For two sets, A, B, a relation from A to B is a subset, $R \subseteq A \times B$.

- For two sets, A, B, a relation from A to B is a subset, $R \subseteq A \times B$.
- ▶ We say that *A* is the **domain** and *B* is the **co-domain**.

- For two sets, A, B, a relation from A to B is a subset, $R \subseteq A \times B$.
- ▶ We say that *A* is the **domain** and *B* is the **co-domain**.
- We say that *a* is related to *b* by *R*, *aRb*, iff $(a, b) \in R$.

- For two sets, A, B, a relation from A to B is a subset, $R \subseteq A \times B$.
- We say that *A* is the **domain** and *B* is the **co-domain**.
- We say that *a* is related to *b* by *R*, *aRb*, iff $(a, b) \in R$.
- iff means "if and only if"

- For two sets, *A*, *B*, a relation from *A* to *B* is a subset, $R \subseteq A \times B$.
- ▶ We say that *A* is the **domain** and *B* is the **co-domain**.
- We say that *a* is related to *b* by *R*, *aRb*, iff $(a, b) \in R$.
- iff means "if and only if"

$$\triangleright <_{N} = \{(i,j) \in \mathbf{N} \times \mathbf{N} \mid i < j\},\$$

- For two sets, *A*, *B*, a relation from *A* to *B* is a subset, $R \subseteq A \times B$.
- ▶ We say that *A* is the **domain** and *B* is the **co-domain**.
- We say that *a* is related to *b* by *R*, *aRb*, iff $(a, b) \in R$.
- iff means "if and only if"

►
$$<_N = \{(i,j) \in \mathbf{N} \times \mathbf{N} \mid i < j\}, 5 <_N 17,$$

- For two sets, A, B, a relation from A to B is a subset, $R \subseteq A \times B$.
- ▶ We say that *A* is the **domain** and *B* is the **co-domain**.
- We say that *a* is related to *b* by *R*, *aRb*, iff $(a, b) \in R$.
- iff means "if and only if"

►
$$<_N = \{(i,j) \in \mathbf{N} \times \mathbf{N} \mid i < j\}, 5 <_N 17, (5,17) \in <_N \}$$

- For two sets, A, B, a relation from A to B is a subset, $R \subseteq A \times B$.
- ▶ We say that *A* is the **domain** and *B* is the **co-domain**.
- We say that *a* is related to *b* by *R*, *aRb*, iff $(a, b) \in R$.
- iff means "if and only if"

►
$$<_N = \{(i,j) \in \mathbf{N} \times \mathbf{N} \mid i < j\}, 5 <_N 17, (5,17) \in <_N \}$$

►
$$<_{[n]} \stackrel{\text{def}}{=} <_N \cap ([n] \times [n]), \text{ where } [n] \stackrel{\text{def}}{=} \{1, 2, \dots, n\}$$

- For two sets, *A*, *B*, a relation from *A* to *B* is a subset, $R \subseteq A \times B$.
- ▶ We say that *A* is the **domain** and *B* is the **co-domain**.
- We say that *a* is related to *b* by *R*, *aRb*, iff $(a, b) \in R$.
- iff means "if and only if"

►
$$<_N = \{(i,j) \in \mathbf{N} \times \mathbf{N} \mid i < j\}, 5 <_N 17, (5,17) \in <_N \}$$

- ► $<_{[n]} \stackrel{\text{def}}{=} <_N \cap ([n] \times [n]), \text{ where } [n] \stackrel{\text{def}}{=} \{1, 2, \dots, n\}$
- ▶ $<_{[3]} = <_N \cap ([3] \times [3]) = \{(1,2), (1,3), (2,3)\}$

- For two sets, *A*, *B*, a relation from *A* to *B* is a subset, $R \subseteq A \times B$.
- ▶ We say that *A* is the **domain** and *B* is the **co-domain**.
- We say that *a* is related to *b* by *R*, *aRb*, iff $(a, b) \in R$.
- iff means "if and only if"

