CS250: Discrete Math for Computer Science

L4: PropCalc: Tautologies, Satisfiability, Equivalence

Definition of Propositional Connectives

via Truth Tables:

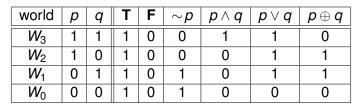
Today just concentrate on \sim, \wedge, \vee

world	р	q	T	F	$\sim \! p$	$p \wedge q$	$p \lor q$	$p \oplus q$
<i>W</i> ₃	1	1	1	0	0	1	1	0
<i>W</i> ₂	1	0	1	0	0	0	1	1
<i>W</i> ₁	0	1	1	0	1	0	1	1
W ₀	0	0	1	0	1	0	0	0

Definition of Propositional Connectives

via Truth Tables:

Today just concentrate on \sim, \wedge, \vee



via functions: ~: bool
$$\rightarrow$$
 bool; \land, \lor, \oplus : bool² \rightarrow bool bool $\stackrel{\text{def}}{=} \{0, 1\}$
T $\stackrel{\text{def}}{=} 1$ **F** $\stackrel{\text{def}}{=} 0$
 $\sim p \stackrel{\text{def}}{=} 1 - p$ $p \land q \stackrel{\text{def}}{=} \min(p, q)$
 $p \lor q \stackrel{\text{def}}{=} \max(p, q)$ $p \rightarrow q \stackrel{\text{def}}{=} \sim p \lor q$
 $p \leftrightarrow q \stackrel{\text{def}}{=} (p \rightarrow q) \land (q \rightarrow p)$ $p \oplus q \stackrel{\text{def}}{=} (p + q) \mod 2$

Definition of Propositional Connectives

via Truth Tables:

Today just concentrate on \sim, \wedge, \vee

world	р	q	T	F	$\sim p$	$p \wedge q$	$p \lor q$	$p \oplus q$
<i>W</i> ₃	1	1	1	0	0	1	1	0
<i>W</i> ₂	1	0	1	0	0	0	1	1
<i>W</i> ₁	0	1	1	0	1	0	1	1
W ₀	0	0	1	0	1	0	0	0

Key Idea: $W_i : \{p_1, \dots, p_n\} \rightarrow \text{bool}$ W_0, \dots, W_{2^n-1} lines of truth table= valuations =possible worlds

via functions: ~: bool
$$\rightarrow$$
 bool; \land, \lor, \oplus : bool² \rightarrow bool bool $\stackrel{\text{def}}{=} \{0, 1\}$
T $\stackrel{\text{def}}{=} 1$ **F** $\stackrel{\text{def}}{=} 0$
 $\sim p \stackrel{\text{def}}{=} 1 - p$ $p \land q \stackrel{\text{def}}{=} \min(p, q)$
 $p \lor q \stackrel{\text{def}}{=} \max(p, q)$ $p \rightarrow q \stackrel{\text{def}}{=} \sim p \lor q$
 $p \leftrightarrow q \stackrel{\text{def}}{=} (p \rightarrow q) \land (q \rightarrow p)$ $p \oplus q \stackrel{\text{def}}{=} (p + q) \mod 2$

world	р	q	Т	F	$\sim \! p$	$p \wedge q$	$p \lor q$	$p \oplus q$
<i>W</i> ₃	1	1	1	0	0	1	1	0
<i>W</i> ₂	1	0	1	0	0	0	1	1
<i>W</i> ₁	0	1	1	0	1	0	1	1
W ₀	0	0	1	0	1	0	0	0

world	р	q	Τ	F	$\sim p$	$p \wedge q$	$p \lor q$	$p \oplus q$
<i>W</i> ₃	1	1	1	0	0	1	1	0
<i>W</i> ₂	1	0	1	0	0	0	1	1
<i>W</i> ₁	0	1	1	0	1	0	1	1
W ₀	0	0	1	0	1	0	0	0

iClicker 4.1 $\sim p$ is true in which of the above worlds?

