Def of PropCalc Formulas (Pfmla) $\mathbf{P_{var}} \stackrel{\text{def}}{=} \{p, q, r, s, p_0, q_0, r_0, s_0, p_1, q_1, r_1, s_1, \ldots\}$

base: $\top, \bot \in \mathbf{P_{fmla}}$; if $a \in \mathbf{P_{var}}$ then $a \in \mathbf{P_{fmla}}$; ind: If $\alpha, \beta \in \mathbf{P_{fmla}}$ then $\neg \alpha, (\alpha \lor \beta) \in \mathbf{P_{fmla}}$

Completeness Thms for PropCalc and FO: For Γ a set of formulas and φ a formula, $(\Gamma \models \varphi) \Leftrightarrow (\Gamma \vdash \varphi)$.

Compactness Thms: For Γ a set of formulas, $(\Gamma \text{ is satisfiable}) \Leftrightarrow (\text{Every finite subset of } \Gamma \text{ is satisfiable}).$

FO Syntax: term(Σ): VAR $\stackrel{\text{def}}{=} \{x, y, z, u, v, w, x_0, y_0, \dots, x_1, y_1, \dots \}$

base: If $v \in VAR$ then $v \in term(\Sigma)$;

ind: If $t_1, t_2, \dots, t_r \in \text{term}(\Sigma)$; $f \in \Sigma$, ar(f) = r then $f(t_1, \dots, t_r) \in \text{term}(\Sigma)$

FO formulas: $\mathcal{L}(\Sigma)$ base: If $t_1, \ldots, t_a \in \text{term}(\Sigma)$, $P \in \Sigma$, ar(f) = a then $P(t_1, \ldots, t_a)$, $t_1 = t_2 \in \mathcal{L}(\Sigma)$.

ind: If $\alpha, \beta \in \mathcal{L}(\Sigma)$ and $v \in VAR$ then $\neg \alpha$, $(\alpha \lor \beta)$, $\exists v(\alpha) \in \mathcal{L}(\Sigma)$

Tarski's Definition of Truth: $A \in STRUC[\Sigma]$

terms: base: If $v \in \text{VAR}$ then $v^{\mathcal{A}} \in |\mathcal{A}|$ ind: $t_1, \ldots, t_r \in \text{term}(\Sigma); f \in \Sigma, f(t_1, \ldots, t_r)^{\mathcal{A}} \stackrel{\text{def}}{=} f^{\mathcal{A}}(t_1^{\mathcal{A}}, \ldots, t_r^{\mathcal{A}})$

atomic fmla: $\mathcal{A} \models P(t_1, \dots, t_a)$ iff $(t_1^{\mathcal{A}}, \dots, t_{a_i}^{\mathcal{A}}) \in P^{\mathcal{A}}$; $\mathcal{A} \models t_1 = t_2$ iff $t_1^{\mathcal{A}} = t_2^{\mathcal{A}}$

ind: $\mathcal{A} \models \neg \alpha \text{ iff } \mathcal{A} \not\models \alpha; \ \mathcal{A} \models (\alpha \lor \beta) \text{ iff } \mathcal{A} \models \alpha \text{ or } \mathcal{A} \models \beta; \ \mathcal{A} \models \exists v(\alpha) \text{ iff exists } a \in |\mathcal{A}|, \mathcal{A}[v/a] \models \alpha$

Truth Game: $\mathcal{A} \models \varphi$ iff Dumbledore wins on (\mathcal{A}, φ) ; $\mathcal{A} \models \neg \varphi$ iff Gandalf wins on (\mathcal{A}, φ)

 $\varphi = \forall x(\alpha)$ **G** picks $a \in |\mathcal{A}|$; proceed on $(\mathcal{A}[a/x], \alpha)$. $\varphi = \exists x(\alpha)$ **D** picks $a \in |\mathcal{A}|$; proceed on $(\mathcal{A}[a/x], \alpha)$. $\varphi = (\alpha \land \beta)$ **G** picks $\gamma \in \{\alpha, \beta\}$; proceed on (\mathcal{A}, γ) . φ is a literal **D** wins iff $\mathcal{A} \models \varphi$. φ is a literal **G** wins iff $\mathcal{A} \models \neg \varphi$.