►
$$<_N = \{(i,j) \in \mathbf{N} \times \mathbf{N} \mid i < j\}, 5 <_N 17, (5,17) \in <_N \}$$

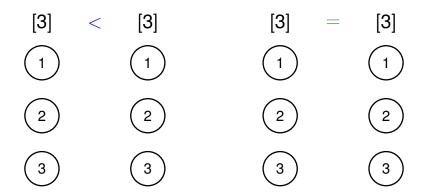
- ► $<_{[n]} \stackrel{\text{def}}{=} <_N \cap ([n] \times [n]), \text{ where } [n] \stackrel{\text{def}}{=} \{1, 2, \dots, n\}$
- $\blacktriangleright <_{[3]} = <_N \cap ([3] \times [3]) = \{(1,2), (1,3), (2,3)\}$
- Awkwardness of Def. of Domain and Co-Domain: If R ⊆ A × B, A ⊆ A', B ⊆ B' then R is a relation from A to B; but R ⊆ A' × B' is also a relation from A' to B' so the domain and co-domain of R are not uniquely defined.

- For two sets, *A*, *B*, a relation from *A* to *B* is a subset, $R \subseteq A \times B$.
- ▶ We say that *A* is the **domain** and *B* is the **co-domain**.
- We say that *a* is related to *b* by *R*, *aRb*, iff $(a, b) \in R$.
- iff means "if and only if"

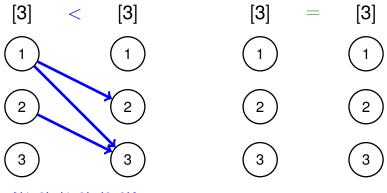
►
$$<_N = \{(i,j) \in \mathbf{N} \times \mathbf{N} \mid i < j\}, 5 <_N 17, (5,17) \in <_N \}$$

- ► $<_{[n]} \stackrel{\text{def}}{=} <_N \cap ([n] \times [n]), \text{ where } [n] \stackrel{\text{def}}{=} \{1, 2, \dots, n\}$
- ► $<_{[3]} = <_N \cap ([3] \times [3]) = \{(1,2), (1,3), (2,3)\}$
- Awkwardness of Def. of Domain and Co-Domain: If R ⊆ A × B, A ⊆ A', B ⊆ B' then R is a relation from A to B; but R ⊆ A' × B' is also a relation from A' to B' so the domain and co-domain of R are not uniquely defined.
- We'll talk about this later.

For relation *R* from *A* to *B*, draw an arrow from *a* to *b* iff *aRb*.

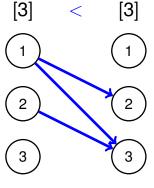


For relation *R* from *A* to *B*, draw an arrow from *a* to *b* iff *aRb*.

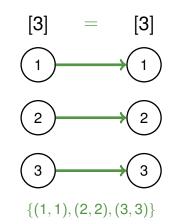


 $\{(1,2),(1,3),(2,3)\}$

For relation *R* from *A* to *B*, draw an arrow from *a* to *b* iff *aRb*.



 $\{(1,2),(1,3),(2,3)\}$



The Divides Relation: "|"

$$a|b$$
 (a divides b) iff $\exists d \in \mathsf{Z} (a \cdot d = b)$ iff $\frac{b}{a} \in \mathsf{Z}$

 $a|b \ (a \text{ divides } b) \quad ext{iff} \quad \exists d \in \mathsf{Z} \ (a \cdot d = b) \quad ext{iff} \quad \frac{b}{a} \in \mathsf{Z}$

"|" is a binary relation on Z: $| \subseteq \mathbf{Z} \times \mathbf{Z}$

 $| = \{(a,b) \in \mathsf{Z} \times \mathsf{Z} \mid \exists d \in \mathsf{Z} (a \cdot d = b)\}$

