CS250: Discrete Math for Computer Science

L9: Tarski's Definition of Truth

$$\alpha \stackrel{\text{def}}{=} \forall \mathbf{y}(\mathbf{y} + \mathbf{x} = \mathbf{y})$$

Free and Bound Variables

An occurrence of a variable x is **bound** iff it occurs within the scope of a quantifier, $\forall x$ or $\exists x$. Otherwise it's **free**.

 $\alpha \stackrel{\text{def}}{=} \forall \mathbf{y}(\mathbf{y} + \mathbf{x} = \mathbf{y})$ **x** is the identity for +

 $\begin{array}{ll} \alpha \ \stackrel{\mathrm{def}}{=} \ \forall \mathbf{y}(\mathbf{y} + \mathbf{x} = \mathbf{y}) & \mathbf{x} \text{ is the identity for } + \\ \varphi[t/v] & \mathrm{in } \varphi \text{ replace free v's by } t \end{array}$

 $\alpha \stackrel{\text{def}}{=} \forall \mathbf{y}(\mathbf{y} + \mathbf{x} = \mathbf{y}) \qquad \mathbf{x} \text{ is the identity for } + \\ \varphi[t/v] \qquad \qquad \text{in } \varphi \text{ replace free } \mathbf{v}\text{'s by } t \\ \alpha[z/x] = \forall \mathbf{y}(\mathbf{y} + \mathbf{z} = \mathbf{y})$

 $\alpha \stackrel{\text{def}}{=} \forall \mathbf{y}(\mathbf{y} + \mathbf{x} = \mathbf{y}) \qquad \mathbf{x} \text{ is the identity for } + \\ \varphi[t/v] \qquad \qquad \text{in } \varphi \text{ replace free } \mathbf{v}\text{'s by } t \\ \alpha[z/x] = \forall \mathbf{y}(\mathbf{y} + \mathbf{z} = \mathbf{y}) \qquad \mathbf{z} \text{ is the identity for } +.$

 $\alpha \stackrel{\text{def}}{=} \forall \mathbf{y}(\mathbf{y} + \mathbf{x} = \mathbf{y})$ x is the identity for + $\varphi[t/v]$ in φ replace free v's by t $\alpha[\mathbf{z}/\mathbf{x}] = \forall \mathbf{y}(\mathbf{y} + \mathbf{z} = \mathbf{y})$ z is the identity for +. $\forall \mathbf{y}(\mathbf{y} + \mathbf{y} = \mathbf{y})$

 $\alpha \stackrel{\text{def}}{=} \forall \mathbf{y}(\mathbf{y} + \mathbf{x} = \mathbf{y})$ x is the identity for + $\varphi[t/v]$ in φ replace free v's by t $\alpha[z/x] = \forall \mathbf{y}(\mathbf{y} + \mathbf{z} = \mathbf{y})$ z is the identity for +. $\forall \mathbf{y}(\mathbf{y} + \mathbf{y} = \mathbf{y})$ y was captured by the $\forall y$.

 $\alpha \stackrel{\text{def}}{=} \forall \mathbf{y}(\mathbf{y} + \mathbf{x} = \mathbf{y}) \qquad \mathbf{x} \text{ is the identity for } + \\ \varphi[t/v] \qquad \qquad \text{in } \varphi \text{ replace free } \mathbf{v}\text{'s by } t \\ \alpha[z/x] = \forall \mathbf{y}(\mathbf{y} + \mathbf{z} = \mathbf{y}) \qquad \mathbf{z} \text{ is the identity for } + . \\ \forall \mathbf{y}(\mathbf{y} + \mathbf{y} = \mathbf{y}) \qquad \qquad \mathbf{y} \text{ was captured by the } \forall y. \\ \alpha[y/x] = \forall \mathbf{v}(\mathbf{v} + \mathbf{y} = \mathbf{v}) \end{aligned}$

 $\begin{array}{ll} \alpha \stackrel{\text{def}}{=} \forall \mathbf{y}(\mathbf{y} + \mathbf{x} = \mathbf{y}) & \mathbf{x} \text{ is the identity for } + \\ \varphi[t/v] & \text{in } \varphi \text{ replace free v's by } t \\ \alpha[z/x] = \forall \mathbf{y}(\mathbf{y} + \mathbf{z} = \mathbf{y}) & \mathbf{z} \text{ is the identity for } + . \\ \forall \mathbf{y}(\mathbf{y} + \mathbf{y} = \mathbf{y}) & \mathbf{y} \text{ was captured by the } \forall y. \\ \alpha[y/x] = \forall \mathbf{v}(\mathbf{v} + \mathbf{y} = \mathbf{v}) & \mathbf{y} \text{ is the identity for } + \end{array}$

