Ehrenfeucht-Fraïssé Games are a key tool for figuring out what is expressible in a given first order language.

7.1 Isomorphism and Elementary Equivalence

Definition 7.1 Let $\Sigma = (R_1^{a_1}, \ldots, R_s^{a_s}; f_1^{r_1}, \ldots, f_t^{r_t})$ and $\mathcal{A}, \mathcal{B} \in \text{STRUC}[\Sigma]$.

Then \mathcal{A} and \mathcal{B} are **isomorphic**, denoted $\mathcal{A} \cong \mathcal{B}$ iff there is a function $\eta : |\mathcal{A}| \to |\mathcal{B}|$ such that

1. for all $R^a \in \Sigma$, $e_1, \ldots, e_a \in |\mathcal{A}|$ \((e_1, \ldots, e_a) \in R^A \iff (\eta(e_1), \ldots, \eta(e_a)) \in R^B\)
2. for all $f^r \in \Sigma$, $e_1, \ldots, e_r \in |\mathcal{A}|$ \((\eta(f^A(e_1, \ldots, e_r)) = f^B(\eta(e_1), \ldots, \eta(e_r))\)

In words, $\mathcal{A} \cong \mathcal{B}$ iff there exists a 1:1 correspondence from the universe of \mathcal{A} to the universe of \mathcal{B} which preserves all of the relevant relations and functions. In this case, the function, η, is called an **isomorphism**.

Two structures are **isomorphic** iff they are **identical except perhaps for the names of the elements** of their universes.

Example 7.2 Consider the following structures, $\mathcal{G}, \mathcal{H}, \mathcal{H}' \in \text{STRUC}[\Sigma_{\text{rgb graph}}]$, where $\Sigma_{\text{rgb graph}} = (E^2, R^1, G^1, B^1)$ is the vocabulary of colored graphs with the three colors, R, G, B. For example, $R^G = \{g_1, g_4\}$, $G^G = \{g_2, g_3\}$, $B^G = \{g_3, g_6\}$.

Observe that $\mathcal{H} \cong \mathcal{H}'$ where the isomorphism $\eta = \{(h_i, h'_i) \mid 1 \leq i \leq 6\}$. Note that $\mathcal{G} \not\cong \mathcal{H}$. For them to be isomorphic, there would have to be an isomorphism $\sigma : \{g_1, \ldots, g_6\} \simto \{h_1, \ldots, h_6\}$ such that for all $g_1, g_2 \in |\mathcal{G}|$, $(g_1, g_2) \in E^G \Rightarrow (\sigma(g_1), \sigma(g_2)) \in E^H$ and there is no such σ. To be an isomorphism, σ would also have to satisfy, $\forall g \in |\mathcal{G}| \left(g \in R^G \iff \sigma(g) \in R^H \wedge g \in G^G \iff \sigma(g) \in G^H \right) \wedge g \in B^G \iff \sigma(g) \in B^H$.

Definition 7.3 [Elementary equivalence] Let $\mathcal{A}, \mathcal{B} \in \text{STRUC}[\Sigma]$. \mathcal{A} and \mathcal{B} are **elementary equivalent**, denoted $\mathcal{A} \equiv \mathcal{B}$, iff for all sentences $\varphi \in \mathcal{L}(\Sigma)$, $\mathcal{A} \models \varphi \iff \mathcal{B} \models \varphi$.

1
Recall that a sentence is a formula with no free variables. Thus \(A \equiv B \) iff they agree on all first-order properties. The reason we insist on sentences, is that we typically don’t care how \(A \) and \(B \) assign default values to the variables.

Theorem 7.4 (Isomorphism implies elementary equivalence) Let \(A, B \in \text{STRUCT}[\Sigma] \).

If \(A \cong B \), then \(A \equiv B \).

The proof of Thm. 7.4 is to assume that \(A \cong B \), and to prove by induction on \(\varphi \in \mathcal{L}(\Sigma) \) that \((A \models \varphi) \iff (B \models \varphi) \).