 $a|b \ (a \text{ divides } b) \quad \text{iff} \quad \exists d \in \mathsf{Z} \ (a \cdot d = b) \quad \text{iff} \quad \frac{b}{a} \in \mathsf{Z}$

"|" is a binary relation on Z: $| \subseteq \mathbf{Z} \times \mathbf{Z}$

$$= \{(a,b) \in \mathbf{Z} \times \mathbf{Z} \mid \exists d \in \mathbf{Z} (a \cdot d = b)\}$$

 $= \{(2,2), (2,4), (2,6), (2,8) \dots, (3,3), (3,6), (3,9), \dots \}$

 $a|b \ (a \text{ divides } b) \quad \text{iff} \quad \exists d \in \mathbf{Z} \ (a \cdot d = b) \quad \text{iff} \quad \frac{b}{a} \in \mathbf{Z}$

"|" is a binary relation on Z: $| \subseteq Z \times Z$

$$= \{(a,b) \in \mathbb{Z} \times \mathbb{Z} \mid \exists d \in \mathbb{Z} (a \cdot d = b)\} \\= \{(2,2), (2,4), (2,6), (2,8) \dots, (3,3), (3,6), (3,9), \dots \\ (-2,2), (-2,4), (-2,6) \dots, (-3,3), (-3,6), (-3,9), \dots \}$$

$$= \{(a,b) \in \mathbb{Z} \times \mathbb{Z} \mid \exists d \in \mathbb{Z} (a \cdot d = b) \}$$

= $\{(2,2), (2,4), (2,6), (2,8) \dots, (3,3), (3,6), (3,9), \dots (-2,2), (-2,4), (-2,6) \dots, (-3,3), (-3,6), (-3,9), \dots (2,-2), (2,-4), (2,-6) \dots, (3,-3), (3,-6), (3,-9), \dots (2,-2), (2,-4), (2,-6) \dots, (3,-3), (3,-6), (3,-9), \dots (-3,-3), (3,-6), (3,-9), \dots (-3,-6), \dots (-3,-6), (3,-6), (3,-6), (3,-9), \dots (-3,-6), (3,-6), (3,-6), (3,-6), \dots (-3,-6), (3,-6), \dots (-3,-6), \dots (-3,-$

$$= \{(a,b) \in \mathbb{Z} \times \mathbb{Z} \mid \exists d \in \mathbb{Z} (a \cdot d = b)\} \\ = \{(2,2), (2,4), (2,6), (2,8) \dots, (3,3), (3,6), (3,9), \dots \\ (-2,2), (-2,4), (-2,6) \dots, (-3,3), (-3,6), (-3,9), \dots \\ (2,-2), (2,-4), (2,-6) \dots, (3,-3), (3,-6), (3,-9), \dots \\ (1,0), (1,1), (1,-1), (1,2), (1,-2), \dots \}$$

$$= \{(a,b) \in \mathbb{Z} \times \mathbb{Z} \mid \exists d \in \mathbb{Z} (a \cdot d = b)\} \\ = \{(2,2), (2,4), (2,6), (2,8) \dots, (3,3), (3,6), (3,9), \dots \\ (-2,2), (-2,4), (-2,6) \dots, (-3,3), (-3,6), (-3,9), \dots \\ (2,-2), (2,-4), (2,-6) \dots, (3,-3), (3,-6), (3,-9), \dots \\ (1,0), (1,1), (1,-1), (1,2), (1,-2), \dots \\ (0,0), (1,0), (-1,0), (2,0), (-2,0), \dots \}$$

$$= \{(a,b) \in \mathbb{Z} \times \mathbb{Z} \mid \exists d \in \mathbb{Z} (a \cdot d = b)\} \\ = \{(2,2), (2,4), (2,6), (2,8) \dots, (3,3), (3,6), (3,9), \dots \\ (-2,2), (-2,4), (-2,6) \dots, (-3,3), (-3,6), (-3,9), \dots \\ (2,-2), (2,-4), (2,-6) \dots, (3,-3), (3,-6), (3,-9), \dots \\ (1,0), (1,1), (1,-1), (1,2), (1,-2), \dots \\ (0,0), (1,0), (-1,0), (2,0), (-2,0), \dots \} \}$$

