
D10 Answers: DFA's and Regular Expressions

Fall 2016

2. $L_b = \{0^i 1^j 0^{i+j} \mid i, j \in \mathbb{Z}^+\}$ is not regular. We prove this using the Pumping Lemma.

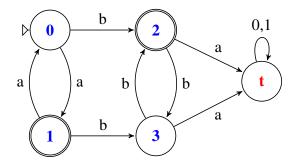
Assume: L_b is accepted by DFA D with n states.

you (G) choose string: $w \in L_b = \mathcal{L}(D)$

Let $w = 0^n 1^n 0^{2n}$

By pumping lemma, D chooses $x, y, z \in \{a, b\}^*$, s.t.,

- 1. $w = 0^n 1^n 0^{2n} = xyz$
- 2. $|xy| \leq n$
- 3. |y| > 0, and
- 4. $\forall k \in \mathbf{N} (xy^k z \in L_b)$


```
Since 0 < |xy| \le n, y = 0^{i}, 0 < i \le n
Thus xy^{0}z = 0^{n-i}1^{n}0^{2n} \in L_{b}.
but 0^{n-i}1^{n}0^{2n} \notin L_{b}
```

 $\Rightarrow \Leftarrow$

Therefore L_b is **not DFA acceptable**.

3.
$$L_c = \{a^i b^j \mid i, j \in \mathbb{N}; i+j \equiv 1 \pmod{2}\} = \mathcal{L}(a(aa)^* | ((aa)^* b | a(aa)^* bb)(bb)^*)$$

 L_c is regular and accepted by this DFA:

