CS250: Discrete Math for Computer Science

L31: Proving Languages are Not Recognized by any DFA

So far we have seen that the following languages have DFAs that recognize them and regular expressions that denote them:

So far we have seen that the following languages have DFAs that recognize them and regular expressions that denote them:

$$\left\{ w \in \{a,b\}^* \mid \#_b(w) \equiv 1 \pmod{2} \right\} \qquad \qquad \mathcal{L}(a^*ba^*(ba^*ba^*)^*)$$

So far we have seen that the following languages have DFAs that recognize them and regular expressions that denote them:

$$\left\{ w \in \{a,b\}^* \mid \#_b(w) \equiv 1 \pmod{2} \right\} \qquad \mathcal{L}(a^*ba^*(ba^*ba^*)^*)$$

 $\left\{w \in \{0,1\}^* \mid \text{ next to last symbol is } 1\right\} \qquad \mathcal{L}((0|1)^*1(0|1))$

So far we have seen that the following languages have DFAs that recognize them and regular expressions that denote them:

$$\left\{ w \in \{a,b\}^{\star} \mid \#_{b}(w) \equiv 1 \pmod{2} \right\} \qquad \mathcal{L}(a^{\star}ba^{\star}(ba^{\star}ba^{\star})^{\star})$$

 $\left\{w \in \{0,1\}^* \mid \text{ next to last symbol is } 1\right\} \qquad \mathcal{L}((0|1)^*1(0|1))$

$$\left\{ w \in \{a,b\}^{\star} \middle| \begin{array}{c} \#_a(w) \equiv 1 \pmod{2} \land \\ \#_b(w) \equiv 0 \pmod{3} \end{array} \right\}$$
?

So far we have seen that the following languages have DFAs that recognize them and regular expressions that denote them:

$$\left\{ w \in \{a,b\}^* \mid \#_b(w) \equiv 1 \pmod{2} \right\} \qquad \mathcal{L}(a^*ba^*(ba^*ba^*)^*)$$

 $\left\{w \in \{0,1\}^* \mid \text{ next to last symbol is } 1\right\} \qquad \mathcal{L}((0|1)^*1(0|1))$

$$\left\{ w \in \{a,b\}^* \; \middle| \; \begin{array}{c} \#_a(w) \equiv 1 \pmod{2} \land \\ \#_b(w) \equiv 0 \pmod{3} \end{array} \right\}$$
?

 $\left\{w \in \{0,1\}^* \ \middle| \ w \text{ has at least two 0's} \right\} \qquad \qquad \mathcal{L}(1^*01^*0(0|1)^*)$

So far we have seen that the following languages have DFAs that recognize them and regular expressions that denote them:

$$\left\{ w \in \{a,b\}^* \mid \#_b(w) \equiv 1 \pmod{2} \right\} \qquad \mathcal{L}(a^*ba^*(ba^*ba^*)^*)$$

 $\left\{w \in \{0,1\}^* \mid \text{ next to last symbol is } 1\right\} \qquad \mathcal{L}((0|1)^*1(0|1))$

$$\left\{ w \in \{a,b\}^{\star} \middle| \begin{array}{c} \#_a(w) \equiv 1 \pmod{2} \land \\ \#_b(w) \equiv 0 \pmod{3} \end{array} \right\}$$
?

 $\{w \in \{0,1\}^* \mid w \text{ has at least two 0's}\}$ $\mathcal{L}(1^*01^*0(0|1)^*)$

 $\{w \in \{0,1\}^* \mid w \text{ has 001 or 100}\}$ $\mathcal{L}((0|1)^*(001|100)(0|1)^*)$

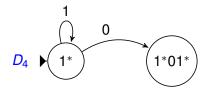
 $\{w \in \{0,1\}^* \mid w \text{ has at least two 0's}\} = \mathcal{L}(1^*01^*0(0|1)^*)$

 $\{w \in \{0,1\}^* \mid w \text{ has at least two 0's}\} = \mathcal{L}(1^*01^*0(0|1)^*)$

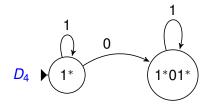
$$\left\{ w \in \{0,1\}^* \ \middle| \ w \text{ has at least two 0's}
ight\} \ = \ \mathcal{L}(1^*01^*0(0|1)^*)$$

Build a **DFA**
$$D_4$$
 s.t. $\mathcal{L}(D_4) = \mathcal{L}(1*01*0(0|1)*)$

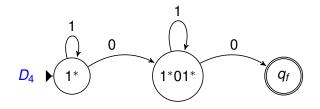
$$\{w \in \{0,1\}^* \mid w \text{ has at least two 0's}\} = \mathcal{L}(1^*01^*0(0|1)^*)$$



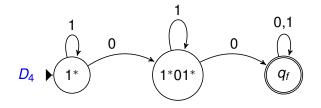
$$\{w \in \{0,1\}^* \mid w \text{ has at least two 0's}\} = \mathcal{L}(1^*01^*0(0|1)^*)$$



$$\{w \in \{0,1\}^* \mid w \text{ has at least two 0's}\} = \mathcal{L}(1^*01^*0(0|1)^*)$$



$$\{w \in \{0,1\}^* \mid w \text{ has at least two 0's}\} = \mathcal{L}(1^*01^*0(0|1)^*)$$



Which languages are recognized by **DFA** or denoted by regular expressions?