 $\frac{6}{-3} \in \textbf{Z}$

-3|6 because $(-3) \cdot (-2) = 6$

$$= \{(a,b) \in \mathbf{Z} \times \mathbf{Z} \mid \exists d \in \mathbf{Z} (a \cdot d = b)\} \\ = \{(2,2), (2,4), (2,6), (2,8) \dots, (3,3), (3,6), (3,9), \dots \\ (-2,2), (-2,4), (-2,6) \dots, (-3,3), (-3,6), (-3,9), \dots \\ (2,-2), (2,-4), (2,-6) \dots, (3,-3), (3,-6), (3,-9), \dots \\ (1,0), (1,1), (1,-1), (1,2), (1,-2), \dots \\ (0,0), (1,0), (-1,0), (2,0), (-2,0), \dots \}$$

-3|6 because $(-3) \cdot (-2) = 6$

6 -3	$\in \mathbf{Z}$
$\frac{10}{3}$	∉ Z

3 / 10 because $\not\exists d \in \mathbf{Z} (3 \cdot d = 10)$

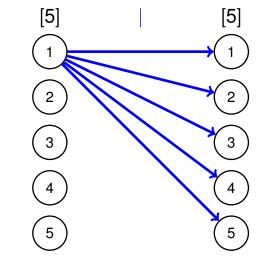
$$= \{(a,b) \in \mathbb{Z} \times \mathbb{Z} \mid \exists d \in \mathbb{Z} (a \cdot d = b)\} \\ = \{(2,2), (2,4), (2,6), (2,8) \dots, (3,3), (3,6), (3,9), \dots \\ (-2,2), (-2,4), (-2,6) \dots, (-3,3), (-3,6), (-3,9), \dots \\ (2,-2), (2,-4), (2,-6) \dots, (3,-3), (3,-6), (3,-9), \dots \\ (1,0), (1,1), (1,-1), (1,2), (1,-2), \dots \\ (0,0), (1,0), (-1,0), (2,0), (-2,0), \dots \}$$

iClicker 3.1 True or False: $\forall z \in \mathbf{Z} \ 1 | z ?$

A: True

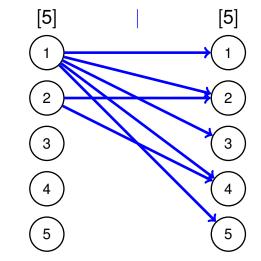
B: False

Arrow Diagram of Divides Relation



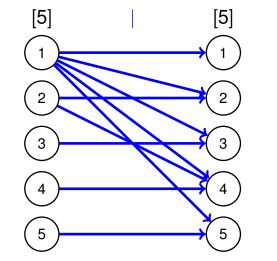
 $\{(1,1),(1,2),(1,3),(1,4),(1,5),$

Arrow Diagram of Divides Relation



 $\{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 2), (2, 4),$

Arrow Diagram of Divides Relation



 $\{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 2), (2, 4), (3, 3), (4, 4), (5, 5)\}$

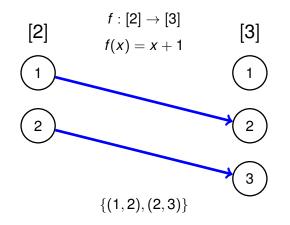
Def: *f* is a **function** from *A* to *B* iff $f \subseteq A \times B$, and

f is **defined** on domain *A*: $\forall a \in A \exists b \in B (a, b) \in f$, and

f is single valued: $\forall (a, b), (a', b') \in f (a = a' \rightarrow b = b').$

