
Alternation

The concept of a nondeterministic acceptor of a boolean query has a long and rich history, going back to various
kinds of nondeterministic automata.

It is important to remember that these are fictitious machines: we suspect that they cannot be built.

Open question: NP ? = co-NP =
{
A
∣∣ A ∈ NP

}
If one could really build an NP machine, then one could, with a single gate to invert its answer, also build a co-NP
machine.

From a practical point of view, the complexity of a problem A and its complement, A are identical.

1



Nondeterminism

2s

0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0

1

t(n)

t(n)

weak

communication

pattern

Value(ID) := Value(LeftChild(ID)) ∨ Value(Right(Child(ID))

2



The states of an alternating Turing machine are split into: Existential states (∃) and Universal states (∀).

Definition 13.1 An alternating TM in ID0 accepts iff

1. ID0 is in a final accepting state, or

2. ID0 is in an ∃ state and some next ID′ accepts, or

3. ID0 is in a ∀ state, has at least one next ID, and all next ID’s accept.

�

s

A
E

t

3



From now on assume that our Turing machines have a random access read-only input. There is an index tape
which can be written on and read like other tapes. Whenever the value h, written in binary, appears on the index
tape, the read head will automatically scan bit h of the input.

h

h

log n

indexTape

workTape

s(n)

2
1

q

n

wread−only input

4



Definition 13.2 Let ASPACE[s(n)] and ATIME[t(n)] be the set of problems accepted by alternating TM’s using
O(s(n)) tape cells, O(t(n)) time, respectively, in any computation path on any input of length n. �

Theorem 13.3 [ Alternation Thm.] For s(n) ≥ log n, and for t(n) ≥ n,

∞⋃
k=1

ATIME[(t(n))k] =
∞⋃
k=1

DSPACE[(t(n))k]

ASPACE[s(n)] =
∞⋃
k=1

DTIME[ks(n)]

Corollary 13.4 ASPACE[log n] = P and ATIME[nO(1)] = PSPACE.

5



Definition 13.5 The monotone, circuit value problem (MCVP) is the subset of CVP in which no negation gates
occur. �

Proposition 13.6 MCVP ∈ ASPACE[log n].

Proof: Let G be a monotone boolean circuit. For a ∈ V G, define “EVAL(a)”,

1. if (InputOn(a)) then accept
2. if (InputOff(a)) then reject
3. if (G∧(a)) then universally choose child b of a

4. if (G∨(a)) then existentially choose child b of a

5. Return(EVAL(b))

M simply calls EVAL(r). EVAL(a) returns “accept ” iff gate a evaluates to one.

Space used for naming vertices a, b: O(log n). �

6



or

r

orororor

andand

01 1 0

The above circuit is a member of MCVP because it just has ∧ and ∨ gates and it evaluates to 1.

7



Def: The quantified satisfiability problem (QSAT) is the set of true formulas of the following form:

Ψ = Q1x1Q2x2 · · · Qrxr (ϕ)

For any boolean formula ϕ on variables x,

ϕ ∈ SAT ⇔ ∃x (ϕ) ∈ QSAT

ϕ 6∈ SAT ⇔ ∀x (¬ϕ) ∈ QSAT

Thus QSAT logically contains SAT and SAT.

8



Proposition 13.7 QSAT ∈ ATIME[n].

Proof: Construct ATM, A, on input, Φ ≡

∃x1 ∀x2 · · · ∃x2k−1 ∀x2k

r∧
i=1

s∨
j=1

`ij

b1 b2 · · · b2k−1 b2k i j `ij(b1, . . . ,b2k)

Quantifiers:

• in ∃ state, A writes a bit b1 for x1,

• in ∀ state, A writes a bit b2 for x2, and so on.

Boolean operators:

• in ∀ state, A chooses i,

• in ∃ state, A chooses j

Final state: accept iff `ij(b1, . . . ,b2k) is true.

A accepts Φ ⇔ Φ is true. �

9



Theorem 13.8 For any s(n) ≥ log n, NSPACE[s(n)] ⊆ ATIME[s(n)2] ⊆ DSPACE[s(n)2] .

Proof: NSPACE[s(n)] ⊆ ATIME[s(n)2]:

Let N be an NSPACE[s(n)] Turing machine.

