
NC1 and Barrington’s Theorem

COMPSCI 501 Guest Lecture
David Mix Barrington
17 April 2019

NC1 and Barrington’s Theorem

• NC1 in Context

• Branching Programs

• Regular Languages and Monoid Multiplication

• Simulating Circuits With S5 Programs

• Extensions: Algebra and Complexity

NC1 in Context

• NC1 is the set of decision problems solvable
by boolean circuits (AND, OR, and NOT
gates) of fan-in two, polynomial size, and
depth O(log n).

• It sits inside L (deterministic log space) and
thus inside NL, P, and NP. A log space DTM
can evaluate an NC1 circuit by depth-first
search, using a stack to remember its location,
as long as the circuit is sufficiently uniform.

Circuit Uniformity

• For most circuit classes, it suffices to define a
“uniform” circuit to be one that can be
constructed by a logspace Turing machine.

• But when we are interested in complexity
classes inside L, this won’t always do.

• “First-order uniformity” means that
structural questions about the circuit can be
defined by first-order formulas — this is the
standard notion in CS 601.

Basic Results About NC1

• NC1 circuits and formulas (circuits that
are trees) have the same computational
power. Evaluating a formula is a complete
problem for NC1.

• NC1 strictly includes AC0, the class of
problems solvable by circuits of unbounded
fan-in, polynomial size, and depth O(1). The
“strict” is because the parity language can be
shown not to be in AC0.

Basic Results About NC1

• Lots of arithmetic operations on binary
integers can be done in NC1. But even the
majority function, counting the number of 1’s
in the input string, is not obvious. Adding two
binary numbers is AC0, so adding n of them
together in the obvious way would be AC1.

• But there are tricks — using a different
notation for binary numbers, two can be
added in NC0, so n can be added in NC1, and
converting back to normal notation is AC0.

Basic Results About NC1

• Sipser and others showed in the early 1980’s
that parity (and therefore majority) is not in
AC0. This was thought to be the first step in
a series of lower bounds against larger and
larger circuit classes, culminating in a lower
bound against poly-size general circuits that
would prove P ≠ NP.

• In the second step, Razborov and Smolensky
showed that even with parity gates (or mod p
gates for a single prime p), AC0 still cannot do
majority.

Classes Within NC1

• If we augment AC0 with mod-m gates for
some fixed m (possibly composite), but keep
constant depth and polynomial size, we get
the class ACC0. There seems to be no reason
that the majority function should be in this
class.

• If we use the mod-m gates alone, with
constant depth and polynomial size, we get
the class CC0. There seems to be no reason
that the AND function should be in this class.

Branching Programs

• Also in the mid-80’s, there was an interest in
another combinatorial model of computation,
that of branching programs, and its
relation to circuit classes.

• A branching program is just a flowchart,
where at each node the program queries one
of the input bits, and goes to either the 0-
successor or the 1-successor of that node
depending on the result. A decision tree is
the special case where the fan-in is 1.

Branching Programs

• Poly-size branching programs are equivalent
to deterministic log space TM’s, as long as the
programs are uniform.

• An LSTM can trace the correct path through
the program, using log space to remember
where it is.

• Since a configuration of an LSTM is given by
the state, tape contents, and head positions,
there are only polynomially many, and we can
make a BP with a node for each one.

Branching Programs

• Could we get a lower bound against a
restricted class of branching programs, like
the lower bounds against AC0 and AC0 with
mod p gates?

• Borodin et al. proved a lower bound against
programs of width 2. Here we'll define
width as follows. The nodes of a width-w BP
are divided into levels of size w, and the two
successors of a node on level i are on level
i+1. Also, all nodes on a level query the same
input variable.

Branching Programs

• So for my Ph.D. research I took on the
problem of extending the lower bound, say to
all constant widths.

• This class BWBP might be interesting because
it strictly includes AC0 (and even ACC0, which
allows modular gates of any fixed modulus),
but still looks weak.

• It also includes all regular languages, but we
have lower bound techniques against that
class. Could we show MAJORITY ∉ BWBP?

Regular Languages and Monoids

• Think back to the argument that the parity
language is in NC1. You make a binary tree of
XOR gates, each of which has constant size
and depth.

• You can think of this as “multiplying” together
n elements in the group ℤ2, using a binary
tree of binary ℤ2 multiplications.

• Actually the decision problem for any regular
language can be thought of similarly.

Regular Languages and Monoids
• If X is any finite set with n elements, the

bijections on X form a group with n!
elements, called Sn, under the operation of
composition. The functions from X to X
form a monoid with nn elements, called Tn,
under the same operation.

• If M is a DFA with n states, every input letter
a defines a function φ(a) on the states, given
by (φ(a))(q) = δ(q, a). Given any string w, we
can define a function φ(w) on the states as
the ordered composition of the φ(a)’s in w.

Regular Languages and Monoids

• So to determine whether w is in L(M), we can
look up φ(a) for each letter in w, compose
these n functions together to get φ(w), and
determine whether (φ(w))(q0) ∈ F. From a
circuit point of view, this is all easy except for
the iterated multiplication of n elements of Tk,
where k is the number of states in M.

• But this iterated multiplication is clearly in
NC1 if k is a constant, since any function with
O(1) inputs and outputs is in NC0.

Programs Over Monoids

• This gives us an equivalent way to look at BWBP.
Fix a finite monoid M. An M-program of
length t is a sequence of t instructions, each
of which is a triple (i, 𝜎, 𝜏) where 𝜎 and 𝜏 are in

M. The yield of (i, 𝜎, 𝜏) is 𝜎 if xi = 0 and 𝜏 if xi =
1. The yield of the program is the composition
of the yields of the instructions. The language of
the program is the set of strings whose yield is
in some fixed subset F of M.

