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NC1 in Context

• NC1 is the set of decision problems solvable 
by boolean circuits (AND, OR, and NOT 
gates) of fan-in two, polynomial size, and 
depth O(log n).

• It sits inside L (deterministic log space) and 
thus inside NL, P, and NP.  A log space DTM 
can evaluate an NC1 circuit by depth-first 
search, using a stack to remember its location, 
as long as the circuit is sufficiently uniform.



Circuit Uniformity

• For most circuit classes, it suffices to define a 
“uniform” circuit to be one that can be 
constructed by a logspace Turing machine.

• But when we are interested in complexity 
classes inside L, this won’t always do.

• “First-order uniformity” means that 
structural questions about the circuit can be 
defined by first-order formulas — this is the 
standard notion in CS 601.



Basic Results About NC1

• NC1 circuits and formulas (circuits that 
are trees) have the same computational 
power.  Evaluating a formula is a complete 
problem for NC1.

• NC1 strictly includes AC0, the class of 
problems solvable by circuits of unbounded 
fan-in, polynomial size, and depth O(1).  The 
“strict” is because the parity language can be 
shown not to be in AC0.



Basic Results About NC1

• Lots of arithmetic operations on binary 
integers can be done in NC1.  But even the 
majority function, counting the number of 1’s 
in the input string, is not obvious.  Adding two 
binary numbers is AC0, so adding n of them 
together in the obvious way would be AC1.

• But there are tricks — using a different 
notation for binary numbers, two can be 
added in NC0, so n can be added in NC1, and 
converting back to normal notation is AC0.



Basic Results About NC1

• Sipser and others showed in the early 1980’s 
that parity (and therefore majority) is not in 
AC0.  This was thought to be the first step in 
a series of lower bounds against larger and 
larger circuit classes, culminating in a lower 
bound against poly-size general circuits that 
would prove P ≠ NP.

• In the second step, Razborov and Smolensky 
showed that even with parity gates (or mod p 
gates for a single prime p), AC0 still cannot do 
majority.



Classes Within NC1

• If we augment AC0 with mod-m gates for 
some fixed m (possibly composite), but keep 
constant depth and polynomial size, we get 
the class ACC0.  There seems to be no reason 
that the majority function should be in this 
class.

• If we use the mod-m gates alone, with 
constant depth and polynomial size, we get 
the class CC0.  There seems to be no reason 
that the AND function should be in this class.



Branching Programs

• Also in the mid-80’s, there was an interest in 
another combinatorial model of computation, 
that of branching programs, and its 
relation to circuit classes.

• A branching program is just a flowchart, 
where at each node the program queries one 
of the input bits, and goes to either the 0-
successor or the 1-successor of that node 
depending on the result.  A decision tree is 
the special case where the fan-in is 1. 



Branching Programs

• Poly-size branching programs are equivalent 
to deterministic log space TM’s, as long as the 
programs are uniform.

• An LSTM can trace the correct path through 
the program, using log space to remember 
where it is.

• Since a configuration of an LSTM is given by 
the state, tape contents, and head positions, 
there are only polynomially many, and we can 
make a BP with a node for each one.



Branching Programs

• Could we get a lower bound against a 
restricted class of branching programs, like 
the lower bounds against AC0 and AC0 with 
mod p gates?

• Borodin et al. proved a lower bound against 
programs of width 2.  Here we'll define 
width as follows.  The nodes of a width-w BP 
are divided into levels of size w, and the two 
successors of a node on level i are on level 
i+1.  Also, all nodes on a level query the same 
input variable. 



Branching Programs

• So for my Ph.D. research I took on the 
problem of extending the lower bound, say to 
all constant widths.  

• This class BWBP might be interesting because 
it strictly includes AC0 (and even ACC0, which 
allows modular gates of any fixed modulus), 
but still looks weak. 

• It also includes all regular languages, but we 
have lower bound techniques against that 
class.  Could we show MAJORITY ∉ BWBP?



Regular Languages and Monoids

• Think back to the argument that the parity 
language is in NC1.  You make a binary tree of 
XOR gates, each of which has constant size 
and depth.

• You can think of this as “multiplying” together 
n elements in the group ℤ2, using a binary 
tree of binary ℤ2 multiplications.

• Actually the decision problem for any regular 
language can be thought of similarly.



Regular Languages and Monoids
• If X is any finite set with n elements, the 

bijections on X form a group with n! 
elements, called Sn, under the operation of 
composition.  The functions from X to X 
form a monoid with nn elements, called Tn, 
under the same operation.

• If M is a DFA with n states, every input letter 
a defines a function φ(a) on the states, given 
by (φ(a))(q) = δ(q, a).  Given any string w, we 
can define a function φ(w) on the states as 
the ordered composition of the φ(a)’s in w.



Regular Languages and Monoids

• So to determine whether w is in L(M), we can 
look up φ(a) for each letter in w, compose 
these n functions together to get φ(w), and 
determine whether (φ(w))(q0) ∈ F.  From a 
circuit point of view, this is all easy except for 
the iterated multiplication of n elements of Tk, 
where k is the number of states in M.

• But this iterated multiplication is clearly in 
NC1 if k is a constant, since any function with 
O(1) inputs and outputs is in NC0.



Programs Over Monoids

• This gives us an equivalent way to look at BWBP.  
Fix a finite monoid M.  An M-program of 
length t is a sequence of t instructions, each 
of which is a triple (i, 𝜎, 𝜏) where 𝜎 and 𝜏 are in 

M.  The yield of (i, 𝜎, 𝜏) is 𝜎 if xi = 0 and 𝜏 if xi = 
1.  The yield of the program is the composition 
of the yields of the instructions.  The language of 
the program is the set of strings whose yield is 
in some fixed subset F of M.



