CS250:

As usual, you will join random groups of 4 according to the card you are given. Please work together in your groups to understand and solve the problems on this two-sided sheet. There will be a D5 moodle quiz for you to fill in your answers by Thursday night, 11 p.m.

R_1	$\stackrel{\mathrm{def}}{=}$	$\forall x y z (x + (y + z)) = (x + y) + z)$	+ is associative
R_2	$\stackrel{\mathrm{def}}{=}$	$\forall x \ y \ (x + y = y + x)$	+ is commutative
R_3	$\stackrel{\mathrm{def}}{=}$	$0 \neq 1 \ \land \ \forall x \ x + 0 = x$	0 is id for $+$
R_4	$\stackrel{\mathrm{def}}{=}$	$\forall x \; \exists y \; x + y = 0$	Additive inverses
R_5	$\stackrel{\mathrm{def}}{=}$	$\forall x y z (x \cdot (y \cdot z) = (x \cdot y) \cdot z)$	\cdot is associative
R_6	$\stackrel{\mathrm{def}}{=}$	$\forall x \ x \cdot 1 = x$	1 is id for \cdot
R_7	$\stackrel{\mathrm{def}}{=}$	$\forall x y z(x \cdot (y+z) = x \cdot y + x \cdot z) \land$	+ distributes
		$(y+z)\cdot x = y\cdot x + z\cdot x)$	over ·
$C\!R$	$\stackrel{\rm def}{=}$	$\forall x \ y \ (x \cdot y \ = \ y \cdot x)$	\cdot is commutative

Def. A ring is a world $W \in \text{World}[\Sigma_{\#\text{thy}}]$ s.t. $W \models R_1 \land \cdots \land R_7$

Def. A commutative ring is a ring that satisfies $CR = \mathbf{Z}$, \mathbf{Q} , \mathbf{R} are commutative rings. N is not a ring. Some other commutative rings: $\mathbf{Z}/m\mathbf{Z}$, m > 1

$$|\mathbf{Z}/m\mathbf{Z}| = \{0, 1, \dots, m-1\}, \quad a+b \stackrel{\text{def}}{=} (a+b)\%m, \quad a \cdot b \stackrel{\text{def}}{=} (a \cdot b)\%m$$

Prop. for all m > 1, $\mathbf{Z}/m\mathbf{Z} \models R_1 \land \cdots \land R_7 \land CR$

	$+^{Z/2Z}$	0	1]	$.^{Z/2Z}$	0	1
$ \mathbf{Z}/2\mathbf{Z} = \{0, 1\}$	0	0	1		0	0	0
	1	1	0]	1	0	1

 $F \stackrel{\text{def}}{=} \forall x \ (x \neq 0 \ \rightarrow \ \exists y \ x \cdot y = 1)$

Def. A field is a commutative ring that satisfies $F \mathbf{Q}$, \mathbf{R} are fields \mathbf{Z} is not a field; $\mathbf{Z}/2\mathbf{Z}$ is a field.

	$+^{Z/3Z}$	0	1	2	$\cdot^{Z/3Z}$	0	1	2
$ \mathbf{Z}/3\mathbf{Z} = \{0, 1, 2\}$	0	0	1	2	0	0	0	0
$ \mathbf{L}/\mathbf{JL} = \{0, 1, 2\}$	1	1	2	0	1	0	1	2
	2	2	0	1	2	0	2	1

$+^{Z/4Z}$	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

$\cdot^{Z/4Z}$	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

Z/4Z is not a field Which elements of Z/4Z have multiplicative inverses? 1,3

$+^{Z/5Z}$	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

$.^{Z/5Z}$	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

$\mathbf{Z}/5\mathbf{Z}$ is a field

$+^{Z/6Z}$	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

$\cdot^{Z/6Z}$	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

Z/6Z is not a field Which elements of Z/6Z have multiplicative inverses? 1,5 Let a^{-1} mod m denote the multiplicative inverse of a in Z/mZ, if it exists. Compute the following:

1. $2^{-1} \mod 3$

- 2. $3^{-1} \mod 4$
- 3. $2^{-1} \mod 5$ $3^{-1} \mod 5$ $4^{-1} \mod 5$
- 4. $5^{-1} \mod 6$

With what time remains, in your group, try to prove the following:

Shuyang's Thm. If m > 1 is a perfect square, then $\mathbb{Z}/m\mathbb{Z}$ is not a field.

Jordan and Rachit's Conjecture If m > 1 is not prime, then $\mathbb{Z}/m\mathbb{Z}$ is not a field.