Which languages are recognized by **DFA** or denoted by regular expressions?

How can we **prove** a language, \mathcal{L} , is **not** recognized by **any DFA**?

Which languages are recognized by **DFA** or denoted by regular expressions?

How can we **prove** a language, \mathcal{L} , is **not** recognized by **any DFA**?

Idea: must show that need **more** than a **bounded** size memory to **remember** what we have seen so far, x, in order to decide if **extensions** of x belong to \mathcal{L} .

Pumping Lemma for Regular Sets: Let $D = (Q, \Sigma, \delta, q_0, F)$ be a DFA.

Pumping Lemma for Regular Sets: Let $D = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Let n = |Q|.

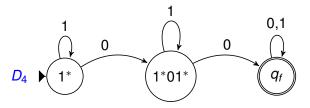
Pumping Lemma for Regular Sets: Let $D = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Let n = |Q|. Let $w \in \mathcal{L}(D)$ s.t. $|w| \ge n$.

Pumping Lemma for Regular Sets: Let $D = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Let n = |Q|. Let $w \in \mathcal{L}(D)$ s.t. $|w| \ge n$. Then $\exists x, y, z \in \Sigma^*$ s.t. the following all hold: 1. xyz = w2. $|xy| \le n$ 3. |y| > 0, and 4. $\forall k \geq 0 \quad (xy^k z \in \mathcal{L}(D))$

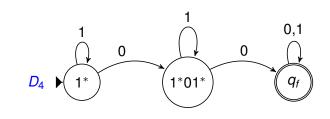
1. xyz = wLet $D = (Q, \Sigma, \delta, q_0, F)$ be a DFA, n = |Q|**2**. $|xy| \le n$ $w \in \mathcal{L}(D)$ s.t. $|w| \geq n$ 3. |y| > 0, and Then $\exists x, y, z \in \Sigma^*$ s.t.

4. $\forall k \geq 0 \quad (xy^k z \in \mathcal{L}(D))$

Let $D = (Q, \Sigma, \delta, q_0, F)$ 1. xyz = wbe a DFA, n = |Q|2. $|xy| \le n$ $w \in \mathcal{L}(D)$ s.t. $|w| \ge n$ 3. |y| > 0, andThen $\exists x, y, z \in \Sigma^*$ s.t.4. $\forall k \ge 0 \quad (xy^k z \in \mathcal{L}(D))$

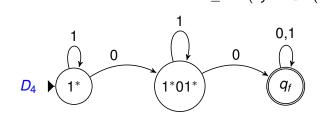


Let $D = (Q, \Sigma, \delta, q_0, F)$ 1. xyz = wbe a DFA, n = |Q|2. $|xy| \le n$ $w \in \mathcal{L}(D)$ s.t. $|w| \ge n$ 3. |y| > 0, andThen $\exists x, y, z \in \Sigma^*$ s.t.4. $\forall k \ge 0$ $(xy^k z \in \mathcal{L}(D))$



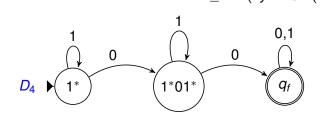
 $n=3, \quad w=10101\in \mathcal{L}(D_4), \quad |w|\geq 3$

Let $D = (Q, \Sigma, \delta, q_0, F)$ 1. xyz = wbe a DFA, n = |Q|2. $|xy| \le n$ $w \in \mathcal{L}(D)$ s.t. $|w| \ge n$ 3. |y| > 0, andThen $\exists x, y, z \in \Sigma^*$ s.t.4. $\forall k \ge 0$ $(xy^k z \in \mathcal{L}(D))$



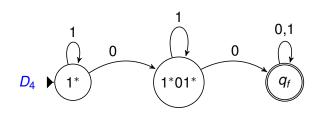
 $n = 3, \quad w = 10101 \in \mathcal{L}(D_4), \quad |w| \ge 3$ Split w into $x \cdot y \cdot z$ s.t. $1 \land 2 \land 3 \land 4$

Let $D = (Q, \Sigma, \delta, q_0, F)$ 1. xyz = wbe a DFA, n = |Q|2. $|xy| \le n$ $w \in \mathcal{L}(D)$ s.t. $|w| \ge n$ 3. |y| > 0, andThen $\exists x, y, z \in \Sigma^*$ s.t.4. $\forall k \ge 0$ $(xy^k z \in \mathcal{L}(D))$



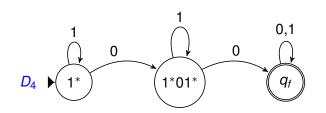
 $n = 3, \quad w = 10101 \in \mathcal{L}(D_4), \quad |w| \ge 3$ Split w into $x \cdot y \cdot z$ s.t. $1 \land 2 \land 3 \land 4$ $x \stackrel{\text{def}}{=} \epsilon \quad y \stackrel{\text{def}}{=} 1 \quad z \stackrel{\text{def}}{=} 0101$

Let $D = (Q, \Sigma, \delta, q_0, F)$ 1. xyz = wbe a DFA, n = |Q|2. $|xy| \le n$ $w \in \mathcal{L}(D)$ s.t. $|w| \ge n$ 3. |y| > 0, andThen $\exists x, y, z \in \Sigma^*$ s.t.4. $\forall k \ge 0$ $(xy^k z \in \mathcal{L}(D))$



