5.1 Syntax of First Order Logic with Equality

- \(\text{VAR} \overset{\text{def}}{=} \{x, y, z, u, w, x_0, y_0, \ldots, x_1, y_1, \ldots\} \)
- Vocabulary: \(\Sigma = (R_1^{a_1}, R_2^{a_2}, \ldots, R_s^{a_s}; f_1^{r_1}, f_2^{r_2}, \ldots, f_t^{r_t}) \)
- Relation Symbols: \(R_k^i \) where \(k \geq 0 \) and \(i \geq 1 \)
- Function Symbols: \(f_k^i \) where \(k \geq 0 \) and \(i \geq 1 \) (typically abbreviated as just \(f, g, h \))
- Constant Symbols: \(f_0^i \) (typically abbreviated as just \(a, b, c, d, k \))

Definition 5.1 \(\text{term}(\Sigma) \)

Base Case: If \(v \in \text{VAR} \) then \(v \in \text{term}(\Sigma) \).

Inductive Case: If \(t_1, t_2, \ldots, t_r \in \text{term}(\Sigma) \) and \(f^r \in \Sigma \) then \(f(t_1, \ldots, t_r) \in \text{term}(\Sigma) \)

A term \(t \in \text{term}(\Sigma) \) is a syntactic object that any structure \(A \in \text{STRUC}[\Sigma] \) will have to interpret as an element \(t^A \in |A| \).

Definition 5.2 \(\mathcal{L}(\Sigma) \) (First Order formulas of Vocab \(\Sigma \))

Base Case: atomic formulas

If \(t_1, \ldots, t_a \in \text{term}(\Sigma) \) and \(R^a \in \Sigma \) then \(R(t_1, \ldots, t_a) \in \mathcal{L}(\Sigma) \).

Inductive Steps:

If \(\alpha, \beta \in \mathcal{L}(\Sigma) \) and \(v \in \text{VAR} \) then

1. \(\neg \alpha \in \mathcal{L}(\Sigma) \)
2. \((\alpha \lor \beta) \in \mathcal{L}(\Sigma) \)
3. \(\exists v(\alpha) \in \mathcal{L}(\Sigma) \)

Abbreviation: \(\forall x(\alpha) \leftrightarrow \neg \exists x(\neg \alpha) \)
5.2 Semantics of First Order Logic with Equality

Definition 5.3. \mathcal{A} is a logical structure of vocabulary Σ ($\mathcal{A} \in \text{STRUC}[\Sigma]$) iff

$$\mathcal{A} = (|A|, R_1^A, \ldots, R_s^A; f_1^A, \ldots, f_t^A)$$

$|A| \neq \emptyset$,

$R_i^A \subseteq |A|^{a_i}$, \mathcal{A} interprets P_i as an a_i-ary relation over its universe.

$f_i^A : |A|^{r_i} \to |A|$, \mathcal{A} interprets f_i as a total function taking r_i arguments.

□

5.3 Tarski’s Definition of Truth

Definition 5.4. Every structure $\mathcal{A} \in \text{STRUC}[\Sigma]$ interprets every term $t \in \text{term}(\Sigma)$ as an element, t^A of its universe.

base case: If $v \in \text{VAR}$ then $v^A \in |A|$, i.e., \mathcal{A} gives a default value v^A to every variable, v.

inductive case: If t_1, \ldots, t_r are terms already defined by \mathcal{A}, and $f^r \in \Sigma$, then

$$f(t_1, \ldots, t_r)^A \overset{\text{def}}{=} f^A(t_1^A, \ldots, t_r^A)$$

□

Definition 5.5. [Truth] Let $\varphi \in \mathcal{L}(\Sigma)$, $\mathcal{A} \in \text{STRUC}[\Sigma]$. We inductively define whether or not $\mathcal{A} \models \varphi$.

Notation: For $\alpha \in \text{term}(\Sigma)$ and $\mathcal{A} \in \text{STRUC}[\Sigma]$, $\mathcal{A}(\alpha) = 1$ iff $\mathcal{A} \models \alpha$, i.e., α is true in \mathcal{A}. A structure \mathcal{A} that satisfies a formula α is called a **model** of α. $\mathcal{A}(\alpha) = 0$ iff $\mathcal{A} \not\models \alpha$, i.e., α is false in \mathcal{A}.