 $\alpha \stackrel{\text{def}}{=} \forall \mathbf{y}(\mathbf{y} + \mathbf{x} = \mathbf{y})$ \mathbf{x} is the identity for + $\varphi[t/v]$ in φ replace free v's by t $\alpha[\mathbf{z}/\mathbf{x}] = \forall \mathbf{y}(\mathbf{y} + \mathbf{z} = \mathbf{y})$ \mathbf{z} is the identity for +. $\forall \mathbf{y}(\mathbf{y} + \mathbf{y} = \mathbf{y})$ \mathbf{y} was captured by the $\forall y$. $\alpha[\mathbf{y}/\mathbf{x}] = \forall \mathbf{v}(\mathbf{v} + \mathbf{y} = \mathbf{v})$ \mathbf{y} is the identity for +

Bound variables are **dummies**: $\forall y(y + x = y) \equiv \forall v(v + x = v)$.

 $\alpha \stackrel{\text{def}}{=} \forall \mathbf{y}(\mathbf{y} + \mathbf{x} = \mathbf{y})$ \mathbf{x} is the identity for + $\varphi[t/v]$ in φ replace free v's by t $\alpha[\mathbf{z}/\mathbf{x}] = \forall \mathbf{y}(\mathbf{y} + \mathbf{z} = \mathbf{y})$ \mathbf{z} is the identity for +. $\forall \mathbf{y}(\mathbf{y} + \mathbf{y} = \mathbf{y})$ \mathbf{y} was captured by the $\forall y$. $\alpha[\mathbf{y}/\mathbf{x}] = \forall \mathbf{v}(\mathbf{v} + \mathbf{y} = \mathbf{v})$ \mathbf{y} is the identity for +

Bound variables are **dummies**: $\forall y(y + x = y) \equiv \forall v(v + x = v)$. Always **change** the names of **dummies** to avoid **capture**.

 $\alpha \stackrel{\text{def}}{=} \forall \mathbf{y}(\mathbf{y} + \mathbf{x} = \mathbf{y})$ \mathbf{x} is the identity for + $\varphi[t/v]$ in φ replace free v's by t $\alpha[\mathbf{z}/\mathbf{x}] = \forall \mathbf{y}(\mathbf{y} + \mathbf{z} = \mathbf{y})$ \mathbf{z} is the identity for +. $\forall \mathbf{y}(\mathbf{y} + \mathbf{y} = \mathbf{y})$ \mathbf{y} was captured by the $\forall y$. $\alpha[\mathbf{y}/\mathbf{x}] = \forall \mathbf{v}(\mathbf{v} + \mathbf{y} = \mathbf{v})$ \mathbf{y} is the identity for +

Bound variables are **dummies**: $\forall y(y + x = y) \equiv \forall v(v + x = v)$. Always **change** the names of **dummies** to avoid **capture**.

A formula says something about its free variables.

Def: Let Σ be a PredCalc vocabulary. A **term** $t \in$ **term** (Σ) is a string of symbols that every world $W \in$ World $[\Sigma]$ must interpret as an element $t^W \in |W|$. Terms are defined recursively as follows:

term₀ if $v \in VAR$

then $v \in \text{term}(\Sigma)$ variables are terms

Def: Let Σ be a PredCalc vocabulary. A **term** $t \in$ **term** (Σ) is a string of symbols that every world $W \in$ World $[\Sigma]$ must interpret as an element $t^W \in |W|$. Terms are defined recursively as follows:

term₀ if $v \in VAR$ variables are terms term₁ if $k \in \Sigma$ then $k \in term(\Sigma)$

constant symbols are terms

Def: Let Σ be a PredCalc vocabulary. A **term** $t \in$ **term** (Σ) is a string of symbols that every world $W \in$ World $[\Sigma]$ must interpret as an element $t^W \in |W|$. Terms are defined recursively as follows:

term0if $v \in VAR$ then $v \in term(\Sigma)$
variables are termsterm1if $k \in \Sigma$ then $k \in term(\Sigma)$
constant symbols are terms

term₂ if $t_1, \ldots, t_r \in \text{term}(\Sigma), f^r \in \Sigma$ then $f(t_1, \ldots, t_r) \in \text{term}(\Sigma)$ terms are closed under function symbols

