9.1 Skolemization: Getting rid of the \exists’s

Idea: Once φ is in RPF, we will convert φ to it’s Skolemization: φ_S. To do this, we replace existentially quantified variables with a new function symbol applied to the variables that have been previously universally quantified.

We will see:

Theorem 9.1 (Trevor & Skolem’s Theorem) For any $\varphi \in L(\Sigma)$, we can construct universal formula $\varphi_S \in L(\Sigma')$ such that φ and φ_S are equi-satisfiable, i.e., $\varphi \in \text{FO-SAT} \iff \varphi_S \in \text{FO-SAT}$. ($\Sigma'$ is the result of adding some new Skolem function symbols to Σ.)

φ_S will usually not be equivalent to φ, but it will be the case that $(\varphi_S \to \varphi) \in \text{FO-VALID}.$

Example 9.2 Let $\text{od2}(x) \equiv \exists y \exists z \forall w (E(x,y) \land E(x,z) \land y \neq z \land (\neg E(x,w) \lor w = y \lor w = z)).$ The formula $\text{od2}(x)$ has x as a free variable and says that vertex x has out-degree 2. To Skolemize $\text{od2}(x)$, we will get rid of the “$\exists y$” and replace all occurrences of y by the term $f_y(x)$ where f_y is a new unary function symbol. Similarly for “$\exists z$”

\[
\text{od2}(x) \equiv \forall w (E(x,f_y(x)) \land E(x,f_z(x)) \land f_y(x) \neq f_z(x) \land (\neg E(x,w) \lor w = f_y(x) \lor w = f_z(x))). \quad \square
\]

Example 9.3 $\alpha \equiv \exists x \forall y (x + y = y).$ Note that α says that there is an identity element for addition. $\alpha_S \equiv \forall y (c + y = y).$ This says that c is the identity element for addition. Note that α_S implies α and it is more specific: not only is there an identity element for addition, but we pick a particular one and give it a name, the new Skolem constant symbol, $c.$ \square

Example 9.4 $\beta \equiv \forall x \exists y E(x,y).$ β says that every vertex has an outgoing edge.

$\beta_S \equiv \forall x E(x,f(x))$

Here f is a new unary Skolem function symbol. Observe that $\beta_S \to \beta.$ β_S is more specific than $\beta.$ Not only does every vertex have at least one outgoing edge, but the function f picks one. \square

For any $\varphi \in L(\Sigma)$, we produce $\varphi_S \in L(\Sigma')$ which is universal and in RPF-CNF form and is equi-satisfiable with φ, i.e, $\varphi \in \text{FO-SAT} \iff \varphi_S \in \text{FO-SAT}.$

$$\varphi_s \equiv \forall x_1 \cdots x_k \bigwedge_{i=1}^{a} \bigvee_{j=1}^{b} \ell_{ij}$$

9.2 Herbrand Theory:

We will assume that our vocabulary, Σ, always includes at least one constant symbol, c. For example, let $\Sigma = (R_1^{r_1}, \ldots, R_s^{r_s} ; c, c_2, \ldots, c_k, f_1^{r_1}, \ldots, f_t^{r_t}).$ recall that we defined term (Σ) by induction. A term is closed if it has no variables. Since every vocabulary has the constant symbol, c, $c \in \text{closedTerm}(\Sigma)$, so $\text{closedTerm}(\Sigma) \neq \emptyset.$
Example 9.5 \(\Sigma_{\text{st-graph}} = (E^2; s, t) \). \(\text{closedTerm}(\Sigma_{\text{st-graph}}) = \{s, t\} \).

Example 9.6 Example: \(\Sigma_{\text{#th}} = (\leq^2; 0, 1, +^2[\text{infix}], *^2[\text{infix}]) \). \(\text{closedTerm}(\Sigma_{\text{#th}}) = \{0, 1, 0 + 0, 0 + 1, 0 \ast 0, (1 + 1) \ast (1 + 1), (1 + 1) \ast (1 + 1) + 1, \ldots\} \).

Recall that each term \(t \in \text{term}(\Sigma) \) is a sequence of symbols. Each structure \(A \in \text{STRUC}[\Sigma] \) interprets the term \(t \) as an element of its universe: \(t^A \in |A| \).

Definition 9.7 The Herbrand Universe for \((\Sigma) \) \(\equiv \text{closedTerm}(\Sigma) \).

Definition 9.8 Def. A Herbrand Structure \(H \in \text{STRUC}[\Sigma] \) has the Herbrand Universe as its universe, i.e., \(|H| = \text{closedTerm}(\Sigma) \). Furthermore, for every function symbol \(f^r \in \Sigma \), and every \(t_1, \ldots, t_r \in |H| \), we have,

Gizem’s Condition: \(f^H(t_1, \ldots, t_r) = f(t_1, \ldots, t_r) \).

