CS250: Discrete Math for Computer Science

L27: Cryptography and RSA

Thm: For
$$p$$
 prime, $a \in \mathbf{Z}_{p}^{\star}$, $a^{p-1} \equiv 1 \pmod{p}$

Thm: For p prime, $a \in \mathbf{Z}_p^*$, $a^{p-1} \equiv 1 \pmod{p}$ Proof: $f_a : \mathbf{Z}_p^*$ $\frac{1:1}{\text{onto}}$ \mathbf{Z}_p^*

Thm: For
$$p$$
 prime, $a \in \mathbb{Z}_p^{\star}$, $a^{p-1} \equiv 1 \pmod{p}$
Proof: $f_a : \mathbb{Z}_p^{\star} \xrightarrow{1:1}_{\text{onto}} \mathbb{Z}_p^{\star}$
 $f_a(x) = (a \cdot x)$ $f_a^{-1}(x) = ((a^{-1} \pmod{p})) \cdot x)$

Thm: For *p* prime, $a \in \mathbb{Z}_p^*$, $a^{p-1} \equiv 1 \pmod{p}$ Proof: $f_a : \mathbb{Z}_p^* \xrightarrow{1:1}_{onto} \mathbb{Z}_p^*$ $f_a(x) = (a \cdot x)$ $f_a^{-1}(x) = ((a^{-1} \pmod{p})) \cdot x)$ $\mathbb{Z}_p^* = \{1, 2, \dots, p-1\} = \{f_a(1), f_a(2), \dots, f_a(p-1)\}$

Thm: For *p* prime,
$$a \in \mathbb{Z}_{p}^{\star}$$
, $a^{p-1} \equiv 1 \pmod{p}$
Proof: $f_{a} : \mathbb{Z}_{p}^{\star} \xrightarrow{1:1}_{onto} \mathbb{Z}_{p}^{\star}$
 $f_{a}(x) = (a \cdot x)$ $f_{a}^{-1}(x) = ((a^{-1}(\mod{p})) \cdot x)$
 $\mathbb{Z}_{p}^{\star} = \{1, 2, \dots, p-1\} = \{f_{a}(1), f_{a}(2), \dots, f_{a}(p-1)\}$
 $\{1, 2, \dots, p-1\} = \{a \cdot 1, a \cdot 2, \dots, a \cdot (p-1)\}$

Thm: For p prime, $a \in \mathbf{Z}_p^{\star}$, $a^{p-1} \equiv 1 \pmod{p}$ **Proof:** $f_a: \mathbf{Z}_p^{\star} \xrightarrow{1:1}_{\text{orde}} \mathbf{Z}_p^{\star}$ $f_a(x) = (a \cdot x)$ $f_a^{-1}(x) = ((a^{-1} \pmod{p})) \cdot x)$ $Z_{p}^{\star} = \{1, 2, \dots, p-1\} = \{f_{a}(1), f_{a}(2), \dots, f_{a}(p-1)\}$ $\{1, 2, \dots, p-1\} = \{a \cdot 1, a \cdot 2, \dots, a \cdot (p-1)\}$ $\prod i \equiv \prod a \cdot i \pmod{p}$ $i \in \mathbf{Z}_{n}^{\star}$ $i \in \mathbf{Z}_{n}^{\star}$

Thm: For *p* prime, $a \in \mathbf{Z}_{p}^{\star}$, $a^{p-1} \equiv 1 \pmod{p}$ **Proof:** $f_a: \mathbf{Z}_p^{\star} \xrightarrow{1:1}_{\text{orde}} \mathbf{Z}_p^{\star}$ $f_a(x) = (a \cdot x)$ $f_a^{-1}(x) = ((a^{-1} \pmod{p})) \cdot x)$ $Z_n^{\star} = \{1, 2, \dots, p-1\} = \{f_a(1), f_a(2), \dots, f_a(p-1)\}$ $\{1, 2, \dots, p-1\} = \{a \cdot 1, a \cdot 2, \dots, a \cdot (p-1)\}$ $\prod i \equiv \prod a \cdot i \pmod{p}$ $i \in \mathbf{Z}_n^*$ $i \in \mathbf{Z}_n^*$ $\prod i \equiv a^{p-1} \prod i \pmod{p}$ $i \in \mathbf{Z}_{n}^{\star}$ $i \in \mathbf{Z}_{n}^{\star}$

