Lecture 16: Parallel Computing

Simultaneous Resource Classes
Def: ATIME-ALT|[t(n), a(n)] is the set of problems solved by alternating Turing machines in time O(¢(n)), while
making at most a(n) alternations between existential and universal states, starting with existential.

Example: ATIME-ALT([t(n),0] = NTIME[t(n)]

Similarly, define the simultaneous classes:

ASPACE-TIME[s(n), t(n)], ASPACE-ALT([s(n), a(n)]



LH and PH
Define the LOGTIME hierarchy (LH) and the PTIME hierarchy (PH) as follows:

LH = ATIME-ALT[logn,O(1)]

PH = ATIME-ALT[»°" O(1)]

Thm: PH = SO

Proof: [idea] Follows from Fagin’s Thm: NP = SO4.

Fact: LH = FO



CRAM[t(n)] = CRCW-PRAM-TIME[t(n)]-HARD[n°()]

synchronous, concurrent, n°!) processors and memory

priority write: lowest number processor wins conflict

common write: no conflicts allowed



Thm: For all t(n), CRAM][t(n)] = AC[t(n)].
Proof: (Sketch)

CRAM][1] C AC[1] = AC’ = FO:

Only the global memory is tricky: all else is sequential.

B(i,w, b) means that bit i of global memory word w is b.

B'(i,w,b) = B(i,w,b) AVp(“p didn’t just write into word w”)

V' 3p (“p just wrote into word w ” A R(p, i, b))



CRAM]1] D FO:
Vr(a(z))

. w:=1

2. Each processor P; in parallel, do {
3. if (—a(i)) then Write(0,w)

4. }

Sa(a(x)

. w:=0

2. Each processor P; in parallel, do {
3. if (a(7)) then Write(1,w)

4. }



Def: sAC! (semi-unbounded sAC") is the subset of AC' where the and-gates are binary and only the or-gates are
unbounded.

Fact: [Ruzzo] sAC' = log(CFL) = FO(CFL) = {S | 3CFLC (5 < ()}

Thm: NC! C L C NL C sAC! C AC!

Proof:



Alternation as Parallelism

Fact: [Ruzzo and Tompa] For ¢(n) > logn,
ASPACE-TIME(log n, ¢(n)]

ASPACE-ALT|logn, t(n)]

Cor: ATIME[logn| = NC!

NC[t(n)]

AClt(n)]



ASPACE-TIME[log n, t(n)] = NCJ(
ASPACE-ALT[logn,t(n)] = AC[t(

S5

=

Proof: (sketches)

The computation graph of an ASPACE-TIME|[log n, t(n)] machine on an input of size n is an NC[t(n)] circuit.

The computation graph of an ASPACE-ALT[log n, t(n)] machine is a series of ¢(n) computation graphs of NL or
co-NL machines.

We can modify the ASPACE-ALT|log n, t(n)] machine to make a series of alternating guesses: 1D, [D-, . .. IDy ()
of the endpoints of each of these NL or co-NL computations, and check only once that ID, ., follows correctly
from 1D;.

Since NL C AC!, the whole thing is an AC[t(n) + logn] = AC[t(n)] circuit. O



Arithmetic Hierarchy FO(N)

r.e. complete
Halt

co-r.e. complete

FOV(N) FO4(N)

Recursive

Primitive Recursive

SO[27""] EXPTIME

QSAT PSPACE complete
FO[2"""] SO[nCW)] PSPACE

PTIME Hierarchy SO

co-NP complete NP complete
SAT . SAT
co-NP SOV S0 NP
NP N co-NP
Oo(1) ,+° "+, P complete

FO [n ] . Horn-* P
FO(LFP)

FO [1Og0(1) n] :,' “truly ““ NC
FO [10g TL] :' feasible” “‘ ACl
FO(CFL) ," “‘ sAC!

FO(TC) TZSAT NLcomp,—T NL

FO(DTC) :.' 2COLOR M .
FO(REGULAR) NC!
FO(COUNT) ThC’

FO LOGTIME Hierarchy ACO




