Some of you asked for some notes about induction. This relates to Problem 1 on HW 2, where I suggest that you prove the correctness of the text’s division algorithm by induction on $n = \lfloor \log(x + 1) \rfloor$.

Principle of Mathematical Induction Let $P(n)$ be a proposition that is true or false for each given natural number, $n \in \mathbb{N}$. Suppose that the following two facts hold:

base case: $P(0)$

inductive case: $\forall r \in \mathbb{N}(P(r) \rightarrow P(r + 1))$

Then, we can conclude that for all $n \in \mathbb{N}$, $P(n)$ holds.

Example 1 A simple use of Mathematical Induction is to prove that for all positive reals, $a \neq 1$, and for all $n \in \mathbb{N}$, the formula

$$\sum_{i=0}^{n} a^i = \frac{(a^{n+1} - 1)}{(a - 1)}$$

always holds.

Proof: Let $G(n)$ be the statement $\sum_{i=0}^{n} a^i = \frac{(a^{n+1} - 1)}{(a - 1)}$. We prove by induction that $G(n)$ holds for all $n \in \mathbb{N}$.

base case: $G(0)$ says that $\sum_{i=0}^{0} a^i = \frac{(a^0 - 1)}{(a - 1)}$. The summation on the left has one term namely $a^0 = 1$. The term on the right is $\frac{(a-1)}{(a-1)} = 1$, so $G(0)$ is true.

inductive case: We may assume inductively that $G(r)$ holds, where r is a fixed, arbitrary natural number, i.e,

$$\sum_{i=0}^{r} a^i = \frac{(a^{r+1} - 1)}{(a - 1)}.$$

We want to prove that $G(r + 1)$ holds.

Note that $\sum_{i=0}^{r+1} a^i = \sum_{i=0}^{r} a^i + a^{r+1}$.

By our inductive hypothesis, we thus have that $\sum_{i=0}^{r+1} a^i = \frac{(a^{r+1} - 1)}{(a - 1)} + a^{r+1}$.

But note that,

$$\frac{(a^{r+1} - 1)}{(a - 1)} + a^{r+1} = \frac{(a^{r+1} - 1 + (a - 1)a^{r+1})}{(a - 1)} = \frac{(a^{r+1+1} - 1)}{(a - 1)}$$

Thus, as desired, $G(r + 1)$ holds.

Since we have proved the base case and the inductive case, it follows by the principle of mathematical induction that $G(n)$ holds for all $n \in \mathbb{N}$.

Hope this helps. I’m off to a wedding in Seattle, back Sunday night. Please feel free to use Creidieki’s office hours on Friday and mine on Monday.