 $n = 3, \quad w = 10101 \in \mathcal{L}(D_4), \quad |w| \ge 3$ Split w into $x \cdot y \cdot z$ s.t. $1 \land 2 \land 3 \land 4$ $x \stackrel{\text{def}}{=} \epsilon \quad y \stackrel{\text{def}}{=} 1 \quad z \stackrel{\text{def}}{=} 0101 \qquad \forall k \ge 0 \quad (xy^k z \in \mathcal{L}(D_4))$

Let $D = (Q, \Sigma, \delta, q_0, F)$ 1. xyz = wbe a DFA, n = |Q|2. $|xy| \le n$ $w \in \mathcal{L}(D)$ s.t. $|w| \ge n$ 3. |y| > 0, andThen $\exists x, y, z \in \Sigma^*$ s.t.4. $\forall k \ge 0$ $(xy^k z \in \mathcal{L}(D))$

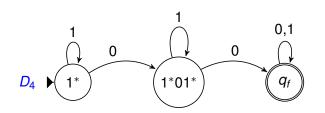


 $n = 3, \quad w = 10101 \in \mathcal{L}(D_4), \quad |w| \ge 3$

Splitwinto $x \cdot y \cdot z$ s.t. $1 \land 2 \land 3 \land 4$ $x \stackrel{\text{def}}{=} \epsilon$ $y \stackrel{\text{def}}{=} 1$ $z \stackrel{\text{def}}{=} 0101$ $\forall k \ge 0$ $(xy^k z \in \mathcal{L}(D_4))$

 $k=0: 0101 \in \mathcal{L}(D_4),$

Let $D = (Q, \Sigma, \delta, q_0, F)$ 1. xyz = wbe a DFA, n = |Q|2. $|xy| \le n$ $w \in \mathcal{L}(D)$ s.t. $|w| \ge n$ 3. |y| > 0, andThen $\exists x, y, z \in \Sigma^*$ s.t.4. $\forall k \ge 0$ $(xy^k z \in \mathcal{L}(D))$

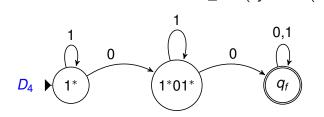


 $n = 3, \quad w = 10101 \in \mathcal{L}(D_4), \quad |w| \ge 3$

Splitwinto $x \cdot y \cdot z$ s.t. $1 \land 2 \land 3 \land 4$ $x \stackrel{\text{def}}{=} \epsilon$ $y \stackrel{\text{def}}{=} 1$ $z \stackrel{\text{def}}{=} 0101$ $\forall k \ge 0$ $(xy^k z \in \mathcal{L}(D_4))$

 $k = 0: 0101 \in \mathcal{L}(D_4), \ k = 1: 10101 \in \mathcal{L}(D_4),$

Let $D = (Q, \Sigma, \delta, q_0, F)$ 1. xyz = wbe a DFA, n = |Q|2. $|xy| \le n$ $w \in \mathcal{L}(D)$ s.t. $|w| \ge n$ 3. |y| > 0, andThen $\exists x, y, z \in \Sigma^*$ s.t.4. $\forall k \ge 0$ $(xy^k z \in \mathcal{L}(D))$

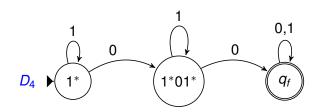


 $n=3, \quad w=10101\in \mathcal{L}(D_4), \quad |w|\geq 3$

Split w into $x \cdot y \cdot z$ s.t. $1 \land 2 \land 3 \land 4$

 $\begin{aligned} x \stackrel{\text{def}}{=} \epsilon \quad y \stackrel{\text{def}}{=} 1 \quad z \stackrel{\text{def}}{=} 0101 \qquad \forall k \ge 0 \quad (xy^k z \in \mathcal{L}(D_4)) \\ k = 0 : \ 0101 \in \mathcal{L}(D_4), \quad k = 1 : \ 10101 \in \mathcal{L}(D_4), \\ k = 2 : \ 110101 \in \mathcal{L}(D_4), \end{aligned}$

Let $D = (Q, \Sigma, \delta, q_0, F)$ 1. xyz = wbe a DFA, n = |Q|2. $|xy| \le n$ $w \in \mathcal{L}(D)$ s.t. $|w| \ge n$ 3. |y| > 0, andThen $\exists x, y, z \in \Sigma^*$ s.t.4. $\forall k \ge 0$ $(xy^k z \in \mathcal{L}(D))$



 $n=3, \quad w=10101\in \mathcal{L}(D_4), \quad |w|\geq 3$

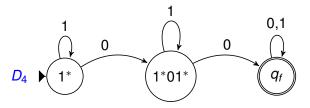
Split w into $x \cdot y \cdot z$ s.t. $1 \land 2 \land 3 \land 4$

 $\begin{aligned} x \stackrel{\text{def}}{=} \epsilon \quad y \stackrel{\text{def}}{=} 1 \quad z \stackrel{\text{def}}{=} 0101 \qquad \forall k \ge 0 \quad (xy^k z \in \mathcal{L}(D_4)) \\ k = 0 : \quad 0101 \in \mathcal{L}(D_4), \quad k = 1 : \quad 10101 \in \mathcal{L}(D_4), \\ k = 2 : \quad 110101 \in \mathcal{L}(D_4), \quad k = 3 : \quad 1110101 \in \mathcal{L}(D_4), \ldots \end{aligned}$

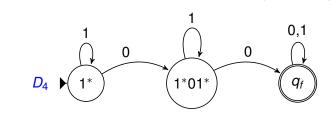
1. xyz = wLet $D = (Q, \Sigma, \delta, q_0, F)$ be a DFA, n = |Q|**2**. $|xy| \le n$ $w \in \mathcal{L}(D)$ s.t. $|w| \geq n$ 3. |y| > 0, and Then $\exists x, y, z \in \Sigma^*$ s.t.

