Alternation

The concept of a nondeterministic acceptor of a boolean query has a long and rich history, going back to various kinds of nondeterministic automata.

It is important to remember that these are fictitious machines: we suspect that they cannot be built.

Open question: \(\text{NP} \ ? = \ \text{co-NP} = \{ \overline{A} \mid A \in \text{NP} \} \)

If one could really build an NP machine, then one could, with a single gate to invert its answer, also build a co-NP machine.

From a practical point of view, the complexity of a problem \(A \) and its complement, \(\overline{A} \) are identical.
Nondeterminism

Value(ID) := Value(LeftChild(ID)) \lor Value(RightChild(ID))
The states of an alternating Turing machine are split into: Existential states (∃) and Universal states (∀).

Definition 13.1 An alternating TM in ID₀ accepts iff

1. ID₀ is in a final accepting state, or
2. ID₀ is in an ∃ state and some next ID’ accepts, or
3. ID₀ is in a ∀ state, has at least one next ID, and all next ID’s accept.
From now on assume that our Turing machines have a **random access** read-only input. There is an **index tape** which can be written on and read like other tapes. Whenever the value \(h \), written in binary, appears on the index tape, the read head will automatically scan bit \(h \) of the input.
Definition 13.2 Let $\text{ASPACE}[s(n)]$ and $\text{ATIME}[t(n)]$ be the set of problems accepted by alternating TM’s using $O(s(n))$ tape cells, $O(t(n))$ time, respectively, in any computation path on any input of length n. □

Theorem 13.3 [Alternation Thm.] For $s(n) \geq \log n$, and for $t(n) \geq n$,

$$\bigcup_{k=1}^{\infty} \text{ATIME}[(t(n))^k] = \bigcup_{k=1}^{\infty} \text{SPACE}[(t(n))^k]$$

$$\text{ASPACE}[s(n)] = \bigcup_{k=1}^{\infty} \text{DTIME}[k^{s(n)}]$$

Corollary 13.4 $\text{ASPACE}[\log n] = \text{P}$ and $\text{ATIME}[n^{O(1)}] = \text{PSPACE}$.
Definition 13.5 The **monotone, circuit value problem** (MCVP) is the subset of CVP in which no negation gates occur.

Proposition 13.6 \[\text{MCVP} \in \text{ASPACE}[\log n].\]

Proof: Let \(G \) be a monotone boolean circuit. For \(a \in V^G \), define “EVAL(a),”

1. if (InputOn(a)) then accept
2. if (InputOff(a)) then reject
3. if \((G \land (a))\) then universally choose child \(b \) of \(a \)
4. if \((G \lor (a))\) then existentially choose child \(b \) of \(a \)
5. Return(EVAL(b))

\(M \) simply calls EVAL(\(r \)). EVAL(a) returns “accept” iff gate \(a \) evaluates to one.

Space used for naming vertices \(a, b \): \(O(\log n) \).
The above circuit is a member of MCVP because it just has \land and \lor gates and it evaluates to 1.
Def: The quantified satisfiability problem (QSAT) is the set of true formulas of the following form:

$$\Psi = Q_1x_1 \land Q_2x_2 \land \cdots \land Q_rx_r(\varphi)$$

For any boolean formula φ on variables x,

$$\varphi \in \text{SAT} \iff \exists x (\varphi) \in \text{QSAT}$$
$$\varphi \notin \text{SAT} \iff \forall x (\neg \varphi) \in \text{QSAT}$$

Thus QSAT logically contains SAT and SAT.
Proposition 13.7 \(\text{QSAT} \in \text{ATIME}[n] \).

Proof: Construct ATM, \(A \), on input, \(\Phi \equiv \)

\[
\exists x_1 \ \forall x_2 \ \cdots \ \exists x_{2k-1} \ \forall x_{2k} \ \bigwedge_{i=1}^{r} \bigvee_{j=1}^{s} \ell_{ij} \\
b_1 \ b_2 \ \cdots \ b_{2k-1} \ b_{2k} \ i \ j \ \ell_{ij}(b_1, \ldots, b_{2k})
\]

Quantifiers:

- in \(\exists \) state, \(A \) writes a bit \(b_1 \) for \(x_1 \),
- in \(\forall \) state, \(A \) writes a bit \(b_2 \) for \(x_2 \), and so on.

Boolean operators:

- in \(\forall \) state, \(A \) chooses \(i \),
- in \(\exists \) state, \(A \) chooses \(j \)

Final state: accept iff \(\ell_{ij}(b_1, \ldots, b_{2k}) \) is true.

\[A \text{ accepts } \Phi \iff \Phi \text{ is true.} \]
Theorem 13.8 For any $s(n) \geq \log n$, \(\text{NSPACE}[s(n)] \subseteq \text{ATIME}[s(n)^2] \subseteq \text{DSPACE}[s(n)^2] \).

Proof: \(\text{NSPACE}[s(n)] \subseteq \text{ATIME}[s(n)^2] \):

Let N be an \(\text{NSPACE}[s(n)] \) Turing machine.

Let w be an input to N, $n = |w|$.

\[
w \in L(N) \iff \text{CompGraph}(N, w) \in \text{REACH}
\]
\(w \in \mathcal{L}(N) \iff \text{CompGraph}(N, w) \in \text{REACH} \)

\[
P(d, x, y) \equiv \text{“In CompGraph}(N, w), \text{dist}(x, y) \leq 2^d”
\]

\[
P(d, x, y) \equiv \exists z \ (P(d - 1, x, z) \land P(d - 1, z, y))
\]

1. **Existentially:** choose middle ID \(z \).
2. **Universally:** \((x, y) := (x, z) \land (z, y)\)
3. Return\((P(d - 1, x, y))\)

\[
T(d) = O(s(n)) + T(d - 1) = O(d \cdot s(n))
\]
\[
d = O(s(n))
\]
\[
T(d) = O((s(n))^2)
\]
ATIME[\(t(n)\)] \subseteq DSPACE[\(t(n)\)]

Let \(A\) be an ATIME[\(t(n)\)] machine, input \(w, \ n = |w|\).