Base Case: (Atomic Formulas)

1. $\mathcal{A} \models R_i(t_1, \ldots, t_{a_i})$ iff $(t_1^A, \ldots, t_{a_i}^A) \in R_i^A$ (Gizem figured out what this definition had to be.)

2. $\mathcal{A} \models t_1 = t_2$ iff $t_1^A = t_2^A$, i.e., we insist that the binary predicate symbol, “$=$”, is always interpreted as “true equality”, i.e., t_1^A and t_2^A are the exact same element of $|A|$. (Mike figured out this definition.) Put another way, $=^A = \{(a, a) \mid a \in |A|\}$.

Inductive Cases:

1. $\mathcal{A} \models \neg \alpha$ iff $\mathcal{A} \not\models \alpha$

2. $\mathcal{A} \models (\alpha \vee \beta)$ iff $\mathcal{A} \models \alpha$ or $\mathcal{A} \models \beta$
3. \(A \models \exists v(\alpha) \iff \text{there exists } a \in |A| \text{ such that } A[a/v] \models \alpha \)

where \(A[a/v] \) is defined to be the exact same structure as \(A \) with the single exception that the default value of \(v \) in \(A[a/v] \) is \(a \), i.e., \(v^{A[a/v]} = a \).

\[\square \]

5.4 Examples

Some vocabularies:

- \(\Sigma_{\text{graph}} = (E^2;) \)
- \(\Sigma_{\text{st-graph}} = (E^2; s, t) \)
- \(\Sigma_N = (\leq^2[\text{infix}]; 0, \text{Suc}^1, +^2[\text{infix}], \cdot^2[\text{infix}]) \)
- \(\Sigma_{\text{set}} = (\in^2[\text{infix}]; \emptyset) \)
- \(\Sigma_{\text{group}} = (; \circ^2[\text{infix}], e) \)

Some structures:

\[G_0 \]

\[G_0' \]

\[s^{G_0} = 0, t^{G_0} = 1 \]

\[E^{G_0} = \{(0, 1), (2, 2)\} \]

\(G_0 \in \text{STRUC}[\Sigma_{\text{graph}}]; \ G_0' \in \text{STRUC}[\Sigma_{\text{st-graph}}]; \ |G_0| = |G_0'| = \{0, 1, 2\} \)

\(E(s, t) \in \mathcal{L}(\Sigma_{\text{st-graph}}); \ G_0' \models E(s, t) \)

Let \(N = \{0, 1, \ldots\}, \leq^N, \text{Suc}^N, +^N, \cdot^N \). \(N \) is the **standard model of the natural numbers**. \(N \in \text{STRUC}[\Sigma_N] \).

\[\leq^N = \{(0, 0), (0, 1), \ldots, (1, 1), (1, 2), \ldots, (8, 9), (8, 10), \ldots\} \]

\[\text{Suc}^N = \{(0, 1), (1, 2), (2, 3), \ldots\} \]

\[+^N = \{(0, 0), (0, 1), \ldots, (2, 2), 4\ldots, (8, 9), 17\ldots\} \]

\[\cdot^N = \{(0, 0), (0, 1), 0\ldots, (2, 2), 4\ldots, (8, 9), 72\ldots\} \]
Let $\alpha \equiv \forall xy(x = y \leftrightarrow \forall z(z \in x \leftrightarrow z \in y))$. α is the “axiom of extensionality”, the first axiom of ZFC (Zermelo-Fraenkel plus Choice). It says, “Two sets are equal iff they have exactly the same elements.”

A group, G, is a non-empty set with a binary operation that is associative, has an identity and inverses.

The group theory axioms consist of $\gamma_1 \wedge \gamma_2 \wedge \gamma_3$:

- **Associative**: $\gamma_1 \equiv \forall xyz (x \circ y) \circ z = x \circ (y \circ z)$
- **Identity**: $\gamma_2 \equiv \forall x (x \circ e) = x$
- **Inverse**: $\gamma_3 \equiv \forall x \exists y (x \circ y) = e$

A **group** is neither more nor less than a model of the group theory axioms.

A **graph** is neither more nor less than a structure of vocabulary Σ_{graph}.

Let $\psi \in L(\Sigma_{\text{graph}})$ say “loop-free and undirected”:

$$\psi \equiv \forall xy(\neg E(x, x) \wedge (E(x, y) \rightarrow E(y, x))) .$$

A **loop-free, undirected graph** is neither more not less than a model of ψ.