A: all of them

- **B: none of them**
- C: W_0 and W_1
- **D:** W_2 and W_3

world	p	q	Т	F	$\sim \! p$	$p \wedge q$	$p \lor q$	$\pmb{p}\oplus \pmb{q}$
<i>W</i> ₃	1	1	1	0	0	1	1	0
<i>W</i> ₂	1	0	1	0	0	0	1	1
<i>W</i> ₁	0	1	1	0	1	0	1	1
W ₀	0	0	1	0	1	0	0	0

world	р	q	T	F	$\sim p$	$p \wedge q$	$p \lor q$	$p \oplus q$
<i>W</i> ₃	1	1	1	0	0	1	1	0
<i>W</i> ₂	1	0	1	0	0	0	1	1
<i>W</i> ₁	0	1	1	0	1	0	1	1
W ₀	0	0	1	0	1	0	0	0

iClicker 4.2 $(p \lor q) \land \sim (p \land q)$ is true in which of the above worlds?

- A: none of them
- **B**: W_1 and W_2
- C: just W_3
- **D: just** W₁

A tautology (Taut) is a PropCalc formula such that every row of its truth table is 1, i.e., it is true in all worlds,

world	p	q	~ <i>p</i>	$p \lor \sim p$	$p \wedge \sim p$	$oldsymbol{p} \wedge oldsymbol{q}$
<i>W</i> ₃	1	1	0	1	0	1
<i>W</i> ₂	1	0	0	1	0	0
<i>W</i> ₁	0	1	1	1	0	0
W ₀	0	0	1	1	0	0

A tautology (Taut) is a PropCalc formula such that every row of its truth table is 1, i.e., it is true in all worlds, e.g., p ∨ ~p ∈ Taut.

world	р	q	~ <i>p</i>	Taut $p \lor \sim p$	$p \wedge \sim p$	$p \wedge q$
W ₃	1	1	0	1	0	1
<i>W</i> ₂	1	0	0	1	0	0
<i>W</i> ₁	0	1	1	1	0	0
W ₀	0	0	1	1	0	0

- A tautology (Taut) is a PropCalc formula such that every row of its truth table is 1, i.e., it is true in all worlds, e.g., p ∨ ~p ∈ Taut.
- A contradiction (unSAT) is a PropCalc formula whose truth table is all 0's, i.e. it is true in no world,

world	р	q	~ <i>p</i>	Taut $p \lor \sim p$	$p \wedge \sim p$	$p \wedge q$
<i>W</i> ₃	1	1	0	1	0	1
<i>W</i> ₂	1	0	0	1	0	0
<i>W</i> ₁	0	1	1	1	0	0
W ₀	0	0	1	1	0	0

- A tautology (Taut) is a PropCalc formula such that every row of its truth table is 1, i.e., it is true in all worlds, e.g., p ∨ ~p ∈ Taut.
- A contradiction (unSAT) is a PropCalc formula whose truth table is all 0's, i.e. it is true in no world, e.g., p ∧ ~p ∈ unSAT.

world	p	q	~ <i>p</i>	Taut $p \lor \sim p$	unSAT $p \land \sim p$	$p \wedge q$
<i>W</i> ₃	1	1	0	1	0	1
<i>W</i> ₂	1	0	0	1	0	0
<i>W</i> ₁	0	1	1	1	0	0
W ₀	0	0	1	1	0	0

- A tautology (Taut) is a PropCalc formula such that every row of its truth table is 1, i.e., it is true in all worlds, e.g., p ∨ ~p ∈ Taut.
- A contradiction (unSAT) is a PropCalc formula whose truth table is all 0's, i.e. it is true in no world, e.g., p ∧ ~p ∈ unSAT.
- A PropCalc formula is satisfiable (SAT) iff it is not a contradiction, i.e., it is true in some world,

world	р	q	~ <i>p</i>	Taut $p \lor \sim p$	unSAT $p \land \sim p$	$p \wedge q$
<i>W</i> ₃	1	1	0	1	0	1
<i>W</i> ₂	1	0	0	1	0	0
<i>W</i> ₁	0	1	1	1	0	0
W ₀	0	0	1	1	0	0

