16.1 CTL*

CTL* stands for Computation Tree Logic. This is sometimes called “branching-time logic” as opposed to LTL which considers all possible linear paths from some initial state.

We will see that LTL and CTL are proper subsets of CTL*.

In CTL*, we have both path formulas state formulas.

16.2 Syntax and Semantics of CTL*

Syntax of State Formulas:

base case: If $p \in AP$, then p is a state formula.

inductive cases: if α, β are state formulas and φ is a path formula, then the following are state formulas:

- $\neg \alpha$,
- $\alpha \lor \beta$,
- $E\varphi$,
- $A\varphi$

Syntax of Path Formulas:

If α is a state formula and φ and ψ are path formulas, then the following are path formulas:

- α,
- $\neg \varphi$,
- $\varphi \lor \psi$,
- $X\varphi$,
- $F\varphi$,
- $G\varphi$,
- $\varphi \lor \psi$

Semantics of State Formulas:

- $(T, s) \models p$ if and only if $p \in L(s)$
- $(T, s) \models \neg \alpha$ if and only if $(T, s) \not\models \alpha$
- $(T, s) \models (\alpha \lor \beta)$ if and only if $(T, s) \models \alpha$ or $(T, s) \models \beta$
- $(T, s) \models E\varphi$ if there exists a path π, $\pi[0] = s$, $(T, \pi) \models \varphi$
- $(T, s) \models A\varphi$ if for all π such that $\pi[0] = s$, $(T, \pi) \models \varphi$

For α a state formula, $(T, \pi) \models \alpha$ if and only if $(T, \pi[0]) \models \alpha$

Semantics of Path Formulas: (same as in LTL)

- $(T, \pi) \models \neg \alpha$ if and only if $(T, \pi) \not\models \alpha$
- $(T, \pi) \models (\alpha \lor \beta)$ if and only if $(T, \pi) \models \alpha$ or $(T, \pi) \models \beta$
- $(T, \pi) \models X\alpha$ if $\pi^1 \models \alpha$
- $(T, \pi) \models G\alpha$ if $\forall i \geq 0 (T, \pi^i) \models \alpha$
- $(T, \pi) \models F\alpha$ if $\exists i \geq 0 (T, \pi^i) \models \alpha$
- $(T, \pi) \models (\alpha \lor \beta)$ if $\exists i \geq 0 ((T, \pi^i) \models \beta \land \forall j < i (T, \pi^j) \models \alpha)$
Some Temporal Logic Equivalence:

\[
\begin{align*}
F\varphi &\equiv \neg G\neg \varphi \\
F\varphi &\equiv \top U \varphi \\
A\varphi &\equiv \neg E\neg \varphi \\
E\varphi &\equiv \neg A\neg \varphi \\
AX\varphi &\equiv \neg EX\neg \varphi
\end{align*}
\]

16.3 CTL

Emerson and Clarke defined CTL as the following subset of the state formulas of CTL*:

Syntax of CTL:

- **base case:** If \(p \in AP \), then \(p \) is a CTL formula.
- **inductive cases:** if \(\alpha, \beta \) are CTL formulas, then so are:
 - \(\neg \alpha \)
 - \(\alpha \lor \beta \)
 - \(EX\alpha \), \(EF\alpha \), \(EG\alpha \), \(E(\alpha U \beta) \), \(AX\alpha \), \(AF\alpha \), \(AG\alpha \), \(A(\alpha U \beta) \)

Thus, CTL formulas are formed by pairing path quantifiers: \(E, A \), with temporal operators: \(X, F, G, U \) in all possible ways.

Theorem 16.1 (Emerson & Clarke) There is an algorithm which given a transition system \(T = (S, R, L) \) and a CTL formula \(\varphi \) marks the states \(s \in S \) such that \((T, s) \models \varphi \) and takes time \(O(|T| \cdot |\varphi|) \)

Proof: \(T \) is a graph with \(n = |S| \) vertices and \(m = |R| \) edges. The number of subformulas of \(\varphi \) is less than \(|\varphi| \). We now show that for each subformula \(\gamma \) of \(\varphi \), we can recursively label all the states that satisfy \(\gamma \), in time \(O(n + m) \).

- **base case:** \(\gamma \in AP \): \(L \) already gives the labeling.
 - \(\neg \alpha \): Label a state \(\neg \alpha \) if it is not labeled \(\alpha \). Time: \(O(n) \).
 - \(\alpha \lor \beta \): Label a state \(\alpha \lor \beta \) if it is labeled \(\alpha \), or \(\beta \). Time: \(O(n) \).
 - \(EX\alpha \): For each state, \(s \), go through its adjacency list and if any of \(s \)'s successors is labeled \(\alpha \), then label \(s \), \(EX\alpha \).
 - \(E(\alpha U \beta) \): Make a copy of the graph and delete all edges that satisfy neither \(\alpha \) nor \(\beta \). Now label each remaining state \(E(\alpha U \beta) \) if it is reachable backwards from a state marked \(\beta \). We can compute this by reversing the direction of the edges and doing a DFS, starting from all vertices labeled \(\beta \). Time: \(O(n + m) \).
 - \(EG\alpha \): We want to label all states that have an infinite path all of whose states are labeled \(\alpha \). First make a copy, \(A \), of the graph in which we have deleted all the vertices not labeled \(\alpha \). A subgraph, \(C \), of a graph is called a strongly connected component (SCC) if for every two vertices \(a, b \in C \), there is a path from \(a \) to \(b \). An SCC is called non-trivial, if it has a least one edge. (Trivial SCC’s consist of single vertices without self-loops.) You should know from your Algorithms Course, that using DFS, we can compute all the SCC’s in time \(O(n + m) \).

So, compute all the non-trivial SCC’s in \(A \). Now we should label a vertex \(EG\alpha \) if it is reachable in the reverse graph from a non-trivial SCC. We can compute this in time \(O(n + m) \) by doing a DFS of the reverse graph of \(A \), starting at all vertices in a non-trivial SCC. \(\square \)
Some examples:

In the graph, \mathcal{T}, below we have $(\mathcal{T}, 2) \models \text{AF}q$ and $(\mathcal{T}, 2) \models \text{AG}q$.

![Graph](image)

$(\mathcal{T}, s) \models \text{EF}p \iff$ there is some path from s to a state which satisfies p.

$(\mathcal{T}, s) \models \text{EG}p \iff$ there is some path from s along which p always holds.

$(\mathcal{T}, s) \models \text{AG}(p \rightarrow \text{EX}q) \iff$ Whenever p holds along a path from s, q holds at some next state.

$$\text{AG} (\text{Gr} \rightarrow \text{Fc}) = \text{weak fairness (expressible in } \text{CTL}), \text{“Always trying implies eventually succeeding.”}$$

$$\text{A} (\text{GF}r \rightarrow \text{GF}c) = \text{strong fairness (not expressible in } \text{CTL}, \text{expressible in } \text{CTL}^*), \text{“Infinitely often trying implies infinitely often succeeding.”}$$

The running time for model checking LTL is $O(|\mathcal{T}|^{2|\varphi|})$. We are not going to do this proof, but the intuitive idea is that we can represent paths via the subset of the subformulas of φ that they satisfy.