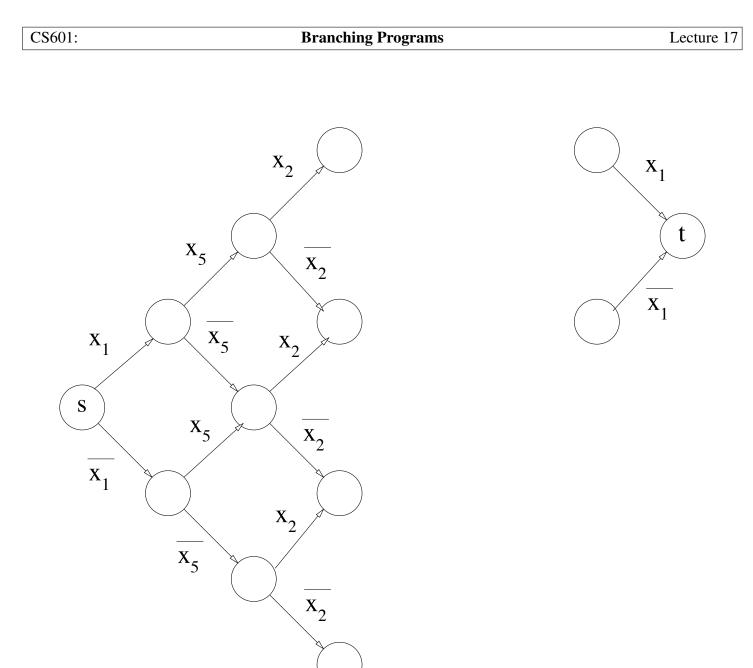
Lecture 17: NC¹ and Barrington's Theorem



Theorem 17.1 *The set of problems accepted by uniform (polynomial size) branching programs is* $DSPACE[\log n]$ *.*

BranchingPrograms = L

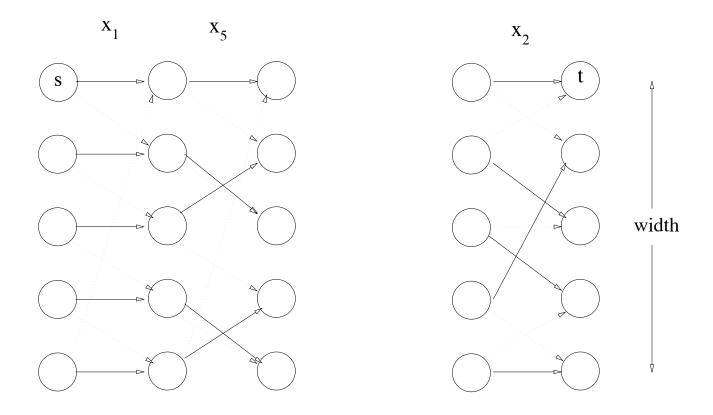
Proof:

BranchingPrograms \subseteq L: just keep track of where you are!

 $L \subseteq$ BranchingPrograms:

Let M be a DSPACE $[\log n]$ Turing machine.

The computation graph of M on some variable input $x_1 \cdots x_n$ is a branching program!



Proposition 17.2 *The set of problems accepted by uniform, bounded-width branching programs is contained in* NC¹.

Proof: This is similar to the proof that $REACH \in sAC^1$. However, instead of *n* choices to guess the middle point, there are only a bounded number of choices.

Bounded Width Branching Programs look very much like finite automata.

$$\mathbf{MAJ} = \left\{ w \in \{0,1\}^* \mid w \text{ contains more than } |w|/2 \text{ "1"s} \right\}$$

Natural Conjecture:

 $MAJ \not\in Bounded \ Width \ BPs$

 S_5 is the permutation group on 5 objects.

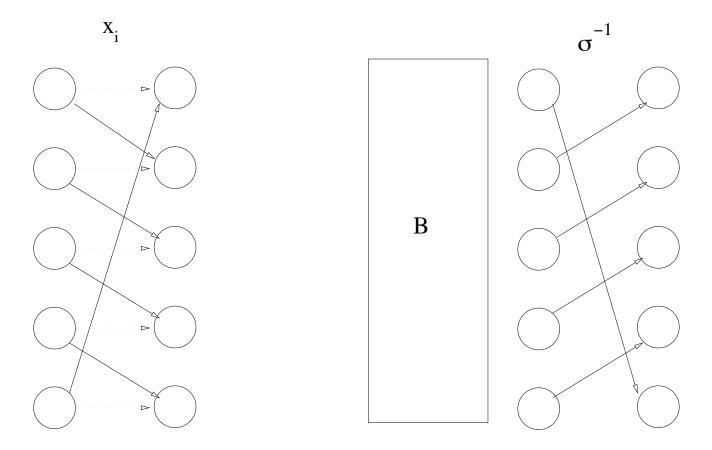
$$\alpha = (12345), \quad \beta = (13542) \in S_5$$
$$[\alpha, \beta] = \alpha \beta \alpha^{-1} \beta^{-1}$$
$$= (12345)(13542)(54321)(24531)$$
$$= (13254)$$

Definition 17.3 A width 5 Branching Program, B, 5-cycle recognizes S iff for some 5-cycle σ ,

- For $x \in S$, $B(x) = \sigma$
- For $x \notin S$, B(x) = e

Lemma 17.4 Let $S_i = \{x \in \{0,1\}^n \mid x_i = 1\}$. S_i can be 5-cycle recognized.

Lemma 17.5 If S is 5-cycle recognized, then so is \overline{S}



Lemma 17.6 If S is 5-cycle recognized using 5-cycle σ , then S can be 5-cycle recognized using 5-cyle τ .

Proof: Every two 5-cycles are conjugates, i.e.,

$$(\exists \theta \in S_5)(\tau = \theta^{-1}\sigma\theta)$$

Lemma 17.7 If S and T can be 5-cycle recognized by branching programs B and C, then $S \cap T$ can be 5-cycle recognized by a branching program of size 2(|B| + |C|)

Proof:

 $B \quad C \quad B^{-1} \quad C^{-1}$

Bounded Width Branching Programs = NC¹

Proof:

Given an NC^1 circuit, simulate it using the above lemmas.

We multiply the size of the branching programs by 4 as we go up one level.

Total size is $4^{O(\log n)} = n^{O(1)}$

