Definitions for 501, especially where I differ from Sipser

Turing Machines: A TM $M = (Q, \delta, q_0)$, where $\delta : Q \times \Gamma \to Q_h \times \Gamma \times \{-1, 0, 1\}$.

Here $Q_h \overset{\text{def}}{=} Q \cup \{h\}$ where h means halt. We always have $\Sigma = \{0, 1\}$ and $\Gamma = \{0, 1, \triangleright, \sqcup\}$, where \triangleright is the left marker – it always and only occurs as the left-most symbol of the tape. The symbol “\sqcup” represents a blank square.

The initial instantaneous description of any TM computation is,

$\text{ID}_0 \overset{\text{def}}{=} (q_0, \triangleright), w_1, \ldots, w_n, \sqcup$

meaning that the TM is in its start state, q_0, looking at the left marker, its input is $w = w_1 \cdots w_n \in \Sigma^n$. The rightmost \sqcup represents infinitely many empty cells to its right. We always use $n = |w|$ for the length of the input.

For any TM, M, we slightly abuse notation and let M also refer to the partial function computed by M, i.e., $M : \text{dom}(M) \to \Sigma^*$, defined as follows:

$$M(w) = \begin{cases} y \in \Sigma^* & \text{if } M \text{ on input } \triangleright w \sqcup \text{ eventually halts with output beginning } \triangleright y \sqcup \\ \n & \text{otherwise} \end{cases}$$

Def. Let f be a partial function from Σ^* to Σ^*. We say that f is a partial, computable function iff \exists TM M s.t. $(\forall w \in \Sigma^*)(f(w) = M(w))$. Let $\text{dom}(M) = \{w \in \Sigma^* \mid M(w) \neq \n\}$. If $\text{dom}(M) = \Sigma^*$ then M is total, otherwise M is strictly partial.

Def. [Partial and total characteristic functions]. For any $S \subseteq \Sigma^*$, define the total and partial characteristic functions of S as follows:

$$\chi_S(x) = \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{otherwise} \end{cases} \quad p_S(x) = \begin{cases} 1 & \text{if } x \in S \\ \n & \text{otherwise} \end{cases}$$

Def. [Turing computable sets] Let $A \subseteq \Sigma^*$. We say that A is Turing computable (synonyms are computable, decidable, solvable, and recursive), iff χ_A is computable, i.e., for some TM, M, $(\forall w \in \Sigma^*)(M(w) = \chi_A(w))$.

Def. [Turing recognizable sets]. For any TM, M, let

$$\mathcal{L}(M) = \{w \in \Sigma^* \mid M(w) = 1\}.$$

For any $A \subseteq \Sigma^*$, we say that A is Turing recognizable (synonyms are Turing enumerable, recursive enumerable, r.e.) iff \exists TM M s.t. $A = \mathcal{L}(M)$.

Proposition: For all $A \subseteq \Sigma^*$, A is r.e. iff p_A is computable.

Theorem: There exists a Universal TM, U, s.t. $\forall n, w \in \mathbb{Z}^+$,

$$U(n, w) = M_n(w), \text{ i.e., } U \text{ on input } (n, w) \text{ does exactly what } M_n \text{ does on input } w.$$

Def. $K = \{n \mid n \in \mathcal{L}(M_n)\} = \{n \mid M_n(n) = 1\}$.
Theorem: K is r.e. but not recursive.

Def. $W_i = \mathcal{L}(M_i)$. W_i is the ith r.e. set. A set is r.e. iff it is W_i for some i.

Note that K was constructed so that for all j, $j \in K \iff j \not\in W_j$.

Thus, by construction, $K \neq W_j$, for every j. Thus K is not r.e.

$K = D$, the Diagonalization language that Sipser defines in 4.2.

Def. $\text{HALT} = \{(n, w) \mid M_n(w) \downarrow\}$; $A_{TM} = \{(n, w) \mid M_n(w) = 1\}$

Corollary: HALT and A_{TM} are r.e. but not recursive.

Fundamental Theorem of r.e. Sets Let $A \subseteq \Sigma^*$. T.F.A.E.

1. \exists TM M_1, $A = \text{dom}(M_1) = \{i \in \mathbb{N} \mid M_1(i) \downarrow\}$.
2. \exists TM M_2, $A = \text{range}(M_2) = \{M_2(i) \mid i \in \mathbb{N}\}$.
3. \exists TM M_3, $A = \emptyset$ or $A = \text{range}(M_3)$ and M_3 is total.
4. \exists TM M_4, $A = \mathcal{L}(M_4)$.