Def: Let Σ be a PredCalc vocabulary. A **term** $t \in$ **term** (Σ) is a string of symbols that every world $W \in$ World $[\Sigma]$ must interpret as an element $t^W \in |W|$. Terms are defined recursively as follows:

term₀ if $v \in VAR$ term₁ if $k \in \Sigma$ term₁ if $k \in \Sigma$ term₂ if $t = t \in term(\Sigma)$ term₂ if $t = t \in term(\Sigma)$ term₃ if $t = t \in term(\Sigma)$ term₄ if $t = t \in term(\Sigma)$ term₅ if $t = t \in term(\Sigma)$

term₂ if $t_1, \ldots, t_r \in \text{term}(\Sigma), f^r \in \Sigma$ then $f(t_1, \ldots, t_r) \in \text{term}(\Sigma)$ terms are closed under function symbols

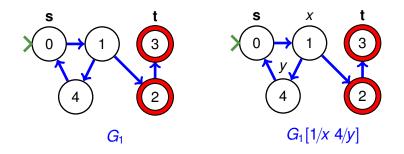
 $term(\Sigma_{Tarski}) = VAR = \{x, y, z, u, v, w, x_1, \ldots\}$

Def: Let Σ be a PredCalc vocabulary. A **term** $t \in$ **term**(Σ) is a string of symbols that every world $W \in$ World[Σ] must interpret as an element $t^W \in |W|$. Terms are defined recursively as follows:

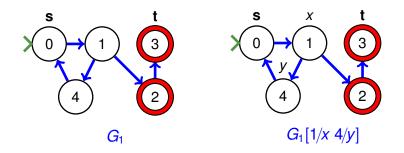
termif $v \in VAR$ then $v \in term(\Sigma)$ variables are terms

term₁ if $k \in \Sigma$ then $k \in \text{term}(\Sigma)$ constant symbols are terms

term₂ if $t_1, \ldots, t_r \in \text{term}(\Sigma), f^r \in \Sigma$ then $f(t_1, \ldots, t_r) \in \text{term}(\Sigma)$ terms are closed under function symbols

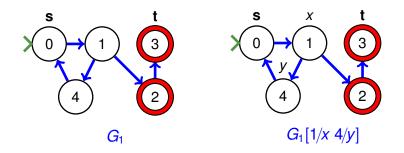


Default Interpretation of variables: Unless explicitly stated otherwise, $v^W = 0$, (or the min value in |W| if $0 \notin |W|$).

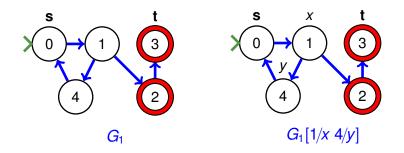


Default Interpretation of variables: Unless explicitly stated otherwise, $v^W = 0$, (or the min value in |W| if $0 \notin |W|$).

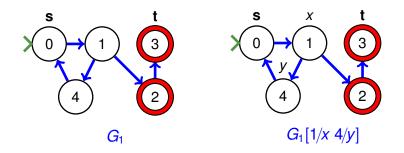
Notation: W[e/v] is same as W, except $v^{W[e/v]} = e$.



Default Interpretation of variables: Unless explicitly stated otherwise, $v^W = 0$, (or the min value in |W| if $0 \notin |W|$). **Notation:** W[e/v] is same as W, except $v^{W[e/v]} = e$. $x^{G_1} = 0$

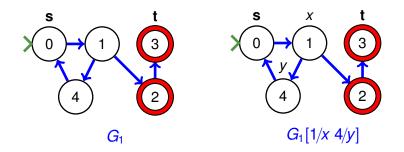


Default Interpretation of variables: Unless explicitly stated otherwise, $v^W = 0$, (or the min value in |W| if $0 \notin |W|$). **Notation:** W[e/v] is same as W, except $v^{W[e/v]} = e$. $x^{G_1} = 0$ $y^{G_1} = 0$

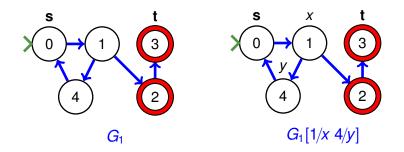


Default Interpretation of variables: Unless explicitly stated otherwise, $v^W = 0$, (or the min value in |W| if $0 \notin |W|$). **Notation:** W[e/v] is same as W, except $v^{W[e/v]} = e$.

