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Recall: Fermat’s Little Theorem

Thm: For p prime, a ∈ Z?
p, a p−1 ≡ 1 (mod p)

Proof: fa : Z?
p

1:1→
onto

Z?
p

fa(x) = (a · x) f−1
a (x) = ((a−1( mod p)) · x)

Z ?
p = {1,2, . . . ,p − 1} = {fa(1), fa(2), . . . , fa(p − 1)}

{1,2, . . . ,p − 1} = {a · 1,a · 2, . . . ,a · (p − 1)}∏
i∈Z?

p

i ≡
∏

i∈Z?
p

a · i (mod p)

∏
i∈Z?

p

i ≡ a p−1
∏

i∈Z?
p

i (mod p)

1 ≡ a p−1 (mod p) �
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Euler’s phi function, ϕ(n) = |Z∗n|

n ϕ(n) n ϕ(n) n ϕ(n)

2 1 11 10 20 8

3 2 12 4 21 12

4 2 13 12 22 10

5 4 14 6 23 22

6 2 15 8 24 8

7 6 16 8 25 20

8 4 17 16 26 12

9 6 18 6 27 18

10 4 19 18 28 12

What’s the pattern?

For p prime,

ϕ(p) = p − 1

ϕ(pk+1) = (p − 1)pk

If gcd(a,b) = 1,

ϕ(ab) = ϕ(a)ϕ(b)

Why? CRT, hw5

For primes, p 6= q,

ϕ(pq) = (p − 1)(q − 1)
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Euler’s Thm:

For m > 1, a ∈ Z?
m, aϕ(m) ≡ 1 (mod m).

proof: For a ∈ Z?
m, fa : Z?

m
1:1→

onto
Z?

m, fa(x) = (a · x)%m

Z ?
m = {b1, . . . ,bϕ(m)} = {fa(b1), . . . , fa(bϕ(m))}

{b1 . . . ,bϕ(m)} = {a · b1, . . . ,a · bϕ(m)}∏
b∈Z?

m

b ≡
∏

b∈Z?
m

a · b (mod m)

∏
b∈Z?

m

b ≡ aϕ(m)
∏

b∈Z?
p

b (mod m)

1 ≡ aϕ(m) (mod m) �
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Cryptography

B

E

A

One-Time Pad: a perfectly secure cryptosystem

p ∈ {0,1}n m ∈ {0,1}n = binary strings of length n

E(p, x) = p ⊕ x

D(p, x) = p ⊕ x

D(p,E(p,m)) = p ⊕ (p ⊕m) = m

Encryption and decryption functions are the same:
bitwise exclusive or with random, secret one-time pad, p.
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One-Time Pad, Continued

p 0 1 1 0 0 1 0 1 0 1

m 0 0 0 0 1 1 1 1 0 0
E(p,m) 0 1 1 0 1 0 1 0 0 1

D(p,E(p,m)) 0 0 0 0 1 1 1 1 0 0

E(p,m) = p ⊕m D(p, s) = p ⊕ s

Thm: If p is chosen at random and known only by A and B,

Then E(p,m) provides no information about m

except perhaps its length.

Do not use p more than once!
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Public-Key Cryptography

[Diffie, Hellman, 1976] Using computational complexity,

publish key for sending secret messages to me,
intractable for anyone but me to decode.

RSA [Rivest, Shamir, Adleman, 1976]

For slightly over 3 weeks, each day Rivest and Shamir came
up with a new scheme to do public-key cryptography, . . . , and
by the next morning Adleman had broken it.
The 23rd scheme, Adleman couldn’t break.
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RSA

B chooses p,q n-bit primes, and e, s.t. gcd(e, ϕ(pq)) = 1

B publishes: pq,e; keeps p,q secret.

Using Euclid’s algorithm, B computes d , k , s.t.
ed + kϕ(pq) = 1 [ϕ(pq) = (p − 1)(q − 1)].

[Break message into pieces shorter than 2n bits]

EB(x) ≡ xe ( mod pq)

DB(x) ≡ xd ( mod pq)
DB(EB(m)) ≡ (me)d ( mod pq)

≡ m1−kϕ(pq) ( mod pq)
≡ m · (mϕ(pq))−k ( mod pq)
≡ m ( mod pq) by Euler’s Thm
≡ EB(DB(m)) ( mod pq)
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For sufficiently large n, [n ≥ 1000 bits is currently fine],

It is widely believed: EB(m) divulges no useful information
about m to anyone not knowing p, q, or d .

Message signing:
Let m = “B promises to give A $10, valid until 12/17/16.”

Let m′ = m, r where r is nonce or current date and time.

It is widely believed DB(m′) could be produced only by B.

Thus it can be used as a contract signed by B.

Useful for proving authenticity.

Public Key Cryptography is a theoretical underpinning for
possible computer security even over the web.
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