- A tautology (Taut) is a PropCalc formula such that every row of its truth table is 1, i.e., it is true in all worlds, e.g., p ∨ ~p ∈ Taut.
- A contradiction (unSAT) is a PropCalc formula whose truth table is all 0's, i.e. it is true in no world, e.g., p ∧ ~p ∈ unSAT.
- A PropCalc formula is satisfiable (SAT) iff it is not a contradiction, i.e., it is true in some world, e.g., p, q, ~ ~ p, p ∨ ~ p, p ∧ q ∈ SAT.

	SAT	SAT	SAT	SAT		SAT
				Taut	unSAT	
world	р	q	\sim p	$p \lor \sim p$	$p \wedge \sim p$	$p \wedge q$
<i>W</i> ₃	1	1	0	1	0	1
<i>W</i> ₂	1	0	0	1	0	0
<i>W</i> ₁	0	1	1	1	0	0
W ₀	0	0	1	1	0	0

iClicker 4.3 $p \lor (\sim p \land q)$ is ?

- A: Taut
- B: unSAT
- C: neither, i.e., SAT but not Taut

world	p	q	\sim p	$oldsymbol{p} ee (\sim oldsymbol{p} \wedge oldsymbol{q})$
<i>W</i> ₃	1	1	0	
<i>W</i> ₂	1	0	0	
<i>W</i> ₁	0	1	1	
W ₀	0	0	1	

R4 Quiz Answers

Is the following PropForm a tautology (**Taut**), a contradiction (**unSAT**), or neither (**SAT** - **Taut**) ?

1. $\sim \sim p \lor p$ SAT – Taut

1. $\sim \sim p \lor p$ SAT – Taut

2. $\sim \sim p \lor \sim p$ Taut

- 1. $\sim \sim p \lor p$ SAT Taut
- 2. $\sim \sim p \lor \sim p$ Taut
- 3. $p \oplus p$ **unSAT**

- 1. $\sim \sim p \lor p$ SAT Taut
- 2. $\sim \sim p \lor \sim p$ Taut
- 3. $p \oplus p$ **unSAT**
- 4. $p \oplus \sim p$ Taut

- 1. $\sim \sim p \lor p$ SAT Taut
- **2**. $\sim \sim p \lor \sim p$ **Taut**
- 3. $p \oplus p$ **unSAT**
- 4. $p \oplus \sim p$ Taut
- 5. $p \land (\sim p \lor q)$ SAT Taut

- 1. $\sim \sim p \lor p$ SAT Taut
- 2. $\sim \sim p \lor \sim p$ Taut
- 3. $p \oplus p$ **unSAT**
- 4. $p \oplus \sim p$ Taut
- 5. $p \land (\sim p \lor q)$ SAT Taut
- 6. $(p \land q) \land (\sim p \lor q)$ SAT Taut

- 1. $\sim \sim p \lor p$ SAT Taut
- 2. $\sim \sim p \lor \sim p$ Taut
- 3. $p \oplus p$ **unSAT**
- 4. $p \oplus \sim p$ Taut
- 5. $p \land (\sim p \lor q)$ SAT Taut
- 6. $(p \land q) \land (\sim p \lor q)$ SAT Taut
- 7. $(p \land q) \land (\sim p \lor \sim q)$ unSAT

