CS250: Discrete Math for Computer Science

L6: CNF and Natural Deduction for PropCalc

How to Simplify a PropCalc Formula:

(p—=q) —=((g—=r)Ap) =

How to Simplify a PropCalc Formula:

1. Getrid of —’s using def. of implication.

(~pVvaq)—=((~qVr)APp)
= ~(~pvag)Vv((~qVvr)Ap)

(p—q)—((@—r)Ap)

How to Simplify a PropCalc Formula:

1. Getrid of —’s using def. of implication.
2. Push ~s all the way inside using de Morgan.
Now its in Negation Normal Form (NNF).

(p—=aq)—{(q—r)Ap) = (~pVvQq)—((~qVr)Ap)
= ~(~pvag)Vv((~qVvr)Ap)
NNF = (pA~q)V((~qVr)APp)

How to Simplify a PropCalc Formula:

1. Getrid of —’s using def. of implication.

2. Push ~’s all the way inside using de Morgan.
Now its in Negation Normal Form (NNF).

3. Use distributive, associative, commutative to put in either
Disjunctive Normal Form (DNF: \/’s of A’s of literals)

A literal is a prop variable or its negation, e.g., p, ~q.

(p—q)—({(qg—r)Ap) (~pVvQq)— ((~qVr)Ap)

= ~(~pvag)Vv((~qgVvr)Ap)
NNF = (PA~q)V((~qVvr)Ap)
NNF = (pPA~q)V((~qgAp)V(rAp))

DNF = (pA~q)V(PAT)

How to Simplify a PropCalc Formula:

1. Getrid of —’s using def. of implication.

2. Push ~’s all the way inside using de Morgan.
Now its in Negation Normal Form (NNF).

3. Use distributive, associative, commutative to put in either
Disjunctive Normal Form (DNF: \/’s of A’s of literals)
Conjunctive Normal Form (CNF: A’s of \/’s of literals)
A literal is a prop variable or its negation, e.g., p, ~q.

(p—q)—({(qg—r)Ap) (~pVvQq)— ((~qVr)Ap)

= ~(~pvag)Vv((~qVvr)Ap)
NNF = (pA~q)V((~qVr)Ap)
NNF = (pPA~q)V((~qgAp)V(rAp))
DNF = (PA~q)V(pAT)

CNF = pA(~qVr)

iClicker 6.1 Which of the following formulas is in CNF
(conjunction of disjunctions of literals)?

A: (PA~gAN)V(~pAGAS)V(QATIA~S)

B: (~pVvgQV~r)A(pV~qV ~S)A(~qV ~rvVs)
C: (pA~q)Vv((~qgVvp)A(rvp))
D

~(~pVva)V((~qVr)Ap)

Natural Deduction

R6: Our PropCalc proof rules are slightly different from Epp’s

proof rules.
introduction elimination
A P g PAQ PAQ
e p q
y p q pvqg pkErgbkr
pvg pvgag r
. prq p—gp p—qg ~q
p—q q ~p
F p ~p pHF ~pkF
F ~p p

Natural Deduction rule: —-introduction

1 p

2 pra
3 g p—q
4 |p—gq —-i, 1-3

Natural Deduction rule: —-introduction

1 p

2 pra
3 g p—q
4 |p—>gq —-i, 1-3

Notation: p+ g (p proves q): From assumption p, can prove q.

Natural Deduction rule: —-introduction

1 p

2 pra
3 g p—q
4 |p—>gq —-i, 1-3

Notation: p+ g (p proves q): From assumption p, can prove q.

Proposition: —-i is sound, i.e., if from assumption p we
can prove g, then every world satisfies p — q.

Natural Deduction rule: —-introduction

1 p

2 pEq
3 g p—q
4 |p—>gq —-i, 1-3

Notation: p+ g (p proves q): From assumption p, can prove q.

Proposition: —-i is sound, i.e., if from assumption p we
can prove g, then every world satisfies p — q.

Proof.

