$LTL \subseteq CTL^*$ CTL^* has both path formulas and state formulas.

State Formulas:

base case: $(\mathcal{K}, s) \models p \iff p \in L(s)$

inductive cases: for any state formulas α, β, $\neg \alpha$, $\alpha \land \beta$ are state formulas.

for any path formula, ψ, use Path Quantifiers: A, E to construct the following state formulas:

$(\mathcal{K}, s) \models A \psi \iff$ for all π such that $\pi_0 = s$, $(\mathcal{K}, \pi) \models \psi$

$(\mathcal{K}, s) \models E \psi \iff$ for some π such that $\pi_0 = s$, $(\mathcal{K}, \pi) \models \psi$

Path Formulas:

base case: Every state formula is a path formula.

inductive cases: for any path formulas, ψ, φ, the following are path formulas:

$\neg \psi$, $\psi \land \varphi$, $F \psi$, $G \psi$, $X \psi$, $(\psi U \varphi)$

For example, for the below graph representing a Kripke structure \mathcal{K} we have $(\mathcal{K}, 2) \models AF q$ and $(\mathcal{K}, 2) \models AGF q$.

Emerson & Clarke: CTL has an efficient model checking algorithm.

In CTL, pair path quantifiers (A, E) with temporal operators (G, F, X, U). i.e. we only have state formulas. (And so $CTL \subseteq CTL^*$)

Some examples:

$(\mathcal{K}, s) \models EF p \iff$ there is some path from s to a state which satisfies p.

$(\mathcal{K}, s) \models EG p \iff$ there is some path from s along which p always holds.

$AG(p \rightarrow EX q)$

$AG(Gr \rightarrow Fc) =$ weak fairness (expressible in CTL), “Always trying implies eventually succeeding.”

$A(GFr \rightarrow GFc) =$ strong fairness (not expressible in CTL, expressible in CTL^*), “Infinitely often trying implies infinitely often succeeding.”

Theorem (Emerson & Clarke): “Linear Time” CTL Model Checking.

There is an algorithm with input $\mathcal{K}, \varphi \in CTL$ and output $\{s \in S^\mathcal{K}|(\mathcal{K}, s) \models \varphi\}$ with running time $O(|\mathcal{K}||\varphi|)$.

(The running time for LTL is $O(|\mathcal{K}|2^{|\varphi|}).$)