t(n)]$$

 $\textbf{ASPACE-ALT}[\log n, t(n)] = \textbf{AC}[t(n)]$

Cor: ATIME $[\log n] = NC^1$

$$\begin{aligned} \text{ASPACE-TIME}[\log n, t(n)] &= \text{NC}[t(n)] \\ \text{ASPACE-ALT}[\log n, t(n)] &= \text{AC}[t(n)] \end{aligned}$$

Proof: (sketches)

The computation graph of an ASPACE-TIME $[\log n, t(n)]$ machine on an input of size n is an NC[t(n)] circuit.

The computation graph of an ASPACE-ALT $[\log n, t(n)]$ machine is a series of t(n) computation graphs of NL or co-NL machines.

We can modify the ASPACE-ALT[log n, t(n)] machine to make a series of alternating guesses: ID₁, ID₂, ... ID_{t(n)} of the endpoints of each of these NL or co-NL computations, and **check only once** that ID_{i+1} follows correctly from ID_i.

Since $NL \subseteq AC^1$, the whole thing is an $AC[t(n) + \log n] = AC[t(n)]$ circuit.

8