- 1. $\sim \sim p \lor p$ SAT Taut
- 2. $\sim \sim p \lor \sim p$ Taut
- 3. $p \oplus p$ **unSAT**
- 4. $p \oplus \sim p$ Taut
- 5. $p \land (\sim p \lor q)$ SAT Taut
- 6. $(p \land q) \land (\sim p \lor q)$ SAT Taut
- 7. $(p \land q) \land (\sim p \lor \sim q)$ unSAT
- 8. $(p \oplus q) \land (\mathsf{T} \land p) \land (\mathsf{F} \lor q)$ unSAT

- 1. $\sim \sim p \lor p$ SAT Taut
- 2. $\sim \sim p \lor \sim p$ Taut
- 3. $p \oplus p$ **unSAT**
- 4. $p \oplus \sim p$ Taut
- 5. $p \land (\sim p \lor q)$ SAT Taut
- 6. $(p \land q) \land (\sim p \lor q)$ SAT Taut
- 7. $(p \land q) \land (\sim p \lor \sim q)$ unSAT
- 8. $(p \oplus q) \land (\mathsf{T} \land p) \land (\mathsf{F} \lor q)$ unSAT
- 9. $(p \oplus q) \lor (p \land q) \lor (\sim p \lor \sim q)$ Taut

- 1. $\sim \sim p \lor p$ SAT Taut
- **2.** $\sim \sim p \lor \sim p$ **Taut**
- 3. $p \oplus p$ **unSAT**
- 4. $p \oplus \sim p$ Taut
- 5. $p \land (\sim p \lor q)$ SAT Taut
- 6. $(p \land q) \land (\sim p \lor q)$ SAT Taut
- 7. $(p \land q) \land (\sim p \lor \sim q)$ unSAT
- 8. $(p \oplus q) \land (\mathsf{T} \land p) \land (\mathsf{F} \lor q)$ unSAT
- 9. $(p \oplus q) \lor (p \land q) \lor (\sim p \lor \sim q)$ Taut

10. $(p \land q) \lor (\sim p \lor \sim q)$ Taut

Knights always truthful; Knaves always lie; $A, B \in \{Kt, Kv\}$

B: "A&B opposite types"

Knights always truthful; Knaves always lie; $A, B \in \{Kt, Kv\}$

A : "B is Kt" B : "A&B opposite types"

Knights always truthful; Knaves always lie; $A, B \in \{Kt, Kv\}$

- A : "B is Kt" B : "A&B opposite types"
- $T_1 \stackrel{\text{def}}{=} B$ is a Kt $T_2 \stackrel{\text{def}}{=} A\&B$ opposite types

Knights always truthful; Knaves always lie; $A, B \in \{Kt, Kv\}$ $S_1 \stackrel{\text{def}}{=} A : "B \text{ is } Kt"$ $S_2 \stackrel{\text{def}}{=} B : "A\&B \text{ opposite types"}$ $T_1 \stackrel{\text{def}}{=} B \text{ is a } Kt$ $T_2 \stackrel{\text{def}}{=} A\&B \text{ opposite types}$

Knights always truthful; Knaves always lie; $A, B \in \{Kt, Kv\}$

- $S_1 \stackrel{\text{def}}{=} A : "B \text{ is } Kt" \quad S_2 \stackrel{\text{def}}{=} B : "A\&B \text{ opposite types"}$
- $T_1 \stackrel{\text{def}}{=} B$ is a Kt $T_2 \stackrel{\text{def}}{=} A\&B$ opposite types
- $S_1 = T_1 \leftrightarrow A ext{ is Kt} \quad S_2 = T_2 \leftrightarrow B ext{ is Kt}$