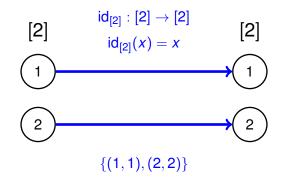
Def: *f* is a **function** from *A* to *B* iff $f \subseteq A \times B$, and *f* is **defined** on domain *A*: $\forall a \in A \exists b \in B (a, b) \in f$, and

f is single valued: $\forall (a, b), (a', b') \in f (a = a' \rightarrow b = b').$



f is a **function** from *A* to *B* iff $f \subseteq A \times B$, and *f* is **defined** on domain *A*: $\forall a \in A \exists b \in B (a, b) \in f$, and *f* is **single valued**: $\forall (a, b), (a', b') \in f (a = a' \rightarrow b = b')$.

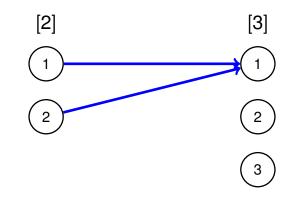
f is a function from *A* to *B* iff $f \subseteq A \times B$, and *f* is defined on domain *A*: $\forall a \in A \exists b \in B (a, b) \in f$, and *f* is single valued: $\forall (a, b), (a', b') \in f (a = a' \rightarrow b = b')$.



f is a **function** from *A* to *B* iff $f \subseteq A \times B$, and *f* is **defined** on domain *A*: $\forall a \in A \exists b \in B (a, b) \in f$, and *f* is **single valued**: $\forall (a, b), (a', b') \in f (a = a' \rightarrow b = b')$.

iClicker 3.2 Let $g = \{(1, 1), (2, 1)\}$. Is $g : [2] \rightarrow [3]$?

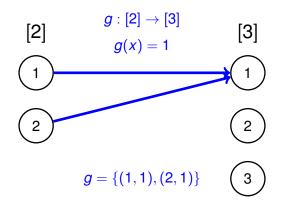
A: Yes B: No



f is a **function** from *A* to *B* iff $f \subseteq A \times B$, and *f* is **defined** on domain *A*: $\forall a \in A \exists b \in B (a, b) \in f$, and *f* is **single valued**: $\forall (a, b), (a', b') \in f (a = a' \rightarrow b = b')$.

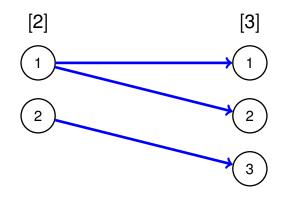
iClicker 3.2 Let $g = \{(1, 1), (2, 1)\}$. Is $g : [2] \rightarrow [3]$?

A: Yes B: No



f is a **function** from *A* to *B* iff $f \subseteq A \times B$, and *f* is **defined** on domain *A*: $\forall a \in A \exists b \in B (a, b) \in f$, and *f* is **single valued**: $\forall (a, b), (a', b') \in f (a = a' \rightarrow b = b')$.

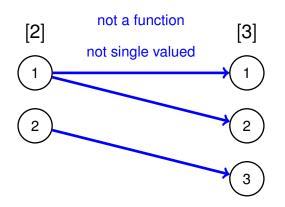
iClicker 3.3 Let $h = \{(1, 1), (1, 2), (2, 3)\}$. Is $h : [2] \rightarrow [3]$? A: Yes B: No



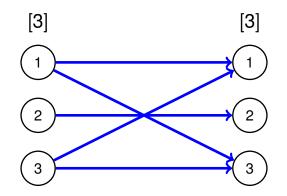
f is a **function** from *A* to *B* iff $f \subseteq A \times B$, and *f* is **defined** on domain *A*: $\forall a \in A \exists b \in B (a, b) \in f$, and *f* is **single valued**: $\forall (a, b), (a', b') \in f (a = a' \rightarrow b = b')$.

iClicker 3.3 Let $h = \{(1,1), (1,2), (2,3)\}$. Is $h: [2] \to [3]$?