Since p - g, and by the soundness of the proof rules so far,
we know that every world that satisfies p must also satisfy
g- Thus every world satisfies p — q. O

Natural Deduction rule: —-introduction

1 p

2 pra
3 g p—q
4 |p—>gq —-i, 1-3

Notation: p+ g (p proves q): From assumption p, can prove q.

Proposition: —-i is sound, i.e., if from assumption p we
can prove g, then every world satisfies p — q.

Proof.

Since p + g, and by the soundness of the proof rules so far,

we know that every world that satisfies p must also satisfy
g- Thus every world satisfies p — q. O

More about this once we have studied inductive proofs.

Example use of —-introduction

2 rvp V-i, 1

3 |p—=(rvp) —-i, 12

Example use of —-introduction

1 p
2 rvp V-i, 1

3 |p—=(rvp) —-i, 1-2

Thus, F p—(rvp)

Natural Deduction rule: F-e Proof by Contradiction

1 ~p
2 ~pFF p+F
3 F p ~P
4 | p F-e, 1-3

Natural Deduction rule: F-e Proof by Contradiction

1 ~p
2 ~pFF p+F
3 F p ~P
4 | p F-e, 1-3

Proposition: F-e is sound, i.e., if ~p - F then every world
satisfies p.

Natural Deduction rule: F-e Proof by Contradiction

1 ~p

2 ~pFF p+F

3 F p ~P

4 | p F-e, 1-3
Proposition: F-e is sound, i.e., if ~p - F then every world
satisfies p.

Proof.

Since ~p I F, by the soundness of the proof rules so far,
we know that every world that satisfies ~ p must also
satisfy F. But no world satisfies F. Thus every world
satisfies p. O

Natural Deduction rule:

1 | pvag

2 p pvqg pkr qtr
- r

3

4 r

5 q

6

7 r

8 |r v-e, 1,2-4,3-5

Natural Deduction rule: Vv-e

1 | pVvq
> p pvqg pkr qtr
- r
3 Proposition: V-e is sound.
4 r
5 q
6
7 r
8 |r v-e, 1,2-4,3-5

Natural Deduction rule: Vv-e

1 | pVvq
2 p
3

4 r
5 q
6

7 r
8 |r

v-e, 1,2-4,3-5

pvqg pkr qtr
r

Proposition: v-e is sound.

Proof.

Sinceptrand gt r,
every world that satisfies
p or satisfies g satisfies r.
Thus every world that
satisfes p Vv g satisfies r.
O

10

~pV~q

pAG

~p

~(pAQ)

F-i, 3, 4

N-e, 2
, 6,7
v-e, 1, 3-5, 6-8

F-e, 2-9

10

~pV~q

pAG

~p

~(pAQ)

iClicker 6.2 What is
the justification for line

47
A A-i
B: An-e
2 C: -
D: v-e
F-i, 3,4
N-e, 2
, 6,7
v-e, 1, 3-5, 6-8
F-e, 2-9

10

~pV ~q

pAG

~p

~(pAQ)

F-i, 3, 4

N-e, 2
, 6,7
v-e, 1, 3-5,6-8

F-e, 2-9

iClicker 6.2 What is
the justification for line
47

A: A
B: A-e
C: vAi
D: v-e

iClicker 6.3 What is
the justification for line
87

A-i
N-€
F-i
F-e

oQw>»

Natural Deduction

R6: Our PropCalc proof rules are slightly different from Epp’s

proof rules.
introduction elimination
A P g PAQ PAQ
e p q
y p q pvqg pkErgbkr
pvg pvgag r
. prq p—gp p—qg ~q
p—q q ~p
F p ~p pHF ~pkF
F ~p p

Propositional Equivalence

PropCalc formulas p and q are equivalent (p = q) iff
they agree on every row of their truth tables.

Propositional Equivalence

PropCalc formulas p and q are equivalent (p = q) iff
they agree on every row of their truth tables.

Observation: p=gq iff p <« g is atautology.

Propositional Equivalence

PropCalc formulas p and q are equivalent (p = q) iff
they agree on every row of their truth tables.

Observation: p=gq iff p <« g is atautology.

