CS513:	Homework 3	Due at gradescope by midnight, 10/19/17
--------	------------	---

Reading Please finish reading Chapter 2 by the time this assignment is due.

I can't accept late hw's for Hw3: Because of the midterm coming up on Oct. 23, I will post solutions to hw3 at 10 a.m. on Friday, Oct. 20. We won't accept any late hw3 submissions after that.

Problems

- 1. [10 pts.] Write a formula, φ , in first-order logic with equality that is satisfiable, but only has infinite models, i.e., the universe must be infinite. Produce an infinite model for φ and argue why φ cannot have a finite model. [Hint: you can do this in a language with a single unary function symbol, f. You want to find a property of f which is only possible for infinite universes.]
- 2. [20 pts.] Use resolution to prove that $\exists x \forall y P(x, y) \vdash \forall y \exists x P(x, y)$ and show that the converse is not true by producing a structure that satisfies the second sentence but not the first.
- 3. [30 pts.] Do Exercise 85, p. 96. Assume that the whole universe consists of dragons. Use the predicates: H(x), G(y), F(z), C(v, w) to mean x is happy, y is green, z can fly, and v is a child of w, respectively. More explicitly:
 - (a) Write in FO, HCF, meaning "Every dragon is happy if all its children can fly."
 - (b) Convert to HCF_S , an equi-satisfiable Skolem formula in RPF-CNF, i.e., in RPF, with the quantifier-free part in CNF.
 - (c) Write in FO, GF, meaning "Green dragons can fly."
 - (d) Convert to GF_S , an equi-satisfiable Skolem formula in RPF-CNF.
 - (e) Write in FO, GCG, meaning "A dragon is green if it is a child of at least one green dragon."
 - (f) Convert to GCG_S , an equi-satisfiable Skolem formula in RPF-CNF.
 - (g) Write in FO, GH, meaning "All green dragons are happy".
 - (h) Convert \neg GH to NGH_S, an equi-satisfiable Skolem formula in RPF-CNF.
 - (i) Using resolution, prove that HCF \land GF \land GCG \vdash GH.
- 4. [25 pts.] Let A, A' be logical structures of the same vocabulary. We say that A' is a substructure of A (A' ≤ A) iff |A'| ⊆ |A| and A' interprets all predicate symbols and function symbols the same way that A does, i.e., for each predicate symbol P of arity i, P^{A'} = P^A ∩ |A'|ⁱ, and for each function symbol f of arity i, and for each e₁,... e_i ∈ |A'|, f^{A'}(e₁,..., e_i) = f^A(e₁,..., e_i). Note in particular that since A' is a structure it must be closed under all defined functions. Example: for graphs, G' ≤ G iff G' is an induced subgraph of G, i.e., G' has a subset of G's vertices and all the edges between them that G has.

A first-order formula is **universal** if it is in prenex normal form and all of its quantifiers are \forall 's. Similarly it is **existential** if it is in prenex normal form and all of its quantifiers are \exists 's. Suppose that $\mathcal{A} \leq \mathcal{B}$, i.e. \mathcal{A} is a substructure of \mathcal{B} . Prove the following:

- (a) If φ is universal and $\mathcal{B} \models \varphi$ then $\mathcal{A} \models \varphi$.
- (b) If φ is existential and $\mathcal{A} \models \varphi$ then $\mathcal{B} \models \varphi$.

[Hint: (a) and (b) imply each other. Just prove one and show why the other follows. Your proof should be by induction on the number of quantifiers. For the base case, α is quantifier free. I suggest you prove by induction on α that $\mathcal{A} \models \alpha \Leftrightarrow \mathcal{B} \models \alpha$. You may assume that the two structures interpret the same free variables the same way, i.e., if one of them interprets x then they both do and $x^{\mathcal{A}} = x^{\mathcal{B}}$.]

5. [15 pts.] Do exercise 6.5 in the EF Games handout: https://people.cs.umass.edu/~immerman/cs513/EFgames.pdf. [Hint: there are three properties to prove, namely that \sim_m^k is reflexive, symmetric and transitive. The transitive case is most interesting. For the symmetric and transitive cases, you are given the fact that Delilah has a winning strategy for certain game(s), and you must show that she has a winning strategy for some other game.