$$x^{G_1} = 0$$
 $y^{G_1} = 0$ $x^{G_1[1/x \ 4/y]} = 1$



Default Interpretation of variables: Unless explicitly stated otherwise, $v^W = 0$, (or the min value in |W| if $0 \notin |W|$). **Notation:** W[e/v] is same as W, except $v^{W[e/v]} = e$. $x^{G_1} = 0$ $v^{G_1} = 0$ $x^{G_1[1/x \ 4/y]} = 1$ $v^{G_1[1/x \ 4/y]} = 4$



Default Interpretation of variables: Unless explicitly stated otherwise, $v^W = 0$, (or the min value in |W| if $0 \notin |W|$). **Notation:** W[e/v] is same as W, except $v^{W[e/v]} = e$. $x^{G_1} = 0$ $v^{G_1} = 0$ $x^{G_1[1/x \ 4/y]} = 1$ $v^{G_1[1/x \ 4/y]} = 4$

 $s^{G_1} = 0$ $t^{G_1} = 3$ $s^{G_1[1/x \ 4/y]} = 0$ $t^{G_1[1/x \ 4/y]} = 3$

For every $G \in World[\Sigma]$ and $t \in term(\Sigma)$ $t^G \in |G|$

For every $G \in World[\Sigma]$ and $t \in term(\Sigma)$

 $t^G \in |G|$

$$G \models t_1 = t_2 \qquad \text{iff} \quad t_1^G = t_2^G$$

For every $G \in World[\Sigma]$ and $t \in term(\Sigma)$ $t^G \in |G|$

$$G \models t_1 = t_2 \qquad \text{iff} \quad t_1^G = t_2^G$$

$$egin{array}{ccc} G &\models & P(t_1,\ldots,t_a) & ext{iff} & (t_1^G,\ldots,t_a^G) \in P^G & P^a \in \Sigma \end{array}$$

G

For every
$$G \in World[\Sigma]$$
 and $t \in term(\Sigma)$ $t^G \in |G|$
 $\models t_1 = t_2$ iff $t_1^G = t_2^G$

For every
$$G \in World[\Sigma]$$
 and $t \in term(\Sigma)$ $t^G \in |G|$
 $G \models t_1 = t_2$ iff $t_1^G = t_2^G$
 $G \models P(t_1, \dots, t_a)$ iff $(t_1^G, \dots, t_a^G) \in P^G$ $P^a \in \Sigma$
 $G \models \sim \alpha$ iff $G \not\models \alpha$ PropCalc
 $G \models \alpha \land \beta$ iff $G \models \alpha$ and $G \models \beta$ PropCalc

For every
$$G \in World[\Sigma]$$
 and $t \in term(\Sigma)$ $t^G \in |G|$
 $G \models t_1 = t_2$ iff $t_1^G = t_2^G$
 $G \models P(t_1, \dots, t_a)$ iff $(t_1^G, \dots, t_a^G) \in P^G$ $P^a \in \Sigma$
 $G \models \sim \alpha$ iff $G \nvDash \alpha$ PropCalc
 $G \models \alpha \land \beta$ iff $G \models \alpha$ and $G \models \beta$ PropCalc
 $G \models \alpha \lor \beta$ iff $G \models \alpha$ or $G \models \beta$ PropCalc

 $t^G \in |G|$ For every $G \in World[\Sigma]$ and $t \in term(\Sigma)$ $G \models t_1 = t_2$ iff $t_1^G = t_2^G$ $G \models P(t_1, \ldots, t_a)$ iff $(t_1^G, \ldots, t_a^G) \in P^G$ $P^a \in \Sigma$ $G \models \sim \alpha$ iff $G \nvDash \alpha$ PropCalc $G \models \alpha \land \beta$ iff $G \models \alpha$ and $G \models \beta$ PropCalc $G \models \alpha \lor \beta$ iff $G \models \alpha$ or $G \models \beta$ PropCalc $G \models \forall x(\alpha)$ iff for all $a \in |G|$ $G[a|x] \models \alpha$

