Epp §1.2 Language of Sets

- 1. A **set** is a collection of objects.
- 2. **Axiom of Extension:** If sets A and B contain exactly the same elements, then A = B.
- 3. Let $A = \{1, 2, 3\}, B = \{3, 1, 2\}, C = \{1, 1, 3, 1, 2, 1, 3\}$
- 4. In **set-roster** notation, order and repetitions don't matter.
- 5. Each of A, B, C contain exactly the same three elements, so A = B = C, they are the same set.
- 6. Sets may have other sets as elements, e.g., $D = \{0\}$, $E = \{1\}$, $F = \{D, E\} = \{\{0\}, \{1\}\}$, $G = \{1, E\} = \{1, \{1\}\}$.

iClicker: Is E = G?

A: yes, they both have the same element

B: no, G has two elements and E has only one element

Important Sets: N. Z. Q. R

$$\begin{array}{lll} \mathbf{N} &=& \{0,1,2,\ldots\} & \text{set of natural n} \\ \mathbf{Z} &=& \left\{n,-n \mid n \in \mathbf{N}\right\} & \text{set of integers} \\ \mathbf{Q} &=& \left\{\frac{p}{q} \mid p,q \in \mathbf{Z}, q \neq 0\right\} & \text{set of rational n} \\ \mathbf{R} &=& \text{set of real num} \end{array}$$

set of natural numbers set of rational numbers set of real numbers

non-negative elements of S

$$N = Z^{nonneg}$$

These will be used throughout CS250, Please Memorize!

Set-Builder Notation

$$S = \left\{ t \in T \mid P(t) \right\}$$

= the set of elements of T that satisfy property P
 $\mathbf{R}^+ = \left\{ r \in \mathbf{R} \mid r > 0 \right\}$
 $\mathbf{n}^{\mathsf{nneg}} = \left\{ z \in \mathbf{Z} \mid z > 0 \right\} = \mathbf{N} = \left\{ 0, 1, 2, \ldots \right\}$

Z^{nonneg} =
$$\{z \in \mathbf{Z} \mid z \ge 0\}$$
 = \mathbf{N} = $\{0, 1, 2, ...\}$
(-2, 1) = $\{r \in \mathbf{R} \mid -2 < r < 1\}$ open interval
[-.5, 4] = $\{r \in \mathbf{R} \mid -.5 \le r \le 4\}$ closed interval
 H = $\{z \in \mathbf{Z} \mid -.5 \le z \le 4\}$

iClicker: How many elements does the set H have? A: 3, B: 4, C: 5

Subsets

- ▶ **Def.** *A* is a **subset** of B ($A \subseteq B$) if every element of *A* is an element of *B*. We also say *A* is **contained** in B ($A \subseteq B$), and *B* **contains** A ($B \supseteq A$).
- ▶ *A* is a **proper subset** of *B* if $A \subseteq B$ and $A \neq B$.
- ▶ Write $A \not\subseteq B$ to mean that A is not a subset of B, i.e., there exists an element $b \in B$ such that $b \notin A$.
- ▶ $Z^+ \subseteq N \subseteq Z^{nonneg} \subseteq Z \subseteq Q \subseteq R$.

iClicker: Which of the above containments are proper?

A: all of them

B: all except the first

C: all except the second

Cartesian Product

- ▶ The **ordered pair** (a, b) consists of a first element, a, and a second element b. Two ordered pairs are equal just if their first elements are equal and their second elements are equal: $(a, b) = (c, d) \Leftrightarrow a = c \text{ and } b = d$.
- ▶ The Cartesian product $A \times B = \{(a, b) \mid a \in A; b \in B\}$.
- ► $A = \{a, b, c\}, B = \{0, 1\}$
- $A \times B = \{(a,0),(a,1),(b,0),(b,1),(c,0),(c,1)\}$
- ► The cardinality of a set, S, (|S|), is the number of elements in the set. |A| = 3, |B| = 2, $|A \times B| = 6$,
- ▶ In general, $|A \times B| = |A| \cdot |B|$.
- ▶ The **empty set**, $\emptyset = \{\}$, is the set with no elements.
- $|\emptyset| = 0$
- ▶ What is |N|?
- ► What is |Q|?
- ▶ What is |R|?

Answers to Quiz R2

True or False wrt the following sets:

$$A = \mathbf{Z}^{\text{nonneg}}$$
 $B = \{n \in \mathbf{Z} \mid -5 \le n \le 5\}$
 $C = \{2, 4, 6, 8, 10, ...\}$
 $E = \{z \in A \mid z \mod 2 = 0, \text{ i.e, } z \text{ is even}\}$

- 1. $B \subseteq A$: False: $-5 \in B A$
- 2. $E \subseteq A$: True: E contains exactly the even elements of A.
- 3. *C* is a proper subset of *E*: True: $C = E \{0\}$
- 4. There exists $x \in E$ s.t. $x \in B$: True: $\{0, 2, 4\} \subseteq B \cap E$
- 5. $E \subseteq C$: False: $0 \in E C$

- 6. $a \in \{a, b, c\}$: True: a is an element of $\{a, b, c\}$.
- 7. $a \subseteq a, b, c$: False: a is not a set.
 - 8. $a \in \{\{a\}, \{b\}, \{c\}\}\}$: False: $\{\{a\}, \{b\}, \{c\}\}\}$ has three elements, all of them sets, so not equal to a.
- 9. $\{\{a\}\}\subseteq \{\{a\},\{b\}\}\}$: True: $\{\{a\}\}\}$ has one element, $\{a\}$,
- which is also an element of $\{\{a\}, \{b\}\}\$. 10. $\{a\} \subseteq \{\{a\}, \{b\}\}\}$: False: $\{a\}$ has one element, a, which
- is not an element of $\{\{a\}, \{b\}\}$. 11. How many elements are in the set $\{a, \{a, b\}, \{b, a\}\}$?:
- note that $\{a, b\} = \{b, a\}.$
- 12. How many elements are in the set $\{a, \{a\}, \{\{a\}\}\}\$?: the listed elements are all distinct.

- 13. What is the first element of (2,0) ?: 2 is the first element of the ordered pair (2,0).
- 14. Is (2,0) = (0,2)?: No: the definition of an ordered pair says that (a, b) = (c, d) exactly if a = c and b = d.
- 15. Is $(1,1) = \{1\}$?: No, ordered pairs of elements are
- different from sets of these elements. The book mentions Kuratowski's encoding of pairs as sets, (a, b) is encoded as $\{a, \{a, b\}\}\$, but that will not concern us in CS250. (Under Kuratowski's encoding, (1,1) would be encoded by
- the set $\{1, \{1, 1\}\} = \{1, \{1\}\}.$ 16. For $A = \{a, b\}$ and $S = \{0, 1\}$, which of the following is **not** an element of $A \times S$? (1, b), (a, 0), (a, 1), (b, 1):
- $A \times S = \{(a,0), (a,1), (b,0), (b,1)\}, \text{ so } (1,b) \notin A \times S.$
- 17. For $A = \{a, b\}$ and $S = \{0, 1\}$, is $A \times S = S \times A$? No, for example $(a, 0) \in A \times S - S \times A$.