4. $\forall k \geq 0 \quad (xy^k z \in \mathcal{L}(D))$

Let $D = (Q, \Sigma, \delta, q_0, F)$ 1. xyz = wbe a DFA, n = |Q|2. $|xy| \le n$ $w \in \mathcal{L}(D)$ s.t. $|w| \ge n$ 3. |y| > 0, andThen $\exists x, y, z \in \Sigma^*$ s.t.4. $\forall k \ge 0 \quad (xy^k z \in \mathcal{L}(D))$

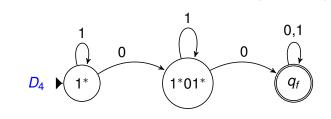


Let $D = (Q, \Sigma, \delta, q_0, F)$ 1. xyz = wbe a DFA, n = |Q|2. $|xy| \le n$ $w \in \mathcal{L}(D)$ s.t. $|w| \ge n$ 3. |y| > 0, andThen $\exists x, y, z \in \Sigma^*$ s.t.4. $\forall k \ge 0$ $(xy^k z \in \mathcal{L}(D))$



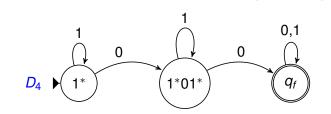
 $n=3, \quad w=000\in \mathcal{L}(D_4), \quad |w|\geq 3$

Let $D = (Q, \Sigma, \delta, q_0, F)$ 1. xyz = wbe a DFA, n = |Q|2. $|xy| \le n$ $w \in \mathcal{L}(D)$ s.t. $|w| \ge n$ 3. |y| > 0, andThen $\exists x, y, z \in \Sigma^*$ s.t.4. $\forall k \ge 0$ $(xy^k z \in \mathcal{L}(D))$



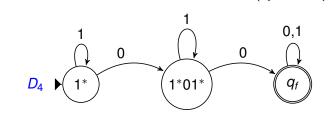
 $n = 3, \quad w = 000 \in \mathcal{L}(D_4), \quad |w| \ge 3$ Split w into $x \cdot y \cdot z$ s.t. $1 \land 2 \land 3 \land 4$

Let $D = (Q, \Sigma, \delta, q_0, F)$ 1. xyz = wbe a DFA, n = |Q|2. $|xy| \le n$ $w \in \mathcal{L}(D)$ s.t. $|w| \ge n$ 3. |y| > 0, andThen $\exists x, y, z \in \Sigma^*$ s.t.4. $\forall k \ge 0$ $(xy^k z \in \mathcal{L}(D))$



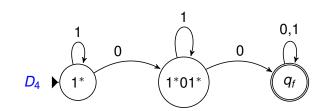
 $n = 3, \quad w = 000 \in \mathcal{L}(D_4), \quad |w| \ge 3$ Split w into $x \cdot y \cdot z$ s.t. $1 \land 2 \land 3 \land 4$ $x \stackrel{\text{def}}{=} 00 \quad y \stackrel{\text{def}}{=} 0 \quad z \stackrel{\text{def}}{=} \epsilon$

Let $D = (Q, \Sigma, \delta, q_0, F)$ 1. xyz = wbe a DFA, n = |Q|2. $|xy| \le n$ $w \in \mathcal{L}(D)$ s.t. $|w| \ge n$ 3. |y| > 0, andThen $\exists x, y, z \in \Sigma^*$ s.t.4. $\forall k \ge 0$ $(xy^k z \in \mathcal{L}(D))$



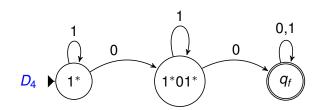
 $n = 3, \quad w = 000 \in \mathcal{L}(D_4), \quad |w| \ge 3$ Split w into $x \cdot y \cdot z$ s.t. $1 \land 2 \land 3 \land 4$ $x \stackrel{\text{def}}{=} 00 \quad y \stackrel{\text{def}}{=} 0 \quad z \stackrel{\text{def}}{=} \epsilon \qquad \forall k \ge 0 \quad (xy^k z \in \mathcal{L}(D_4))$

Let
$$D = (Q, \Sigma, \delta, q_0, F)$$
1. $xyz = w$ be a DFA, $n = |Q|$ 2. $|xy| \le n$ $w \in \mathcal{L}(D)$ s.t. $|w| \ge n$ 3. $|y| > 0$, andThen $\exists x, y, z \in \Sigma^*$ s.t.4. $\forall k \ge 0$ $(xy^k z \in \mathcal{L}(D))$