CompGraph(\(A, w\)) has depth \(c(t(n))\) and size \(2^{c(t(n))}\), for some constant \(c\).

Search this and/or graph systematically using \(c(t(n))\) extra bits of space.

\[
\text{ATIME}[t(n)] \subseteq \text{DSpace}[t(n)]
\]
Evaluate computation graph of ATIME[t(n)] machine using t(n) space to cycle through all possible computations of A on input w.
Example: $\text{ATIME}[t(n)] \subseteq \text{DSPACE}[t(n)]$
Theorem 13.9 \(\text{ASPACE}[s(n)] = \text{DTIME}2^{O(s(n))} \)

Proof: \(\text{ASPACE}[s(n)] \subseteq \text{DTIME}[2^{O(s(n))}] \):

Let \(A \) be an \(\text{ASPACE}[s(n)] \) machine, \(w \) an input, \(n = |w| \).

\(\text{CompGraph}(A(w)) \) has size \(\leq 2^{O(s(n))} \)

Marking algorithm evaluates this in \(\text{DTIME}2^{O(s(n))} \).
DTIME\([2^{O(s(n))}] \subseteq \text{ASPACE}[s(n)]\):

Let \(M\) be DTIME\([2^{k(s(n))}]\) TM, \(w\) an input, \(n = |w|\).

alternating procedure \(C(t, p, a)\) accepts iff contents of cell \(p\) at time \(t\) in \(M\)’s computation on input \(w\) is symbol \(a\).

\(C(t + 1, p, b)\) holds iff the three symbols \(a_{-1}, a_0, a_1\) in tape positions \(p - 1, p, p + 1\) lead to a “b” in position \(p\) in one step of \(M\)’s computation.

\[
C(t + 1, p, b) \equiv \bigvee_{(a_{-1}, a_0, a_1) \in \delta_t b} \bigwedge_{i \in \{-1, 0, 1\}} C(t, p + i, a_i)
\]

Space needed is \(O(\log 2^{k(s(n))}) = O(s(n))\).

Note that \(M\) accepts \(w\) iff \(C(2^{k(s(n))}, 1, \langle q_f, 1 \rangle)\)

<table>
<thead>
<tr>
<th></th>
<th>Space</th>
<th>1</th>
<th>(\bar{s})</th>
<th>(n - 1)</th>
<th>(n)</th>
<th>(2^{ks(n)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\langle q_0, w_0 \rangle)</td>
<td>(w_1)</td>
<td>\ldots</td>
<td>(w_{n-1})</td>
<td>(\square)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>1</td>
<td>(w_0)</td>
<td>(\langle q_1, w_1 \rangle)</td>
<td>\ldots</td>
<td>(w_{n-1})</td>
<td>(\square)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\bar{t})</td>
<td></td>
<td></td>
<td>(a_{-1})</td>
<td>(a_0)</td>
<td>(a_1)</td>
<td></td>
</tr>
<tr>
<td>(\bar{t} + 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2^{ks(n)})</td>
<td>(\langle q_f, 1 \rangle)</td>
<td>(\square)</td>
<td>\ldots</td>
<td>(\square)</td>
<td>(\square)</td>
<td>(\ldots)</td>
</tr>
</tbody>
</table>

\[
C(t + 1, p, b) \equiv \bigvee_{(a_{-1}, a_0, a_1) \in \delta_t b} \bigwedge_{i \in \{-1, 0, 1\}} C(t, p + i, a_i)
\]

This completes the proof of the Alternation Thm. \(\square\)
Alternation

Arithmetic Hierarchy

FO(\(\exists(N)\))

r.e. complete

Halt

r.e. complete

Halt

Recursive

Halt

co-r.e. complete

FO-SAT

Halt

FO-SAT

Halt

Arithmetic Hierarchy

FO(\(\forall(N)\))

\(r.e.\)

FO-VALID

Halt

co-r.e. complete

FO-SAT

Halt

FO-SAT

Halt

Primitive Recursive

SuccinctHornSAT

EXPTIME complete

EXPTIME

SO(LFP)

SO[\(2^{n^{O(1)}}\)]

PSPACE

QSAT

PSPACE complete

FO[\(2^{n^{O(1)}}\)]

FO(PFP)

SO(TC)

SO[n^{O(1)}]

PTIME Hierarchy

SO

NP complete

SAT

co-NP complete

SAT

co-NP

SO\(\forall\)

NP

SO\(\exists\)

NP \(\cap\) co-NP

\(\exists\) co-NP

\(\forall\) NP

NP \(\cap\) co-NP

P complete

P

P

Horn-SAT

“truly feasible”

AC\(^1\)

sAC\(^1\)

2SAT

NL comp.

NL

2COLOR

L comp.

L

NC\(^1\)

NC\(^1\)

FO(COUNT)

FO(REGULAR)

FO(DTC)

FO(TC)

FO(CFL)

FO(log n)

FO[log n]

FO[(log n)^{O(1)}]

FO[\(n^{O(1)}\)]

FO(LFP)

SO(Horn)

\(\forall\) SAT

\(\exists\) SAT

LOGTIME Hierarchy

AC\(^0\)

ThC\(^0\)

AC\(^0\)