Interactive Proofs

x: read-only input

finite

o: random bits /

control

\ IT: Proof

work tape

Merlin-Arthur games (MA) [Babai]
Decision problem: D; input string: x

Merlin — Prover — chooses the polynomial-length string II that Maximizes the chances of convincing Arthur
that x is an element of D.

Arthur — Verifier — computes the Average value of his possible computations on II, z. Arthur is a polynomial-
time, probabilistic Turing machine.

Definition 13.1 We say that Arthur accepts D iff the following conditions hold:

1. If x € D, there exists a proof 11, such that Arthur accepts for every random string o,

Pry [Arthur'™(z,0) = Accept| = 1
2. If z ¢ D, for every proof II, Arthur rejects for most of the random strings o,

1
Pry [Arthur(z,0) = Accept] < 5

Proposition 13.2 NP C MA.

By adding randomness to the verifier, we can greatly restrict its computational power and the number of bits of 11
that it needs to look at, while still enabling it to accept all of NP.

Verifier Arthur is (r(n), g(n))-restricted iff Arthur always uses at most O(r(n)) random bits and examines at

1

most O(q(n)) bits of its proof, II.
Let PCP[r(n), ¢(n)] be the set of boolean queries that are accepted by (r(n), ¢(n))-restricted verifiers.

MAX-3-SAT: given a 3CNF formula, find a truth assignment that maximizes the number of true clauses.

(21 Vs VIZZ) A (e Vay VT5) A (T VT2 VTg) A (22 VT3V Ty)
ATV a3V as) ATV TV T5) A (T VT2V as) A (@2 VTgVas)

Proposition 13.3 MAX-3-SAT has a polynomial-time € = % approximation algorithm.

Proof: Be greedy: choose the literal that occurs most often and make it true; repeat. U

Had Been Open for Years: Assuming NP # P is there some ¢, 0 < € < 1, s.t. MAX-3-SAT has no PTIME
e-approximation algorithm?

Theorem 13.4 (PCP Theorem [ALMSS) NP = PCP[logn, 1]
Corollary 13.5 [fP # NP, Thende. 0 < e <1, MAX-3-SAT has no ptime, e-approximation algorithm.

Theorem 13.6 ([Hastad]) In the PCP theorem, looking at 3 bits of the proof are necessary and sufficient. Thus,
the best possible PTIME approximation ration for MAX-3-SAT is % (and this is acheivable).

Cryptography

One-Time Pad: p € {0,1}*; m € {0,1}"

E(p,z) = pdz
D(p,x) = pdx

D(p,E(p,m)) = p@(podm) = m
P 01 1 0 01 01 01
m 0O 0 0 01 1 1T 1T 0O
E(p, m) 01 1 01 01 0 01
D(p,E(p,m))|]0O 0 0 0O 1 1 1 1 0 O

Thm: If p is chosen at random and known only to A and B Then E(p, m) provides no information to F about
m except perhaps its length.

Better not use p more than once!

Public-Key Cryptography
Idea: [Diffie, Hellman, 1976] Using computational complexity, I may be able to publish a key for sending secret

messages to me, that are intractable to decode. Example: Diffie-Hellman key exchange.

Realization: [Rivest, Shamir, Adleman, 1976] This is the Public-Key Algorithm that is used today in the SSL
algorithm that lets your browser generate a key to send an order to Amazon.com without, we believe, divulging
any useful information about your credit card number, or what you bought.

RSA

B chooses p, ¢ n-bit primes, e, s.t. GCD(e, ¢(pq)) = 1;

B publishes: pg,e; keeps p, ¢ secret.

Using Euclid’s algorithm, B computes d, k, s.t. ed + ko(pg) =1

[Break message into pieces shorter than 2n bits]

Bplz) = @ (mod pg)
Dp(z) = ! (mod pq)
Dp(Ep(m)) = (me)? (mod pg)
= m—ke(pa) (mod pq)

= m- (m*PD)"* (mod pq)

= m (mod pq)

= Ep(Dp(m)) (modpq)

For sufficiently large n, [n > 300 bits is fine in 2005],

It is widely believed that: FEz(m) divulges no useful information about m to anyone not knowing p, ¢, or d.
Message signing:
Let m = “B promises to give A $10 by 5/17/05.”

Let m’ = m o r where r is nonce or current date and time

It is widely believed that: Dy (m’) could be produced only by B. Thus it can be used as a contract signed by
B.

Useful for proving authenticity

Interactive Proofs

[Goldwasser, Micali, Rackoff], [Babai]

Decision problem: D; input string: x

Two players:

Prover — Merlin is computationally all-powerful. Wants to convince Verifier that z € D.

Verifier — Arthur: probabilistic polynomial-time TM. Wants to know the truth about whether x € D.

Input=x2; n=|z); t=no0

0. Arthur has z Merlin has x
1. flip o1, compute m; —

2. — My

3. flip o3, compute ms —

4. — my
2t. S My

2t 4+ 1. Aflip 09441, accept or reject

Def: D € IP iff there is a PTIME interactive protocol

1. If x € D, then there exists a strategy for Merlin
Prob{Arthur accepts 2z} = 1

2. If z ¢ D, then for all strategies for Merlin

Prob{Arthur accepts z} <

Observation: As for BPP, by iterating we can make probability of error exponentially small.

Def: MA is the set of decision problems admitting two step proofs where Merlin moves first.
AM is the set of decision problems admitting two step proofs where Arthur moves first. For & > 2,

AM[k| = ArthurMerlinArthur- - .
k

Fact: [Babai] Forall k > 2, AM[k] = AM.

NP
P
BPP

MA— AM AM[poly] = PSPACE
1

BP(NP)

Fact: [Goldwasser & Sipser] The power of interactive proofs is unchanged if Merlin knowns Arthur’s coin
tosses. For all k,

o IP[k] = AMIk]
o IP = AM[n°W)]
Graph Isomorphism € NP; Isitin co-NP?

Input = Gy, G1, n = |Go| = |G|

0. Arthur has G, G, Merlin has G, G;

1. flipk:{1,...,r} = {0,1}
ﬂip’]Tl,...77T7» € Sn
WI(GH(D), e ,7TT<G,§(T)) —

2. < My € {O, 1}r

3. accept iff K = myo

Prop: Graph Isomorphism € co-AM

Proof: If Gy 2 G, then Arthur will accept with probability 1.

If Gy = (G4, then Arthur will accept with probability < 27", 0

proof that IP C PSPACE: Evaluate the game tree.

Fact 13.7 [Goldwasser,Sipser] The power of interactive proofs is unchanged if M knowns A’s coin tosses. For

all k,
IPlk] = AM[k]; P = AM[n°Y)]
Graph Non-Isomorphism € AM
Input = Gy, Gy, n = [Go| = |G|
0. A has G, G M has G, G

o

flip s : {1,...,r} = {0,1}
flipm,..., 7. €85,
Wl(Gn(l))a ce ,WT(GH(n)) —
2. —— Mg € {Ov 1}T

accept iff K = my

Proposition 13.8 Graph Non-Isomorphism € AM

Proof: If Gy 2 G4, then A will accept with probability 1.
If Gy = (G4, then A will accept with probability < 277, OJ

Corollary 13.9 If Graph Isomorphism is NP-complete then PH collapses to Y5,