Programs Over Monoids

• It turns out that classes of monoids, 
previously studied by algebraists, correspond 
to circuit classes.  Poly-length programs over 
aperiodic monoids, for example, are 
equivalent to AC0.

• Programs over groups (or “permutation 
branching programs) are an interesting special 
case.  I was able to prove that programs over 
S3 could do AND in exponential size, but not 
in polynomial size.



Simulating Circuits with S5

• A reasonable conjecture would be that no 
program over a group could do AND in 
polynomial size, much less majority.

• But it turns out that once the group is 
complicated enough, programs over it are 
surprisingly powerful.

• Theorem: The language of any fan-in two 
circuit of depth d can be decided by an S5 

program of length 4d.  (Hence BWBP = NC1.)



Permutation Preliminaries

• If X = {1,2,3,4,5}, we can write a permutation 
in cycle form.  For example,  (1 3 5 4 2) is 
the permutation that takes 1 to 3, 3 to 5, 5 to 
4, 4 to 2, and 2 to 1.  If a permutation has 
more than one cycle we concatenate the 
cycles, as in “(1 5 3)(2 4)”.

• Two permutations α and β with the same 
cycle structure are conjugate, meaning that 
there exists γ such that β = γαγ-1. In 
particular, any two five-cycles are conjugate.



Five-Cycle Recognition

• Let L be a subset of {0,1}n.  We say that an S5 
program f five-cycle recognizes L if f 
yields a five-cycle (a b c d e) when w ∈ L and 
yields the identity id when w ∉ L.  We’ll show 
it doesn’t matter what a, b, c, d, and e are.

• We will prove that if L is decided by a circuit 
of depth d, it is five-cycle recognized by a 
program of length at most 4d.  Of course we 
will prove this by induction on d.



Adjusting Programs

• Lemma: Let f be a non-empty S5-program 
of length t, and let α and β be any 
permutations.  Then there exists a program g 
of length t such that for any string w, g(w) = 
αf(w)β.

• Proof: Multiply the permutations in the first 
instruction of f on the left by α, and the 
permutations in the last instruction of f on 
the right by β.



Starting the Proof

• Base case: d = 0, so we need a program of 
length 1 to simulate an input gate or negated 
input gate.  The single instruction is just (i, id, 
(1 2 3 4 5)) or (i, (1 2 3 4 5), id).

• NOT case: Given a program that yields id 
when w ∉ L and (a b c d e) when w ∈ L, use 
the Lemma to multiply the yield by (e d c b a).  
This gives (e d c b a) when w ∉ L and id 
when w ∈ L.  Since one five-cycle is as good 
as another by the Lemma, we are done 
without increasing the length at all.



The Key Step

• Let’s say that L = L1 ∩ L2, so that our circuit of 
depth d has an AND gate at the top.  (We can 
simulate OR gates with AND and NOT.)

• By the IH, we have programs f1 and f2 five-
cycle recognizing L1 and L2.  Since we can pick 
the five-cycles at will, we will have f1 yield (1 2 
3 4 5) if w ∈ L1 and have f2 yield (1 3 5 4 2) if 
w ∈ L2.



The Key Step

• We will also make g1 that five-cycle 
recognizes L1 yielding (5 4 3 2 1), and g2 five-
cycle recognizing L2 with yield (2 4 5 3 1). 

•  Our program f will just be the concatenation 
f1f2g1g2.  Since each of the IH-derived 
programs has length at most 4d-1, f has length 
at most 4d. 

• Now we just have to verify that f five-cycle 
recognizes L = L1 ∩ L2.



The Key Step

• If w ∉ L1 and w ∉ L2, f(w) = (id)(id)(id)(id) = id.

• If w ∉ L1 and w ∈ L2, f(w) = (id)(1 3 5 4 2)(id)(2 
4 5 3 1) = id.

• If w ∈ L1 and w ∉ L2, f(w) = (1 2 3 4 5)(id)(5 4 3 
2 1)(id) = id.

• If w ∈ L1 and w ∈ L2, f(w) = (1 2 3 4 5)(1 3 5 4 
2)(5 4 3 2 1)(2 4 5 3 1) = (1 3 2 5 4).

• So it works, and we are done.



Why Did This Work?

• S5 happens to have two elements that are 
conjugate both to one another and to their 
commutator.

• This can only happen in a non-solvable 
group, the smallest of which is A5 with 60 
elements (the even permutations in S5).

• No similar trick will work in S4, for example, 
but there could conceivably be a way to 
simulate NC1 with S4 programs.



Lower Bounds

• There is basically one known lower bound 
technique for programs over groups.  

• It works for S3 and A4, showing that while the 
AND function has exponential-length 
programs, it doesn’t have polynomial-length 
ones.

• We’ve conjectured that AND requires 
exponential length over any solvable group, 
which is equivalent to “AND ∉ CC0”.



Algebra and Complexity

• So iterated multiplication over a finite group 
or groupoid is in NC1.  

• Over constant-dimension integer matrices, it 
seems to be “close to” NC1 but not in it.

• Over a fixed non-associative structure (a 
groupoid), where iterated multiplication 
becomes nondeterministic, it becomes 
complete for the class LOGCFL or SAC1, 
which contains NL and is contained in AC1.



Algebra and Complexity

• We can also ask about the generation 
problem.  The input is a structure, a subset, 
and a target element, and we are asked 
whether any product of elements from the 
subset equals the target.

• Over groupoids this problem is P-complete.

• Over finite groups it is in L, but “almost in” 
AC0 so that it is not complete for any class 
that includes parity, such as NC1 or L.