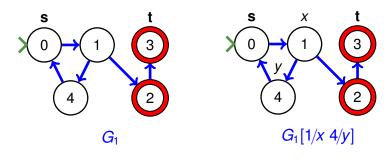
For every ${\it G} \in { m World}[\Sigma]$ and $t \in { m term}(\Sigma)$				$t^G \in G $	
G	Þ	$t_1 = t_2$	iff	$t_1^G = t_2^G$	
G	Þ	$P(t_1,\ldots,t_a)$	iff	$(t_1^G,\ldots,t_a^G)\in P^G$	$P^a \in \Sigma$
G	Þ	$\sim \alpha$	iff	${\boldsymbol{G}} \not\models \alpha$	PropCalc
G	Þ	$\alpha \wedge \beta$	iff	$\boldsymbol{G} \models \alpha$ and $\boldsymbol{G} \models \beta$	PropCalc
G	Þ	$\alpha \vee \beta$	iff	$\boldsymbol{G} \models \alpha$ or $\boldsymbol{G} \models \beta$	PropCalc
G	Þ	$\forall \mathbf{x}(\alpha)$	iff	for all $a \in G $ $G[a x] \models \alpha$	
G	Þ	$\exists \mathbf{x}(\alpha)$	iff	exists $a \in G $ $G[a x] \models \alpha$	

Examples using Tarski's Def. of Truth

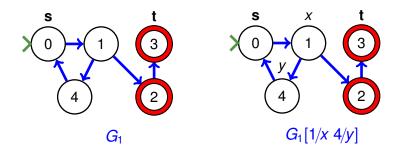


T/**F** $G_1 \models s = x$

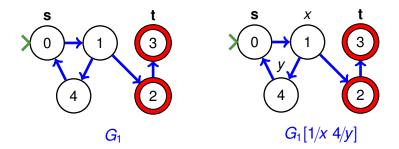
Examples using Tarski's Def. of Truth



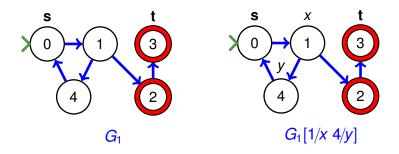
```
T G_1 \models s = x s^{G_1} = 0 = x^{G_1}
```



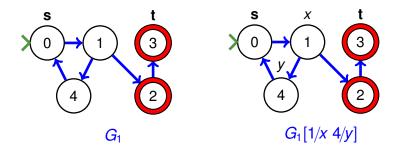
```
T G_1 \models s = x s^{G_1} = 0 = x^{G_1}
T/F G_1[1/x 4/y] \models s = x
```



T $G_1 \models s = x$ $s^{G_1} = 0 = x^{G_1}$ F $G_1[1/x \ 4/y] \models s = x$ $s^{G_1[1/x \ 4/y]} = 0 \neq 1 = x^{G_1[1/x \ 4/y]}$

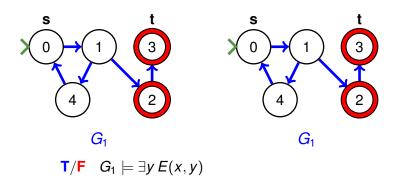


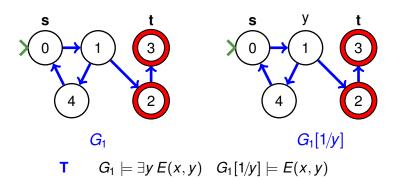
T $G_1 \models s = x$ $s^{G_1} = 0 = x^{G_1}$ F $G_1[1/x \ 4/y] \models s = x$ $s^{G_1[1/x \ 4/y]} = 0 \neq 1 = x^{G_1[1/x \ 4/y]}$ iClicker 9.1 T/F: $G_1 \models E(s, x)$ A: True B: False

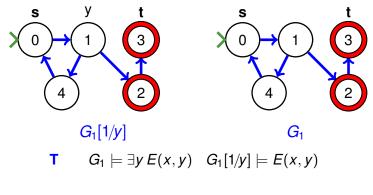


T $G_1 \models s = x$ $s^{G_1} = 0 = x^{G_1}$ F $G_1[1/x \ 4/y] \models s = x$ $s^{G_1[1/x \ 4/y]} = 0 \neq 1 = x^{G_1[1/x \ 4/y]}$

iClicker 9.2 T/F: $G_1[1/x 4/y] \models E(s, x)$ A: True B: False

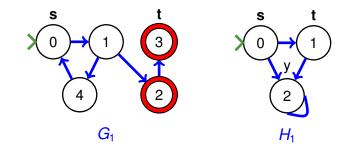






iClicker 9.3 T/F: $G_1[1/y] \models \exists x E(x, y)$

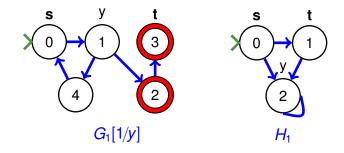
A: True B: False



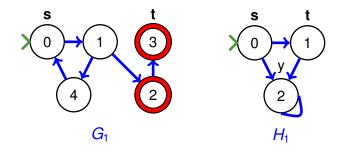
T/**F**
$$G_1 \models (\forall x \ E(x, y)) \rightarrow y = t$$