Some Important Equivalences (worth memorizing):

Propositional Equivalence

PropCalc formulas p and q are equivalent (p = q) iff
they agree on every row of their truth tables.

Observation: p=gq iff p <« g is atautology.

Some Important Equivalences (worth memorizing):

double negation p = ~~p

Propositional Equivalence

PropCalc formulas p and q are equivalent (p = q) iff
they agree on every row of their truth tables.

Observation: p = g

iff p<«> g is atautology.

Some Important Equivalences (worth memorizing):

double negation
de Morgan
de Morgan

p
~(pVQq)
~(pPAQ)

~~p
~PA~q
~pV~q

Propositional Equivalence

PropCalc formulas p and q are equivalent (p = q) iff
they agree on every row of their truth tables.

Observation: p = g

iff p<«> g is atautology.

Some Important Equivalences (worth memorizing):

double negation
de Morgan

de Morgan

def. of implication

p
~(pV Q)
~(pPAQ)

p—q

~~p
~PA~q
~pV~q
~pVq

Propositional Equivalence

PropCalc formulas p and q are equivalent (p = q) iff
they agree on every row of their truth tables.

Observation: p=q iff p < q is atautology.

Some Important Equivalences (worth memorizing):

double negation p = ~p

de Morgan ~(pVvqg) = ~pA~q
de Morgan ~(pANQ) = ~pV~Qq
def. of implication p—q = ~pVvq

contrapositive p—q = ~q—~p

Propositional Equivalence

PropCalc formulas p and q are equivalent (p = q) iff
they agree on every row of their truth tables.

Observation: p=q iff p <« g is atautology.

Some Important Equivalences (worth memorizing):

double negation p = ~p

de Morgan ~(pVvqg) = ~pA~q
de Morgan ~(pANQ) = ~pV~Qq
def. of implication p—q = ~pVvqg
contrapositive p—q = ~q—~p

def. of iff p~qg = (p—=9A(Q—p)

More Important Equivalences (worth memorizing):

commutative pvqg = gVvp
commutative pPAQ = qgAPp

More Important Equivalences (worth memorizing):

commutative pvqg = gVvp
commutative pPAQ = qgAPp
associative pA(QAr) = (PAQ)AT
associative pv(gvr) = (pvq)Vr

More Important Equivalences (worth memorizing):

commutative pvg = qgVvp
commutative pPAQ = qgAPp
associative pA(QAr) = (PAQ)AT
associative pv(gvr) = (pvq)Vr
distributive pv(gAar) = (pvqQ)A(pVr)

distributive pA(gvr) = (PAQ)VI(PAT)

More Important Equivalences (worth memorizing):

commutative pvg = qgVvp
commutative pPAQ = qgAPp
associative pA(QAr) = (PAQ)AT
associative pv(gvr) = (pvq)Vr
distributive pv(gAar) = (pvqQ)A(pVr)
distributive pA(gVvr) = (PAQ)V(pAT)
excluded middle pv~p = T

SAT is an important class.

If formula a has n PVARSs, ps, ..., pn, it would seem to require
about 2" time in the worst case to test if a € SAT.

SAT is an important class.

If formula a has n PVARSs, ps, ..., pn, it would seem to require
about 2" time in the worst case to test if a € SAT.

But, if we are given a satisfying world W for a, we can check
immediately that W = a.

SAT is an important class.

If formula a has n PVARSs, ps, ..., pn, it would seem to require
about 2" time in the worst case to test if a € SAT.

But, if we are given a satisfying world W for a, we can check
immediately that W = a.

This sort of search problem: exponentially many possibilities,
each one easy to verify, corresponds to Nondeterministic
Polynomial Time (NP).

SAT is an important class.

If formula a has n PVARSs, ps, ..., pn, it would seem to require
about 2" time in the worst case to test if a € SAT.

But, if we are given a satisfying world W for a, we can check
immediately that W = a.

This sort of search problem: exponentially many possibilities,
each one easy to verify, corresponds to Nondeterministic
Polynomial Time (NP).

In fact, SAT is a hardest such problem: NP complete.

You will learn much more about this in CMPSCI 311.

