CS250: Discrete Math for Computer Science

L9: Tarski’s Definition of Truth



Free and Bound Variables

An occurrence of a variable x is bound iff it occurs within the
scope of a quantifier, Vx or 3x. Otherwise it’s free.



Free and Bound Variables

An occurrence of a variable x is bound iff it occurs within the
scope of a quantifier, Vx or 3x. Otherwise it’s free.

a ¥ vyy+x=y)



Free and Bound Variables

An occurrence of a variable x is bound iff it occurs within the
scope of a quantifier, Vx or 3x. Otherwise it’s free.

o Vy(y+x=y) X is the identity for +



Free and Bound Variables

An occurrence of a variable x is bound iff it occurs within the
scope of a quantifier, Vx or 3x. Otherwise it’s free.

o Vy(y+x=y) X is the identity for +
o[t/ v] in ¢ replace free v's by ¢



Free and Bound Variables

An occurrence of a variable x is bound iff it occurs within the
scope of a quantifier, Vx or 3x. Otherwise it’s free.
o Vy(y+x=y) X is the identity for +
o[t/ v] in ¢ replace free v's by ¢
afz/x] =Vy(y +z=Y)



Free and Bound Variables

An occurrence of a variable x is bound iff it occurs within the
scope of a quantifier, Vx or 3x. Otherwise it’s free.
o Vy(y+x=y) X is the identity for +
o[t/ v] in ¢ replace free v's by ¢
alz/X|=Vy(y+z=y) zisthe identity for +.



Free and Bound Variables

An occurrence of a variable x is bound iff it occurs within the
scope of a quantifier, Vx or 3x. Otherwise it’s free.

o Vy(y+x=y) X is the identity for +
o[t/ v] in ¢ replace free v's by ¢

alz/X|=Vy(y+z=y) zisthe identity for +.
wy+y=y)



Free and Bound Variables

An occurrence of a variable x is bound iff it occurs within the
scope of a quantifier, Vx or 3x. Otherwise it’s free.

o Vy(y+x=y) X is the identity for +

o[t/ v] in ¢ replace free v's by ¢
alz/X|=Vy(y+z=y) zisthe identity for +.
Vy(y+y=y) y was captured by the Vy.



Free and Bound Variables

An occurrence of a variable x is bound iff it occurs within the
scope of a quantifier, Vx or 3x. Otherwise it’s free.

o Vy(y+x=y) X is the identity for +

o[t/ v] in ¢ replace free v's by ¢
alz/X|=Vy(y+z=y) zisthe identity for +.
Vy(y+y=y) y was captured by the Vy.

aly/x] =w(v+y=v)



Free and Bound Variables

An occurrence of a variable x is bound iff it occurs within the
scope of a quantifier, Vx or 3x. Otherwise it’s free.

o Vy(y+x=y) X is the identity for +

o[t/ v] in ¢ replace free v's by ¢
alz/X|=Vy(y+z=y) zisthe identity for +.
Vy(y+y=y) y was captured by the Vy.
aly/x] =vw(v+y=v) yistheidentity for +



Free and Bound Variables

An occurrence of a variable x is bound iff it occurs within the
scope of a quantifier, Vx or 3x. Otherwise it’s free.

o Vy(y+x=y) X is the identity for +

o[t/ v] in ¢ replace free v's by ¢
alz/X|=Vy(y+z=y) zisthe identity for +.
Vy(y+y=y) y was captured by the Vy.

aly/x] =vw(v+y=v) yistheidentity for +

Bound variables are dummies: Vy(y + x =y) =W (v+x =v).



Free and Bound Variables

An occurrence of a variable x is bound iff it occurs within the
scope of a quantifier, Vx or 3x. Otherwise it’s free.

o Vy(y+x=y) X is the identity for +

o[t/ v] in ¢ replace free v's by ¢
alz/X|=Vy(y+z=y) zisthe identity for +.
Vy(y+y=y) y was captured by the Vy.

aly/x] =vw(v+y=v) yistheidentity for +

Bound variables are dummies: Vy(y + x =y) =W (v+x =v).
Always change the names of dummies to avoid capture.



Free and Bound Variables

An occurrence of a variable x is bound iff it occurs within the
scope of a quantifier, Vx or 3x. Otherwise it’s free.

o Vy(y+x=y) X is the identity for +
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Bound variables are dummies: Vy(y + x =y) =W (v+x =v).
Always change the names of dummies to avoid capture.

A formula says something about its free variables.
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term(XZgarst)
S t S X t
Q’G (3 GQO (3)
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Gi Gi[1/x 4)y]

Default Interpretation of variables: Unless explicitly stated
otherwise, v =0, (or the min value in |W| if 0 ¢ |W|).

Notation: W[e/v] is same as W, except vVIeV = e
sG =0 tG =3 G4 g Gilx4y —3
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