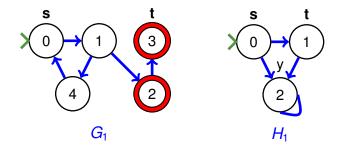
T $G_1 \models (\forall x \ E(x, y)) \rightarrow y = t \quad G_1 \models \sim \forall x \ E(x, y)$



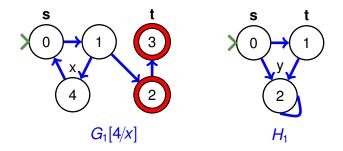
T $G_1 \models (\forall x \ E(x, y)) \rightarrow y = t$ $G_1 \models \neg \forall x \ E(x, y)$ **T/F** $H_1 \models (\forall x \ E(x, y)) \rightarrow y = t$



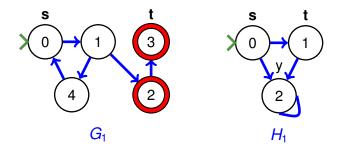
T $G_1 \models (\forall x \ E(x, y)) \rightarrow y = t$ $G_1 \models \neg \forall x \ E(x, y)$ **F** $H_1 \models (\forall x \ E(x, y)) \rightarrow y = t$ $H_1 \models (\forall x \ E(x, y)) \land y \neq t$



- **T** $G_1 \models (\forall x \ E(x, y)) \rightarrow y = t \quad G_1 \models \neg \forall x \ E(x, y)$
 - $F \quad H_1 \models (\forall x \ E(x, y)) \rightarrow y = t \quad H_1 \models (\forall x \ E(x, y)) \land y \neq t$
- **T/F** $G_1 \models \forall x (E(x, y) \rightarrow y = t)$

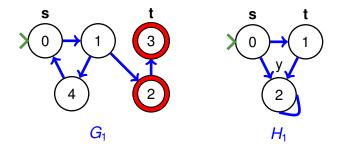


- **T** $G_1 \models (\forall x \ E(x, y)) \rightarrow y = t \quad G_1 \models \neg \forall x \ E(x, y)$
 - $F \quad H_1 \models (\forall x \ E(x, y)) \rightarrow y = t \quad H_1 \models (\forall x \ E(x, y)) \land y \neq t$
 - $\textbf{F} \quad G_1 \models \forall x \left(E(x, y) \rightarrow y = t \right) \quad G_1[4/x] \models \sim \left(E(x, y) \rightarrow y = t \right)$



- **T** $G_1 \models (\forall x \ E(x, y)) \rightarrow y = t \quad G_1 \models \sim \forall x \ E(x, y)$
 - $F \quad H_1 \models (\forall x \ E(x, y)) \rightarrow y = t \quad H_1 \models (\forall x \ E(x, y)) \land y \neq t$
 - $F \quad G_1 \models \forall x \left(E(x, y) \rightarrow y = t \right) \quad G_1[4/x] \models \sim \left(E(x, y) \rightarrow y = t \right)$

T/F $H_1 \models \forall x (E(x, y) \rightarrow y = t)$



- $\mathbf{T} \qquad G_1 \models (\forall x \, E(x, y)) \rightarrow y = t \quad G_1 \models \sim \forall x \, E(x, y)$
 - $F \quad H_1 \models (\forall x \ E(x, y)) \rightarrow y = t \quad H_1 \models (\forall x \ E(x, y)) \land y \neq t$
 - $F \quad G_1 \models \forall x \left(E(x, y) \rightarrow y = t \right) \quad G_1[4/x] \models \sim \left(E(x, y) \rightarrow y = t \right)$

 $F \quad H_1 \models \forall x \left(E(x, y) \rightarrow y = t \right) \quad H_1[1/x] \models \sim \left(E(x, y) \rightarrow y = t \right)$