Proposition 9.9 Let \(H \) be a Herbrand Structure of vocabulary \(\Sigma \) and let \(t \) be any closed term of \(\Sigma \). Then \(t^H = t \).

Proof: By induction on \(t \).

Definition 9.10 Let \(\varphi \in \mathcal{L}(\Sigma) \). If \(H \) is a Herbrand structure and \(H \models \varphi \) then we say that \(H \) is a Herbrand model of \(\varphi \).

Example 9.11 \(\Sigma_{\text{st-graph}} \) has exactly 16 Herbrand structures: \(H_0, \ldots, H_{15} \) all with universe \(\{s, t\} \), and with the 16 possible interpretations of \(E \) on a two-element universe. For example, let \(E^{H_2} = \{(t, s)\} \). Note that \(H_2 \models \forall x \, (\neg E(x, x)) \). Thus \(H_2 \) is a Herbrand model of \(\forall x \, (\neg E(x, x)) \).

Let \(\beta = \exists x \exists y \, (R(x) \land \neg R(y)) \). Let \(A_2 = (\{0, 1\}, R^{A_2} = \{1\}) \). Note that \(A_2 \models \beta \). However, \(H_0 \models \neg \beta \) and \(H_1 \models \neg \beta \). Thus, all the Herbrand structures of vocabulary \(\Sigma_0 \) satisfy \(\neg \beta \). Thus, \(\beta \) is satisfiable, but has no Herbrand model with vocabulary \(\Sigma_0 \).

Theorem 9.12 (Herbrand’s Theorem) Let \(\Sigma \) be a vocabulary s.t. \(\text{closedTerm}(\Sigma) \neq \emptyset \). Let \(\varphi \in \mathcal{L}(\Sigma) \) be a universal sentence, \(\varphi = \forall x_1 \cdots x_k(\alpha) \) where \(\alpha \) is quantifier free. Then

\((\varphi \in \text{FO-SAT}) \iff (\varphi \text{ has a Herbrand model}) \).

Proof: \(\Leftarrow \): If \(\varphi \) has a Herbrand model, \(H \models \varphi \), then \(\varphi \) has a model, so it is satisfiable.

\(\Rightarrow \): Assume that \(\varphi \in \text{FO-SAT} \) and let \(A \models \varphi \).

Goal: define a Herbrand structure, \(H \), s.t. \(H \models \varphi \).

Two parts of building \(H \) are trivial, i.e., we must have that \(|H| = \text{closedTerm}(\Sigma) \) and for all \(f^r \in \Sigma \) and \(t_1, \ldots, t_r \in \text{closedTerm}(\Sigma) \), \(f^H(t_1, \ldots, t_r) = f(t_1, \ldots, t_r) \).

What remains to be defined is \(R^H \) for each \(R^a \in \Sigma \). For these definitions, we just ask \(A \):

\[
R^H \overset{\text{def}}{=} \{(t_1, \ldots, t_a) \in |H|^a \mid A \models R(t_1, \ldots, t_a)\} .
\]
Claim. For all closed quantifier-free \(\beta \in L(\Sigma) \), \(H \models \beta \iff A \models \beta \).

Proof: By induction on \(\beta \).

base case: \(\beta = R(t_1, \ldots, t_a) \). By (\(* \)), \(H \models \beta \iff A \models \beta \).

inductive case: Assume true for \(\beta_1 \) and \(\beta_2 \).

\[
H \models \lnot \beta_1 \iff H \not\models \beta_1 \iff A \not\models \beta_1 \iff A \models \lnot \beta_1
\]

\[
H \models \beta_1 \lor \beta_2 \iff (H \models \beta_1) \text{ or } (H \models \beta_2) \iff (A \models \beta_1) \text{ or } (A \models \beta_2) \iff A \models \beta_1 \lor \beta_2.
\]

\(\square \)

Finally we show that \(H \models \forall x_1 \cdots x_k (\alpha) \).

Since \(A \models \forall x_1 \cdots x_k (\alpha) \), it follows that for all closed terms, \(t_1, \ldots, t_k \), \(A[t_1^A/x_1, \ldots, t_k^A/x_k] \models \alpha \).

Thus, by the Translation Lemma, for all closed terms, \(t_1, \ldots, t_k \), \(A \models \alpha[t_1^A/x_1, \ldots, t_k^A/x_k] \).

Thus, by our Claim, for all closed terms, \(t_1, \ldots, t_k \), \(H \models \alpha[t_1^A/x_1, \ldots, t_k^A/x_k] \).

Thus, by the Translation Lemma, for all closed terms, \(t_1, \ldots, t_k \), \(H[t_1/x_1, \ldots, t_k/x_k] \models \alpha \).

Thus, for all \(t_1, \ldots, t_k \in |H| \), \(H[t_1/x_1, \ldots, t_k/x_k] \models \alpha \).

Thus, by Tarski’s Definition of Truth, \(H \models \forall x_1 \cdots x_k (\alpha) \). \(\square \)