Convert FO Fmla to Equivalent Fmla in Rectified Prenex Normal (RPF) Form; then Skolemize

- 1. Remove all " \rightarrow "s using the fact that $\alpha \rightarrow \beta \equiv \neg \alpha \vee \beta$.
- 2. Push all "¬"s all the way inside using de Morgan and quantifier rules:

$$\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta; \ \neg(\alpha \lor \beta) \equiv \neg\alpha \land \neg\beta; \ \neg\forall x(\varphi) \equiv \exists x(\neg\varphi); \ \neg\exists x(\varphi) \equiv \forall x(\neg\varphi)$$

- 3. **Rectify** by renaming bound variables so each occurs only once and no bound variable also occurs free.
- 4. Pull quantifiers out using the following rules, assuming that x does not occur in α :

$$\alpha \wedge \forall x(\beta) \ \equiv \ \forall x(\alpha \wedge \beta); \ \alpha \vee \forall x(\beta) \ \equiv \ \forall x(\alpha \vee \beta); \ \alpha \wedge \exists x(\beta) \ \equiv \ \exists x(\alpha \wedge \beta); \ \alpha \vee \exists x(\beta) \ \equiv \ \exists x(\alpha \vee \beta)$$

5. **Skolemize:** remove existential quantifier $\exists x$ and replace x by $f(u_1, \ldots, u_r)$ where $\forall u_1 \ldots u_r$ are to the left of $\exists x$ and f a new function symbol.

In the EF Game, $\mathcal{G}_m^k(\mathcal{A}, \mathcal{B})$, **Delilah wins** if after every step, $j \leq m$ the function, η_j that maps $c^{\mathcal{A}} \mapsto c^{\mathcal{B}}$ for constant symbols $c \in \Sigma$ and $x_i^{\mathcal{A}} \mapsto x_i^{\mathcal{B}}$ for all pebbles x_i that have been placed so far, is an isomorphism of the induced substructures. **Samson wins** if at some step, η_j is not an isomorphism.

 $\mathcal{A} \sim_m^k \mathcal{B}$ means **Delilah has a winning strategy** for $\mathcal{G}_m^k(\mathcal{A}, \mathcal{B})$. $(\mathcal{A} \equiv_m^k \mathcal{B})$ means that \mathcal{A} and \mathcal{B} agree on all formulas in \mathcal{L}_m^k , i.e., having at most k variables and quantifier rank $\leq m$.

Fund. Thm of EF Games: Finite relational, Σ , \mathcal{A} , $\mathcal{B} \in STRUC[\Sigma]$, $(\mathcal{A} \equiv_m^k \mathcal{B}) \Leftrightarrow (\mathcal{A} \sim_m^k \mathcal{B})$

 \mathcal{A} and \mathcal{B} are **isomorphic** ($\mathcal{A} \cong \mathcal{B}$) iff exists $\eta : |\mathcal{A}| \stackrel{\text{1:1}}{\underset{\text{onto}}{\longrightarrow}} |\mathcal{B}|$ such that

forall
$$P \in \Sigma, e_1, \dots, e_a \in |\mathcal{A}| \quad ((e_1, \dots, e_a) \in P^{\mathcal{A}} \iff (\eta(e_1), \dots, \eta(e_a)) \in P^{\mathcal{B}})$$
 & forall $f \in \Sigma, e_1, \dots, e_r \in |\mathcal{A}| \quad (\eta(f^{\mathcal{A}}(e_1, \dots, e_r))) = f^{\mathcal{B}}(\eta(e_1), \dots, \eta(e_r)))$