7.2 Minimum Distinguishing Formulas: Quantifier Depth and Number of Variables

Definition 7.5 [Quantifier Rank] The quantifier rank, sometimes called quantifier depth, denoted \(qr \), is the maximum depth of nesting of quantifiers in a formula. We define this inductively:

- **Base case**: \(qr(R(t_1, \ldots, t_n)) = 0 \).
- **Inductive case one**: \(qr(\neg \alpha) = qr(\alpha) \).
- **Inductive case two**: \(qr(\alpha \lor \beta) = qr(\alpha \land \beta) = \max(qr(\alpha), qr(\beta)) \).
- **Inductive case three**: \(qr(\exists \alpha) = qr(\forall x(\alpha)) = 1 + qr(\alpha) \).

Example 7.6 Let \(\alpha = \exists x(R(x)) \land \forall x \exists y(B(y) \rightarrow E(x, y) \land R(y)) \). Then \(qr(\alpha) = 2 \).

We can also calculate the number of distinct variables needed to express a property.

Let \(\text{dist}_{\leq 1}(x, y) \equiv (x = y \lor E(x, y)) \) meaning that the distance from \(x \) to \(y \) is at most 1. The most natural way to write \(\text{dist}_{\leq 4}(x, y) \) would be to use 3 extra variables:

\[
\varphi_4(x, y) \equiv \exists z_1 z_2 z_3 (\text{dist}_{\leq 1}(x, z_1) \land \text{dist}_{\leq 1}(z_1, z_2) \land \text{dist}_{\leq 1}(z_2, z_3) \land \text{dist}_{\leq 1}(z_3, y))
\]

Note that \(\varphi_4(x, y) \in \mathcal{L}^5(\Sigma) \), meaning that it uses at most 5 distinct variables. Can we write \(\text{dist}_{\leq 4}(x, y) \) using fewer than 5 variables?

Let’s use recursion:

\[
\begin{align*}
\text{dist}_{\leq 4}(x, y) & \equiv \exists (\text{dist}_{\leq 2}(x, z) \land \text{dist}_{\leq 2}(z, y)) \\
\text{dist}_{\leq 2}(x, y) & \equiv \exists (\text{dist}_{\leq 1}(x, z) \land \text{dist}_{\leq 1}(z, y))
\end{align*}
\]

Using the above recursion and dropping the rectification restriction, it is possible to express \(\text{dist}_{\leq n}(x, y) \) as a formula in \(\mathcal{L}^3 \). For example,

\[
\text{dist}_{\leq 4}(x, y) \equiv \exists y (\text{dist}_{\leq 1}(x, y) \land \text{dist}_{\leq 1}(y, z)) \land \exists x (\text{dist}_{\leq 1}(z, x) \land \text{dist}_{\leq 1}(x, y))
\]
Using this scheme in general, and noting that with one more depth of nesting of quantifiers we double the distance, we can show the following by induction on $\lceil \log n \rceil$:

Proposition 7.7 For all $n \geq 1$ we can write $\text{dist} \leq n \in L^3_{\lceil \log n \rceil}$, i.e., using 3 variables and quantifier rank $\lceil \log n \rceil$.

7.3 Ehrenfeucht-Fraïssé Games

Definition 7.8 [Ehrenfeucht-Fraïssé Games] An Ehrenfeucht-Fraïssé Game, $G^k_m(A, B)$, is a two-player game, with two players, Samson and Delilah, on two structures $A, B \in \text{STRUC}[\Sigma]$, where Σ is a finite relational vocabulary – finitely many relation and constant symbols and no function symbols of arity greater than 0.

$G^k_m(A, B)$ has m moves and k pairs of pebbles: $(x_1, x_1), \ldots, (x_k, x_k)$.

At each step, Samson places a one of the pebbles, x_i on one element of the universe of one of the two structures. Delilah responds by placing the other x_i pebble on an element of the other structure. Thus after this move, the default assignments of x_i^A and x_i^B have been changed.

Let x_i^A be the element of $|A|$ just chosen and x_i^B is the element of $|B|$ just chosen.