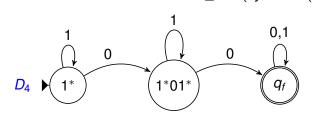
 $\begin{array}{ll} n = 3, & w = 000 \in \mathcal{L}(D_4), & |w| \geq 3 \\ & \textbf{Split} \quad w \quad \text{into} \quad x \cdot y \cdot z \quad \text{s.t.} \quad 1 \ \land \ 2 \ \land \ 3 \ \land \ 4 \\ & x \stackrel{\text{def}}{=} 00 \quad y \stackrel{\text{def}}{=} 0 \quad z \stackrel{\text{def}}{=} \epsilon \qquad \forall k \geq 0 \quad (xy^k z \in \mathcal{L}(D_4)) \\ & k = 0 : \ 00 \in \mathcal{L}(D_4), \end{array}$

Let
$$D = (Q, \Sigma, \delta, q_0, F)$$
1. $xyz = w$ be a DFA, $n = |Q|$ 2. $|xy| \le n$ $w \in \mathcal{L}(D)$ s.t. $|w| \ge n$ 3. $|y| > 0$, andThen $\exists x, y, z \in \Sigma^*$ s.t.4. $\forall k \ge 0$ $(xy^k z \in \mathcal{L}(D))$



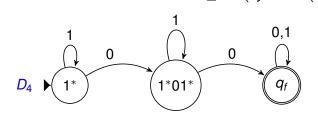
 $n = 3, \quad w = 000 \in \mathcal{L}(D_4), \quad |w| \ge 3$ Split w into $x \cdot y \cdot z$ s.t. $1 \land 2 \land 3 \land 4$ $x \stackrel{\text{def}}{=} 00 \quad y \stackrel{\text{def}}{=} 0 \quad z \stackrel{\text{def}}{=} \epsilon \qquad \forall k \ge 0 \quad (xy^k z \in \mathcal{L}(D_4))$ $k = 0: \quad 00 \in \mathcal{L}(D_4), \quad k = 1: \quad 000 \in \mathcal{L}(D_4),$

Let $D = (Q, \Sigma, \delta, q_0, F)$ 1. xyz = wbe a DFA, n = |Q|2. $|xy| \le n$ $w \in \mathcal{L}(D)$ s.t. $|w| \ge n$ 3. |y| > 0, andThen $\exists x, y, z \in \Sigma^*$ s.t.4. $\forall k \ge 0$ $(xy^k z \in \mathcal{L}(D))$



 $n = 3, \quad w = 000 \in \mathcal{L}(D_4), \quad |w| \ge 3$ Split w into $x \cdot y \cdot z$ s.t. $1 \land 2 \land 3 \land 4$ $x \stackrel{\text{def}}{=} 00 \quad y \stackrel{\text{def}}{=} 0 \quad z \stackrel{\text{def}}{=} \epsilon \qquad \forall k \ge 0 \quad (xy^k z \in \mathcal{L}(D_4))$ $k = 0: \quad 00 \in \mathcal{L}(D_4), \quad k = 1: \quad 000 \in \mathcal{L}(D_4),$ $k = 2: \quad 0000 \in \mathcal{L}(D_4),$

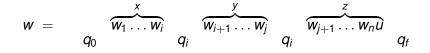
Let $D = (Q, \Sigma, \delta, q_0, F)$ 1. xyz = wbe a DFA, n = |Q|2. $|xy| \le n$ $w \in \mathcal{L}(D)$ s.t. $|w| \ge n$ 3. |y| > 0, andThen $\exists x, y, z \in \Sigma^*$ s.t.4. $\forall k \ge 0$ $(xy^k z \in \mathcal{L}(D))$



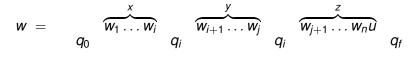
 $n = 3, \quad w = 000 \in \mathcal{L}(D_4), \quad |w| \ge 3$ Split w into $x \cdot y \cdot z$ s.t. $1 \land 2 \land 3 \land 4$ $x \stackrel{\text{def}}{=} 00 \quad y \stackrel{\text{def}}{=} 0 \quad z \stackrel{\text{def}}{=} \epsilon \qquad \forall k \ge 0 \quad (xy^k z \in \mathcal{L}(D_4))$ $k = 0: \quad 00 \in \mathcal{L}(D_4), \quad k = 1: \quad 000 \in \mathcal{L}(D_4),$ $k = 2: \quad 0000 \in \mathcal{L}(D_4), \quad k = 3: \quad 00000 \in \mathcal{L}(D_4), \dots$

By Pigeon-Hole Principle $\exists i < j \le n \quad (q_i = q_j)$

By Pigeon-Hole Principle $\exists i < j \le n \quad (q_i = q_j)$

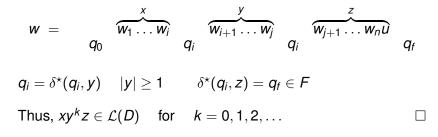


By Pigeon-Hole Principle $\exists i < j \le n \quad (q_i = q_j)$



 $q_i = \delta^{\star}(q_i, y) \quad |y| \ge 1 \qquad \delta^{\star}(q_i, z) = q_f \in F$

By Pigeon-Hole Principle $\exists i < j \le n \quad (q_i = q_j)$



Pumping Lemma for Regular Sets: Let $D = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Let n = |Q|. Let $w \in \mathcal{L}(D)$ s.t. $|w| \ge n$. Then $\exists x, y, z \in \Sigma^*$ s.t. the following all hold: 1. xyz = w**2**. $|xy| \le n$ 3. |y| > 0, and 4. $\forall k \geq 0$ $(xy^k z \in \mathcal{L}(D))$