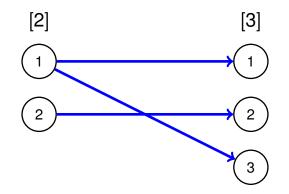
A: Yes B: No



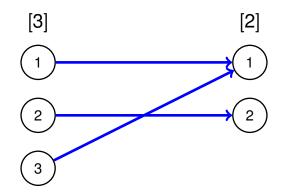
- 1. $D2D_3$ from [3] to [3] $|D2D_3| = 5$
- 2. $D2D_3: [3] \rightarrow [3]$? False: not single valued



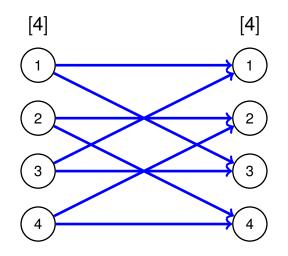
- 3. $D2D_{2,3}$ from [2] to [3] $|D2D_{2,3}| = 3$
- 4. $D2D_{2,3}: [2] \rightarrow [3]$? False: not single valued



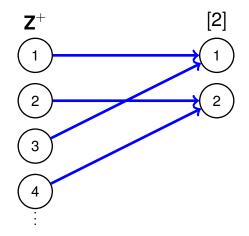
- 5. $D2D_{3,2}$ from [3] to [2] $|D2D_{3,2}| = 3$
- $\textbf{6.} \quad D2D_{3,2}: [3] \rightarrow [2] \textbf{?} \qquad \textbf{True}$



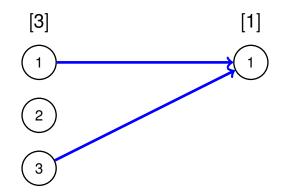
- 7. $D2D_4$ from [4] to [4] $|D2D_4| = 8$
- 8. $D2D_4: [4] \rightarrow [4]$? False: not single valued



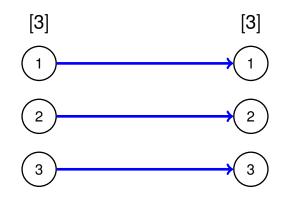
9. $D2D_{\infty,2}$ from Z⁺ to [2] $|D2D_{\infty,2}| = \aleph_0$ (infinite) 10. $D2D_{\infty,2} : Z \to [2]$? True



- 11. $D2D_{3}$, from [3] to [1] $|D2D_{3}| = 2$
- 12. $D2D_{3,1}: [3] \rightarrow [1]$? False: not defined on $2 \in [3]$



- 13. $D3D_3$ from [3] to [3] $|D3D_3| = 3$
- $14. \quad D3D_3: [3] \rightarrow [3] \ ? \qquad \text{True}$



$${\it R}_8=ig\{(a,b)\in ({f R}^+)^2\ ig|\ b^2=aig\}$$

- 15. $R_8 \subseteq \mathbf{R}^+ \times \mathbf{R}^+ |R_8| = |\mathbf{R}|$ (infinite)
- 16. $R_8: \mathbf{R} \to \mathbf{R}$? True: $R_8(a) = \sqrt{a}$

$$extsf{R}_9 = ig\{(extsf{a}, extsf{b}) \in (extsf{R})^2 ig\mid extsf{b}^2 = extsf{a}ig\}$$

- 17. $R_9 \subseteq \mathbf{R} \times \mathbf{R}$ $|R_9| = |\mathbf{R}|$ (infinite)
- 18. $R_9: \mathbf{R} \to \mathbf{R}$? False: $R_9(a)$ is undefined when a < 0

$$R_{10} = \left\{ (a,b) \in (\mathbf{R})^2 \ | \ a^2 = b \right\}$$

- 19. $R_{10} \subseteq \mathbf{R} \times \mathbf{R}$ $|R_{10}| = |\mathbf{R}|$ (infinite)
- 20. $R_{10}: \mathbf{R} \to \mathbf{R}$? True: $R_{10}(a) = a^2$