Programs Over Monoids

• It turns out that classes of monoids,
previously studied by algebraists, correspond
to circuit classes. Poly-length programs over
aperiodic monoids, for example, are
equivalent to AC0.

• Programs over groups (or “permutation
branching programs) are an interesting special
case. I was able to prove that programs over
S3 could do AND in exponential size, but not
in polynomial size.

Simulating Circuits with S5

• A reasonable conjecture would be that no
program over a group could do AND in
polynomial size, much less majority.

• But it turns out that once the group is
complicated enough, programs over it are
surprisingly powerful.

• Theorem: The language of any fan-in two
circuit of depth d can be decided by an S5

program of length 4d. (Hence BWBP = NC1.)

Permutation Preliminaries

• If X = {1,2,3,4,5}, we can write a permutation
in cycle form. For example, (1 3 5 4 2) is
the permutation that takes 1 to 3, 3 to 5, 5 to
4, 4 to 2, and 2 to 1. If a permutation has
more than one cycle we concatenate the
cycles, as in “(1 5 3)(2 4)”.

• Two permutations α and β with the same
cycle structure are conjugate, meaning that
there exists γ such that β = γαγ-1. In
particular, any two five-cycles are conjugate.

Five-Cycle Recognition

• Let L be a subset of {0,1}n. We say that an S5
program f five-cycle recognizes L if f
yields a five-cycle (a b c d e) when w ∈ L and
yields the identity id when w ∉ L. We’ll show
it doesn’t matter what a, b, c, d, and e are.

• We will prove that if L is decided by a circuit
of depth d, it is five-cycle recognized by a
program of length at most 4d. Of course we
will prove this by induction on d.

Adjusting Programs

• Lemma: Let f be a non-empty S5-program
of length t, and let α and β be any
permutations. Then there exists a program g
of length t such that for any string w, g(w) =
αf(w)β.

• Proof: Multiply the permutations in the first
instruction of f on the left by α, and the
permutations in the last instruction of f on
the right by β.

Starting the Proof

• Base case: d = 0, so we need a program of
length 1 to simulate an input gate or negated
input gate. The single instruction is just (i, id,
(1 2 3 4 5)) or (i, (1 2 3 4 5), id).

• NOT case: Given a program that yields id
when w ∉ L and (a b c d e) when w ∈ L, use
the Lemma to multiply the yield by (e d c b a).
This gives (e d c b a) when w ∉ L and id
when w ∈ L. Since one five-cycle is as good
as another by the Lemma, we are done
without increasing the length at all.

The Key Step

• Let’s say that L = L1 ∩ L2, so that our circuit of
depth d has an AND gate at the top. (We can
simulate OR gates with AND and NOT.)

• By the IH, we have programs f1 and f2 five-
cycle recognizing L1 and L2. Since we can pick
the five-cycles at will, we will have f1 yield (1 2
3 4 5) if w ∈ L1 and have f2 yield (1 3 5 4 2) if
w ∈ L2.

The Key Step

• We will also make g1 that five-cycle
recognizes L1 yielding (5 4 3 2 1), and g2 five-
cycle recognizing L2 with yield (2 4 5 3 1).

• Our program f will just be the concatenation
f1f2g1g2. Since each of the IH-derived
programs has length at most 4d-1, f has length
at most 4d.

• Now we just have to verify that f five-cycle
recognizes L = L1 ∩ L2.

The Key Step

• If w ∉ L1 and w ∉ L2, f(w) = (id)(id)(id)(id) = id.

• If w ∉ L1 and w ∈ L2, f(w) = (id)(1 3 5 4 2)(id)(2
4 5 3 1) = id.

• If w ∈ L1 and w ∉ L2, f(w) = (1 2 3 4 5)(id)(5 4 3
2 1)(id) = id.

• If w ∈ L1 and w ∈ L2, f(w) = (1 2 3 4 5)(1 3 5 4
2)(5 4 3 2 1)(2 4 5 3 1) = (1 3 2 5 4).

• So it works, and we are done.

Why Did This Work?

• S5 happens to have two elements that are
conjugate both to one another and to their
commutator.

• This can only happen in a non-solvable
group, the smallest of which is A5 with 60
elements (the even permutations in S5).

• No similar trick will work in S4, for example,
but there could conceivably be a way to
simulate NC1 with S4 programs.

Lower Bounds

• There is basically one known lower bound
technique for programs over groups.

• It works for S3 and A4, showing that while the
AND function has exponential-length
programs, it doesn’t have polynomial-length
ones.

• We’ve conjectured that AND requires
exponential length over any solvable group,
which is equivalent to “AND ∉ CC0”.

Algebra and Complexity

• So iterated multiplication over a finite group
or groupoid is in NC1.

• Over constant-dimension integer matrices, it
seems to be “close to” NC1 but not in it.

• Over a fixed non-associative structure (a
groupoid), where iterated multiplication
becomes nondeterministic, it becomes
complete for the class LOGCFL or SAC1,
which contains NL and is contained in AC1.

Algebra and Complexity

• We can also ask about the generation
problem. The input is a structure, a subset,
and a target element, and we are asked
whether any product of elements from the
subset equals the target.

• Over groupoids this problem is P-complete.

• Over finite groups it is in L, but “almost in”
AC0 so that it is not complete for any class
that includes parity, such as NC1 or L.