Pumping Lemma for Regular Sets: Let $D = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Let n = |Q|. Let $w \in \mathcal{L}(D)$ s.t. $|w| \ge n$. Then $\exists x, y, z \in \Sigma^*$ s.t. the following all hold: 1. xyz = w**2**. $|xy| \le n$ 3. |y| > 0, and 4. $\forall k \geq 0$ $(xy^k z \in \mathcal{L}(D))$

Easiest tool to prove languages not DFA acceptable

proof by contradiction:

Assume: *E* is accepted by DFA *D* with *n* states.

proof by contradiction:

Assume: *E* is accepted by DFA *D* with *n* states.

you (G) choose string: $w \in E = \mathcal{L}(D)$

proof by contradiction:

Assume: *E* is accepted by DFA *D* with *n* states.

you (G) choose string: $w \in E = \mathcal{L}(D)$ Let $w = a^n b^n$

proof by contradiction:

Assume: *E* is accepted by DFA *D* with *n* states.

you (G) choose string: $w \in E = \mathcal{L}(D)$ Let $w = a^n b^n$

1.
$$w = a^{n}b^{n} = xyz$$

2. $|xy| \le n$
3. $|y| > 0$, and
4. $\forall k \in \mathbf{N} (xy^{k}z \in E)$

proof by contradiction:

Assume: *E* is accepted by DFA *D* with *n* states.

you (G) choose string: $w \in E = \mathcal{L}(D)$ Let $w = a^n b^n$

1.
$$w = a^{n}b^{n} = xyz$$

2. $|xy| \le n$
3. $|y| > 0$, and
4. $\forall k \in \mathbf{N} (xy^{k}z \in E)$
Since $0 < |xy| \le n$, $y = a^{i}$, $0 < i \le n$

proof by contradiction:

Assume: *E* is accepted by DFA *D* with *n* states.

you (G) choose string: $w \in E = \mathcal{L}(D)$ Let $w = a^n b^n$

1.
$$w = a^{n}b^{n} = xyz$$

2. $|xy| \le n$
3. $|y| > 0$, and
4. $\forall k \in \mathbf{N} (xy^{k}z \in E)$
Since $0 < |xy| \le n$, $y = a^{i}$, $0 < i \le n$
Thus $xy^{0}z = a^{n-i}b^{n} \in E$.

proof by contradiction:

Assume: *E* is accepted by DFA *D* with *n* states.

you (G) choose string: $w \in E = \mathcal{L}(D)$ Let $w = a^n b^n$

1.
$$w = a^{n}b^{n} = xyz$$

2. $|xy| \le n$
3. $|y| > 0$, and
4. $\forall k \in \mathbb{N} (xy^{k}z \in E)$
Since $0 < |xy| \le n$, $y = a^{i}$, $0 < i \le n$
Thus $xy^{0}z = a^{n-i}b^{n} \in E$.
but $a^{n-i}b^{n} \notin E$.

proof by contradiction:

Assume: *E* is accepted by DFA *D* with *n* states.

you (G) choose string: $w \in E = \mathcal{L}(D)$ Let $w = a^n b^n$

1.
$$w = a^{n}b^{n} = xyz$$

2. $|xy| \le n$
3. $|y| > 0$, and
4. $\forall k \in \mathbb{N} (xy^{k}z \in E)$
Since $0 < |xy| \le n$, $y = a^{i}$, $0 < i \le n$
Thus $xy^{0}z = a^{n-i}b^{n} \in E$.
but $a^{n-i}b^{n} \notin E$.
F

proof by contradiction:

Assume: *E* is accepted by DFA *D* with *n* states.

you (G) choose string: $w \in E = \mathcal{L}(D)$ Let $w = a^n b^n$

By pumping lemma, **D** chooses $x, y, z \in \{a, b\}^*$, s.t.,

1.
$$w = a^{n}b^{n} = xyz$$

2. $|xy| \le n$
3. $|y| > 0$, and
4. $\forall k \in \mathbb{N} (xy^{k}z \in E)$
Since $0 < |xy| \le n$, $y = a^{i}$, $0 < i \le n$
Thus $xy^{0}z = a^{n-i}b^{n} \in E$.
but $a^{n-i}b^{n} \notin E$.
F

Therefore *E* is **not DFA acceptable**.

proof by contradiction:

Assume: *M* is accepted by DFA *D* with *n* states.

proof by contradiction:

Assume: *M* is accepted by DFA *D* with *n* states.

you choose string: $w \in M = \mathcal{L}(D)$

proof by contradiction:

Assume: *M* is accepted by DFA *D* with *n* states.

you choose string: $w \in M = \mathcal{L}(D)$ Let $w = a^{n+1}b^n$

Assume: *M* is accepted by DFA *D* with *n* states.

you choose string: $w \in M = \mathcal{L}(D)$ Let $w = a^{n+1}b^n$

1.
$$w = a^{n+1}b^n = xyz$$

2. $|xy| \le n$
3. $|y| > 0$, and
4. $\forall k \in \mathbf{N} (xy^k z \in M)$

Assume: *M* is accepted by DFA *D* with *n* states.