Delilah wins $(A \sim^k_m B)$ if after every step, $j \leq m$ the function, η_j that maps $c^A \mapsto c^B$ for constant symbols $c \in \Sigma$ and $x_i^A \mapsto x_i^B$ for all pebbles x_i that have been placed so far, is an isomorphism of the induced substructures of A and B. Note: any constant symbols, $c \in \Sigma$, are considered permanently chosen points, so η_j is defined on the constants as well, i.e., $\eta_j(c^A) = c^B$. **Samson wins** if at any step, η_j is not an isomorphism. □

As an example, let’s play the game $G^2_6(G, H)$ for the graphs G, H shown again below. We have two pairs of pebbles and up to six moves. Suppose that in the first move, Samson decides to place x_1 on vertex $g_2 \in |G|$. Delilah must reply with a green vertex, e.g., h_5, from $|H|$. Thus, after this first move, $x_1^G = g_2$, $x_1^H = h_5$ and x_2^G and x_2^H are not yet defined. Note that Delilah has not lost because the map $\eta_1 = \{(g_2, h_5)\}$ is an isomorphism of the induced substructures, $G_1 = (\{g_2\}, \emptyset, \emptyset, \{g_2\}, \emptyset)$, $H_1 = (\{h_5\}, \emptyset, \emptyset, \{h_5\}, \emptyset)$, each consisting of a single green vertex and no edges.

1We will talk about substructures soon. The idea is that the induced substructures consist of universes $\{c_1^A, \ldots, c_t^A, x_1^A, \ldots, x_k^A\} \subseteq |A|$ and $\{c_1^B, \ldots, c_t^B, x_1^B, \ldots, x_k^B\} \subseteq |B|$ and they inherit their interpretations of all of the symbols of Σ from their parent structures.
In the second move, Samson might choose a vertex in H, e.g., h_6. In order not to lose, Delilah must preserve the isomorphism. Note that now $H \models G(x_1) \land B(x_2) \land E(x_1, x_2)$. Delilah must place x_2 on a vertex in G which is blue and has an edge to g_2. Fortunately for her, there is such a vertex, namely g_6. Thus Delilah places x_2 on g_6 and the function $\eta_2 = \{(g_2, h_5), (g_6, h_6)\}$ is an isomorphism of the induced substructures, $G_2 = \{(g_2, g_6), ((g_2, g_6), (g_6, g_2)), \emptyset, \emptyset, \{g_2\}, \{g_6\}\}$, $H_2 = \{(h_5, h_6), ((h_5, h_6), (h_6, h_5)), \emptyset, \{h_5\}, \{h_6\}\}$.

Thus, Delilah has not lost.

Notation: We write $A \sim^k_m B$ to mean that Delilah has a winning strategy in the game $G^k_m(A, B)$.

It is not hard to see that wherever Samson places his pebble, Delilah always has a good answer, i.e., on a vertex of the same color which agrees with the other structure on whether it does nor does not have an edge to the other chosen point. It follows that

Proposition 7.9 For all $n \in \mathbb{N}$, $G \sim^2_n H$.

However, it is easy to see that $G \not\sim^3_3 H$, i.e., Samson can win the three pebble game. His winning strategy would be to put his three pebbles on g_1, g_2, g_6. Samson would be playing the sentence, “has-triangle”, which is true in G but not in H.

\[
\text{has-triangle} \equiv \exists x_1 x_2 x_3 \ (E(x_1, x_2) \land E(x_2, x_3) \land E(x_3, x_1))
\]
Next time we will prove the following theorem which shows that Ehrenfeucht-Fraïssé games exactly characterize the number of variables, via the number of pebble pairs and the quantifier rank, via the numbers of moves, needed to distinguish two structures:

Theorem 7.10 (Fundamental Thm of Ehrenfeucht-Fraïssé Games) *For all finite relational vocabularies, Σ, let A, B ∈ Σ. Then the following two conditions are equivalent:*

- A ≡_m^k B
- A ∼_m^k B

As a corollary of Prop. [7.9], we see that two variables cannot distinguish the graphs G and H.

Corollary 7.11 \(G \equiv^2 H \).

Here, \(A \equiv^k B \) is shorthand for \(\forall m \ A \equiv_m^k B \).