Knights and Knaves [Smullyan, What is the Name of This Book?]

Knights always truthful; Knaves always lie; A, B € {Kt,Kv}

B : “A& B opposite types”

Knights and Knaves [Smullyan, What is the Name of This Book?]

Knights always truthful; Knaves always lie; A, B € {Kt,Kv}

A:“Bis Kt” B : “A& B opposite types”

Knights and Knaves [Smullyan, What is the Name of This Book?]

Knights always truthful; Knaves always lie; A, B € {Kt,Kv}

A:“Bis Kt” B : “A& B opposite types”

T, ¥ Bisakt . ¥ A&Bopposite types

Knights and Knaves [Smullyan, What is the Name of This Book?]

Knights always truthful; Knaves always lie; A, B € {Kt,Kv}

Si L A “Bis Kt So & B.ALB opposite types”
T, ¥ Bisakt . ¥ A&Bopposite types

Knights and Knaves [Smullyan, What is the Name of This Book?]

Knights always truthful; Knaves always lie; A, B € {Kt,Kv}

S = A:"Biskt” S = B:“A&B opposite types”

T = Bis a Kt T = A& B opposite types
S = T+ Aiskt S = T, < Bis Kt

Knights and Knaves

Knights always truthful;

A:“Bis Kt”

Bis a Kt
Ty & Ais Kt

[Smullyan, What Is the Name of This Book?]

Knaves always lie;

So
T2
So

A, B € {Kt,Kv}

B : “A& B opposite types”

A& B opposite types

To < Bis Kt

(W [AisKt[BisKt[[Ty [T, [T1 <> AisKt | T, ¢ Bis Kt |

W3

1

1

1

0

Wo

Wi

Wo

1
0
0

0
1
0

F
0
1
0

0
3
1
0

0
0
1

0
1
1

Knights and Knaves

Knights always truthful;

A:“Bis Kt”

Bis a Kt
Ty & Ais Kt

Knaves always lie;

So
T2
So

[Smullyan, What Is the Name of This Book?]

A, B € {Kt,Kv}

B : “A& B opposite types”

A& B opposite types

To < Bis Kt

(W [AisKt[BisKt[[Ty [T, [T1 <> AisKt | T, ¢ Bis Kt |

Ws 1 1 110 1 0
Wo 1 0 0| 1 0 0
Wi 0 1 1] 1 0 1
Wo 0 0 0|0 1 1

W, is only world satisfying Sy A S..

Knights and Knaves

Knights always truthful;

A:“Bis Kt”

Bis a Kt
Ty & Ais Kt

Knaves always lie;

So
T2
So

[Smullyan, What Is the Name of This Book?]

A, B € {Kt,Kv}

B : “A& B opposite types”

A& B opposite types

To < Bis Kt

(W [AisKt[BisKt[[Ty [T, [T1 <> AisKt | T, ¢ Bis Kt |

Ws 1 1 110 1 0
Wo 1 0 0| 1 0 0
Wi 0 1 1] 1 0 1
Wo 0 0 0|0 1 1

W, is only world satisfying Sy A S..

Thus A and B are both Knaves.

R6 Quiz Answers: Match the Epp Proof Rules to the
equivalent Natural Deduction Rules.

1. Modus Ponens: —-e
2. Modus Tollens: —-e

3. Generalization: V-i
4. Specialization: A-e
5. Conjunction: A-i

6, 7. In the following proof, identify the natural deduction rules
used in lines 2 and 3.

8. Is the following a sound proof rule ?

P—q g
o

In answering this, you may consider the worlds shown in this

truth table:
Wiplq]

Ws [1]1
W, | 1]0
W, [0]1
Wo [0]0

Not valid: reasoning from the converse fails in world W;.

9. In Smullyan’s Island of Knights and Knaves, two natives C
and D approach you but only C speaks. C says: Both of us are
knaves. What are C and D? C is a Knave and D is a Knight.
10. In Smullyan’s Island of Knights and Knaves, you encounter
natives E and F. E says: F is a knave. F says: E is a knave.
How many knaves are there? 1