you choose string: $w \in M = \mathcal{L}(D)$ Let $w = a^{n+1}b^n$

1.
$$w = a^{n+1}b^n = xyz$$

2. $|xy| \le n$
3. $|y| > 0$, and
4. $\forall k \in \mathbf{N} (xy^k z \in M)$
Since $0 < |xy| \le n$, $y = a^i$, $0 < i \le n$

Assume: *M* is accepted by DFA *D* with *n* states.

you choose string: $w \in M = \mathcal{L}(D)$ Let $w = a^{n+1}b^n$

1.
$$w = a^{n+1}b^n = xyz$$

2. $|xy| \le n$
3. $|y| > 0$, and
4. $\forall k \in \mathbb{N} (xy^k z \in M)$
Since $0 < |xy| \le n$, $y = a^i$, $0 < i \le n$
Thus $xy^0 z = a^{n+1-i}b^n \in M$.

Assume: *M* is accepted by DFA *D* with *n* states.

you choose string: $w \in M = \mathcal{L}(D)$ Let $w = a^{n+1}b^n$

1.
$$w = a^{n+1}b^n = xyz$$

2. $|xy| \le n$
3. $|y| > 0$, and
4. $\forall k \in \mathbb{N} (xy^k z \in M)$
Since $0 < |xy| \le n$, $y = a^i$, $0 < i \le n$
Thus $xy^0 z = a^{n+1-i}b^n \in M$.
but $a^{n+1-i}b^n \notin M$.

Assume: *M* is accepted by DFA *D* with *n* states.

you choose string: $w \in M = \mathcal{L}(D)$ Let $w = a^{n+1}b^n$

1.
$$w = a^{n+1}b^n = xyz$$

2. $|xy| \le n$
3. $|y| > 0$, and
4. $\forall k \in \mathbb{N} (xy^k z \in M)$
Since $0 < |xy| \le n$, $y = a^i$, $0 < i \le n$
Thus $xy^0 z = a^{n+1-i}b^n \in M$.
but $a^{n+1-i}b^n \notin M$.

Assume: *M* is accepted by DFA *D* with *n* states.

you choose string: $w \in M = \mathcal{L}(D)$ Let $w = a^{n+1}b^n$

By pumping lemma, **D** chooses $x, y, z \in \{a, b\}^*$ s.t.

1.
$$w = a^{n+1}b^n = xyz$$

2. $|xy| \le n$
3. $|y| > 0$, and
4. $\forall k \in \mathbb{N} (xy^k z \in M)$
Since $0 < |xy| \le n$, $y = a^i$, $0 < i \le n$
Thus $xy^0 z = a^{n+1-i}b^n \in M$.
but $a^{n+1-i}b^n \notin M$.
F

Therefore *M* is **not DFA acceptable**.

Prop: $P = \{w \in \{a, b\}^* \mid |w| \text{ is prime}\}$ is not DFA acceptable. by DFA *D* with *n* states. **Prop:** $P = \{w \in \{a, b\}^* \mid |w| \text{ is prime}\}$ is not DFA acceptable. **proof:** Assume: *P* is accepted by DFA *D* with *n* states. **Prop:** $P = \{w \in \{a, b\}^* \mid |w| \text{ is prime}\}$ is not DFA acceptable. **proof: Assume:** *P* is accepted by DFA *D* with *n* states.

you choose string: $w \in P = \mathcal{L}(D)$ to get contradiction

you choose string: $w \in P = \mathcal{L}(D)$ to get contradiction

Let $w = a^p$ where $p \ge n$ is prime

you choose string: $w \in P = \mathcal{L}(D)$ to get contradiction

Let $w = a^p$ where $p \ge n$ is prime

1.
$$w = a^{p} = xyz$$

2. $|xy| \le n$
3. $|y| > 0$, and
4. $\forall k \in \mathbf{N} (xy^{k}z \in P)$

you choose string: $w \in P = \mathcal{L}(D)$ to get contradiction

Let $w = a^p$ where $p \ge n$ is prime

1.
$$w = a^{p} = xyz$$

2. $|xy| \le n$
3. $|y| > 0$, and
4. $\forall k \in \mathbf{N} (xy^{k}z \in P)$
 $y = a^{i}, \ 0 < i \le n$

you choose string: $w \in P = \mathcal{L}(D)$ to get contradiction

Let $w = a^p$ where $p \ge n$ is prime

1.
$$w = a^{p} = xyz$$

2. $|xy| \le n$
3. $|y| > 0$, and
4. $\forall k \in \mathbf{N} (xy^{k}z \in P)$
 $y = a^{i}, \ 0 < i \le n$
Thus $xy^{p+1}z = xyzy^{p} = a^{p}a^{p \cdot i} = a^{p(i+1)} \in P$.

you choose string: $w \in P = \mathcal{L}(D)$ to get contradiction

Let $w = a^p$ where $p \ge n$ is prime

1.
$$w = a^{p} = xyz$$

2. $|xy| \le n$
3. $|y| > 0$, and
4. $\forall k \in \mathbb{N} (xy^{k}z \in P)$
 $y = a^{i}, \ 0 < i \le n$
Thus $xy^{p+1}z = xyzy^{p} = a^{p}a^{p \cdot i} = a^{p(i+1)} \in P$.
but $p(i+1)$ is not prime, so $xy^{p+1}z \notin P$.