Knights always truthful; Knaves always lie; $A, B \in \{Kt, Kv\}$

- $S_1 \stackrel{\text{def}}{=} A : "B \text{ is } Kt" \quad S_2 \stackrel{\text{def}}{=} B : "A\&B \text{ opposite types"}$
- $T_1 \stackrel{\text{def}}{=} B$ is a Kt $T_2 \stackrel{\text{def}}{=} A\&B$ opposite types
- $S_1 = T_1 \leftrightarrow A ext{ is Kt} \quad S_2 = T_2 \leftrightarrow B ext{ is Kt}$

w	A is Kt	<i>B</i> is Kt	T ₁	<i>T</i> ₂	$T_1 \leftrightarrow A \text{ is Kt}$	$T_2 \leftrightarrow B$ is Kt
<i>W</i> ₃	1	1	1	0	1	0
W_2	1	0	0	1	0	0
<i>W</i> ₁	0	1	1	1	0	1
W_0	0	0	0	0	1	1

Knights always truthful; Knaves always lie; $A, B \in \{Kt, Kv\}$

- $S_1 \stackrel{\text{def}}{=} A : "B \text{ is } Kt" \quad S_2 \stackrel{\text{def}}{=} B : "A\&B \text{ opposite types"}$
- $T_1 \stackrel{\text{def}}{=} B$ is a Kt $T_2 \stackrel{\text{def}}{=} A\&B$ opposite types
- $S_1 = T_1 \leftrightarrow A ext{ is Kt} \quad S_2 = T_2 \leftrightarrow B ext{ is Kt}$

w	A is Kt	<i>B</i> is Kt	T_1	<i>T</i> ₂	$T_1 \leftrightarrow A \text{ is Kt}$	$T_2 \leftrightarrow B$ is Kt
<i>W</i> ₃	1	1	1	0	1	0
W_2	1	0	0	1	0	0
<i>W</i> ₁	0	1	1	1	0	1
W_0	0	0	0	0	1	1

 W_0 is only world satisfying $S_1 \wedge S_2$.

Knights always truthful; Knaves always lie; $A, B \in \{Kt, Kv\}$

- $S_1 \stackrel{\text{def}}{=} A : "B \text{ is } Kt" \quad S_2 \stackrel{\text{def}}{=} B : "A\&B \text{ opposite types"}$
- $T_1 \stackrel{\text{def}}{=} B$ is a Kt $T_2 \stackrel{\text{def}}{=} A\&B$ opposite types
- $S_1 = T_1 \leftrightarrow A ext{ is Kt} \quad S_2 = T_2 \leftrightarrow B ext{ is Kt}$

w	A is Kt	<i>B</i> is Kt	T_1	<i>T</i> ₂	$T_1 \leftrightarrow A \text{ is Kt}$	$T_2 \leftrightarrow B$ is Kt
<i>W</i> ₃	1	1	1	0	1	0
W_2	1	0	0	1	0	0
<i>W</i> ₁	0	1	1	1	0	1
W_0	0	0	0	0	1	1

 W_0 is only world satisfying $S_1 \wedge S_2$.

Thus A and B are both Knaves.

1.
$$\mathbf{T} \equiv \boldsymbol{p} \oplus \sim \boldsymbol{p}$$
 yes

1.
$$\mathbf{T} \equiv \boldsymbol{p} \oplus \sim \boldsymbol{p}$$
 yes

2.
$$q \wedge p \equiv p \wedge (\sim p \lor q)$$
 yes

1.
$$\mathbf{T} \equiv p \oplus \sim p$$
yes2. $q \land p \equiv p \land (\sim p \lor q)$ yes

3.
$$\sim p \lor q \equiv q \lor p$$
 no

1.
$$\mathbf{T} \equiv p \oplus \sim p$$
yes2. $q \land p \equiv p \land (\sim p \lor q)$ yes3. $\sim p \lor q \equiv q \lor p$ no4. $\sim p \lor q \equiv \sim q \lor p$ no

1.
$$\mathbf{T} \equiv p \oplus \sim p$$
yes2. $q \land p \equiv p \land (\sim p \lor q)$ yes3. $\sim p \lor q \equiv q \lor p$ no4. $\sim p \lor q \equiv \sim q \lor p$ no5. $(p \land \sim q) \equiv \sim (\sim p \lor q)$ yes