Let w be an input to N , n = |w|.

w ∈ L(N) ⇔ CompGraph(N,w) ∈ REACH

10



w ∈ L(N) ⇔ CompGraph(N,w) ∈ REACH

P (d, x, y) ≡ “ In CompGraph(N,w), dist(x, y) ≤ 2d ”
P (d, x, y) ≡ ∃z (P (d− 1, x, z) ∧ P (d− 1, z, y))

1. Existentially: choose middle ID z.

2. Universally: (x, y) := (x, z) & (z, y)

3. Return(P (d− 1, x, y))

T (d) = O(s(n)) + T (d− 1) = O(d · s(n))

d = O(s(n))

T (d) = O((s(n))2)

11



ATIME[t(n)] ⊆ DSPACE[t(n)]

Let A be an ATIME[t(n)] machine, input w, n = |w|.

CompGraph(A,w) has depth c(t(n)) and size 2c(t(n)), for some constant c.

Search this and/or graph systematically using c(t(n)) extra bits of space.

ATIME[t(n)] ⊆ DSPACE[t(n)]

12



t

*

t(n)

s

E
A

E

c c c c * * * * * *2 41 3

Evaluate computation graph of ATIME[t(n)] machine using t(n) space to cycle through all possible computations
of A on input w.

13



Example: ATIME[t(n)] ⊆ DSPACE[t(n)]

A

s
t

E

0 ? ? ? ?

14



Theorem 13.9 ASPACE[s(n)] = DTIME[2O(s(n))]

Proof: ASPACE[s(n)] ⊆ DTIME[2O(s(n))]:

Let A be an ASPACE[s(n)] machine, w an input, n = |w|.

CompGraph(A(w)) has size ≤ 2O(s(n))

Marking algorithm evaluates this in DTIME2O(s(n)).

t

E
A

E

O(s(n))

O(s(n))
2

2

s

15



DTIME[2O(s(n))] ⊆ ASPACE[s(n)]:

Let M be DTIME[2k(s(n))] TM, w an input, n = |w|.

alternating procedure C(t, p, a) accepts iff contents of cell p at time t in M ’s computation on input w is symbol a.

C(t + 1, p, b) holds iff the three symbols a−1, a0, a1 in tape positions p− 1, p, p + 1 lead to a “b” in position p in
one step of M ’s computation.

C(t + 1, p, b) ≡
∨

(a−1,a0,a1)
M→b

∧
i∈{−1,0,1}

C(t, p + i, ai)

Space needed is O(log 2k(s(n))) = O(s(n)).

Note that M accepts w iff C(2k(s(n)), 1, 〈qf , 1〉)

Space
0 1 s̄ n− 1 n 2ks(n)

0 〈q0, w0〉 w1 · · · wn−1 t · · · t
1 w0 〈q1, w1〉 · · · wn−1 t · · · t

Time
...

...
...

...

t̄ a−1 a0 a1

t̄ + 1 b
...

...
...

...
2ks(n) 〈qf , 1〉 t · · · t t · · · t

C(t + 1, p, b) ≡
∨

(a−1,a0,a1)
M→b

∧
i∈{−1,0,1}

C(t, p + i, ai)

This completes the proof of the Alternation Thm. �

16



al
te

rn
at

io
n

Arithmetic Hierarchy FO(N) r.e. complete

Halt

co-r.e. complete
FO-SAT FO-VALID
Halt r.e. FO∃(N)co-r.e. FO∀(N)

Recursive

Primitive Recursive

SO(LFP) SO[2n
O(1)

]

SuccinctHornSAT EXPTIME complete

EXPTIME

QSAT PSPACE complete

FO[2n
O(1)

] FO(PFP) SO(TC) SO[nO(1)]
PSPACE

PTIME Hierarchy SO NP complete
SAT

co-NP complete
SAT

NP SO∃co-NP SO∀
NP ∩ co-NP

P complete
Horn-
SAT P

FO[nO(1)]

FO(LFP) SO(Horn)

FO[(log n)O(1)] NC“truly

feasible”FO[log n] AC1

sAC1FO(CFL)

NL2SAT NL comp.FO(TC) SO(Krom)

2COLOR L comp. LFO(DTC)

NC1FO(REGULAR)

ThC0FO(COUNT)

AC0FO LOGTIME Hierarchy

17