you choose string: $w \in P = \mathcal{L}(D)$ to get contradiction

Let $w = a^p$ where $p \ge n$ is prime

1.
$$w = a^{p} = xyz$$

2. $|xy| \le n$
3. $|y| > 0$, and
4. $\forall k \in \mathbb{N} (xy^{k}z \in P)$
 $y = a^{i}, \ 0 < i \le n$
Thus $xy^{p+1}z = xyzy^{p} = a^{p}a^{p \cdot i} = a^{p(i+1)} \in P$.
but $p(i+1)$ is not prime, so $xy^{p+1}z \notin P$.
F

you choose string: $w \in P = \mathcal{L}(D)$ to get contradiction

Let $w = a^p$ where $p \ge n$ is prime

By pumping lemma, D chooses $x, y, z \in \{a, b\}^*$ s.t.

1.
$$w = a^{p} = xyz$$

2. $|xy| \le n$
3. $|y| > 0$, and
4. $\forall k \in \mathbb{N} (xy^{k}z \in P)$
 $y = a^{i}, \ 0 < i \le n$
Thus $xy^{p+1}z = xyzy^{p} = a^{p}a^{p \cdot i} = a^{p(i+1)} \in P$.
but $p(i+1)$ is not prime, so $xy^{p+1}z \notin P$.
F

Therefore *P* is **not regular**.

Pumping Lemma for Regular Sets

Let $D = (Q, \Sigma, \delta, q_0, F)$ be a DFA.

Let n = |Q|.

You (G) choose $w \in \mathcal{L}(D)$ s.t. $|w| \ge n$.

Then **D** chooses $x, y, z \in \Sigma^*$ s.t. the following all hold:

- 1. xyz = w
- **2**. $|xy| \le n$
- 3. |y| > 0, and
- 4. $\forall k \geq 0 \quad (xy^k z \in \mathcal{L}(D))$

Pumping Lemma for Regular Sets

Let $D = (Q, \Sigma, \delta, q_0, F)$ be a DFA.

Let n = |Q|.

You (G) choose $w \in \mathcal{L}(D)$ s.t. $|w| \ge n$.

Then **D** chooses $x, y, z \in \Sigma^*$ s.t. the following all hold:

- 1. xyz = w
- **2**. $|xy| \le n$
- 3. |y| > 0, and
- 4. $\forall k \geq 0 \quad (xy^k z \in \mathcal{L}(D))$

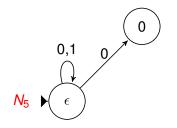
Finally, you point out why a contradiction ensues.

 $\{w \in \{0,1\}^* \mid w \text{ has 001 or 100}\} = \mathcal{L}((0|1)^*(001|100)(0|1)^*)$

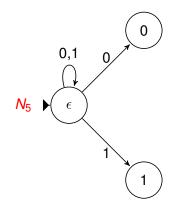
 $\{w \in \{0,1\}^* \mid w \text{ has 001 or 100}\} = \mathcal{L}((0|1)^*(001|100)(0|1)^*)$

 $\{w \in \{0,1\}^* \mid w \text{ has 001 or 100}\} = \mathcal{L}((0|1)^*(001|100)(0|1)^*)$

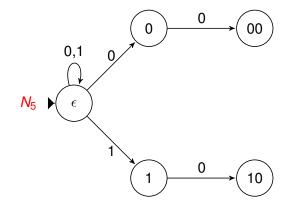
$$\{w \in \{0,1\}^* \mid w \text{ has 001 or 100}\} = \mathcal{L}((0|1)^*(001|100)(0|1)^*)$$



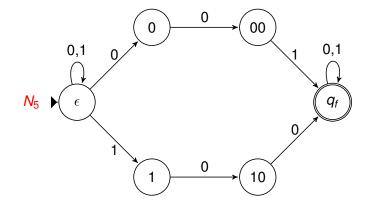
$$\{w \in \{0,1\}^* \mid w \text{ has 001 or 100}\} = \mathcal{L}((0|1)^*(001|100)(0|1)^*)$$



$$\{w \in \{0,1\}^* \mid w \text{ has 001 or 100}\} = \mathcal{L}((0|1)^*(001|100)(0|1)^*)$$



 $\{w \in \{0,1\}^* \mid w \text{ has 001 or 100}\} = \mathcal{L}((0|1)^*(001|100)(0|1)^*)$



Kleene's Theorem Let $A \subseteq \Sigma^*$ be any language. Then the following are equivalent:

1. $A = \mathcal{L}(D)$, for some DFA D.

2. $A = \mathcal{L}(N)$, for some NFA N wo ϵ transitions.

- 3. $A = \mathcal{L}(N)$, for some NFA N.
- 4. $A = \mathcal{L}(e)$, for some regular expression e.
- 5. A is regular.

Kleene's Theorem Let $A \subseteq \Sigma^*$ be any language. Then the following are equivalent:

1. $A = \mathcal{L}(D)$, for some DFA D.

2. $A = \mathcal{L}(N)$, for some NFA N wo ϵ transitions.

- 3. $A = \mathcal{L}(N)$, for some NFA N.
- 4. $A = \mathcal{L}(e)$, for some regular expression e.
- 5. A is regular.

True by definition: $(4) \Leftrightarrow (5)$