Thm: For *p* prime, $a \in \mathbf{Z}_{p}^{\star}$, $a^{p-1} \equiv 1 \pmod{p}$ **Proof:** $f_a: \mathbf{Z}_p^{\star} \xrightarrow{1:1}_{\text{orde}} \mathbf{Z}_p^{\star}$ $f_a(x) = (a \cdot x)$ $f_a^{-1}(x) = ((a^{-1} \pmod{p})) \cdot x)$ $Z_{p}^{\star} = \{1, 2, \dots, p-1\} = \{f_{a}(1), f_{a}(2), \dots, f_{a}(p-1)\}$ $\{1, 2, \dots, p-1\} = \{a \cdot 1, a \cdot 2, \dots, a \cdot (p-1)\}$ $\prod i \equiv \prod a \cdot i \pmod{p}$ $i \in \mathbf{Z}_n^*$ $i \in \mathbf{Z}_n^*$ $\prod i \equiv a^{p-1} \prod i \pmod{p}$ $i \in \mathbf{Z}_{p}^{\star}$ $i \in \mathbf{Z}_{p}^{\star}$ $1 \equiv a^{p-1} \pmod{p}$

n	$\varphi(\mathbf{n})$	n	$\varphi(\mathbf{n})$	n	$\varphi(\mathbf{n})$
2	1	11	10	20	8
3	2	12	4	21	12
4	2	13	12	22	10
5	4	14	6	23	22
6	2	15	8	24	8
7	6	16	8	25	20
8	4	17	16	26	12
9	6	18	6	27	18
10	4	19	18	28	12

n	$\varphi(\mathbf{n})$	n	$\varphi(\mathbf{n})$	n	$\varphi(\mathbf{n})$
2	1	11	10	20	8
3	2	12	4	21	12
4	2	13	12	22	10
5	4	14	6	23	22
6	2	15	8	24	8
7	6	16	8	25	20
8	4	17	16	26	12
9	6	18	6	27	18
10	4	19	18	28	12

What's the

pattern?

n	$\varphi(\mathbf{n})$	n	$\varphi(\mathbf{n})$	n	$\varphi(\mathbf{n})$
2	1	11	10	20	8
3	2	12	4	21	12
4	2	13	12	22	10
5	4	14	6	23	22
6	2	15	8	24	8
7	6	16	8	25	20
8	4	17	16	26	12
9	6	18	6	27	18
10	4	19	18	28	12

What's the

pattern?

For p prime,

$$\varphi(p) = p-1$$

n	$\varphi(\mathbf{n})$	n	$\varphi(\mathbf{n})$	n	$\varphi(\mathbf{n})$
2	1	11	10	20	8
3	2	12	4	21	12
4	2	13	12	22	10
5	4	14	6	23	22
6	2	15	8	24	8
7	6	16	8	25	20
8	4	17	16	26	12
9	6	18	6	27	18
10	4	19	18	28	12

What's the pattern?

For p prime,

$$arphi(p) = p-1$$

 $arphi(p^{k+1}) = (p-1)p^k$

n	$\varphi(\mathbf{n})$	n	$\varphi(\mathbf{n})$	n	$\varphi(\mathbf{n})$
2	1	11	10	20	8
3	2	12	4	21	12
4	2	13	12	22	10
5	4	14	6	23	22
6	2	15	8	24	8
7	6	16	8	25	20
8	4	17	16	26	12
9	6	18	6	27	18
10	4	19	18	28	12

What's the pattern?

For p prime,

$$arphi(p) = p-1$$

 $arphi(p^{k+1}) = (p-1)p^k$

If
$$gcd(a, b) = 1$$
,
 $\varphi(ab) = \varphi(a)\varphi(b)$

n	$\varphi(\mathbf{n})$	n	$\varphi(\mathbf{n})$	n	$\varphi(\mathbf{n})$
2	1	11	10	20	8
3	2	12	4	21	12
4	2	13	12	22	10
5	4	14	6	23	22
6	2	15	8	24	8
7	6	16	8	25	20
8	4	17	16	26	12
9	6	18	6	27	18
10	4	19	18	28	12

What's the pattern?

For p prime,

$$arphi(oldsymbol{p}) = oldsymbol{p} - 1$$

 $arphi(oldsymbol{p}^{k+1}) = (oldsymbol{p} - 1)oldsymbol{p}^k$

f
$$\gcd(a,b) = 1$$
,
 $\varphi(ab) = \varphi(a)\varphi(b)$
Why?

n	$\varphi(\mathbf{n})$	n	$\varphi(\mathbf{n})$	n	$\varphi(\mathbf{n})$
2	1	11	10	20	8
3	2	12	4	21	12
4	2	13	12	22	10
5	4	14	6	23	22
6	2	15	8	24	8
7	6	16	8	25	20
8	4	17	16	26	12
9	6	18	6	27	18
10	4	19	18	28	12

What's the pattern?

For p prime,

$$arphi(oldsymbol{p}) = oldsymbol{p} - 1$$

 $arphi(oldsymbol{p}^{k+1}) = (oldsymbol{p} - 1)oldsymbol{p}^k$

f
$$\gcd(a,b) = 1$$
,
 $\varphi(ab) = \varphi(a)\varphi(b)$
Why?

n	$\varphi(\mathbf{n})$	n	$\varphi(\mathbf{n})$	n	$\varphi(\mathbf{n})$
2	1	11	10	20	8
3	2	12	4	21	12
4	2	13	12	22	10
5	4	14	6	23	22
6	2	15	8	24	8
7	6	16	8	25	20
8	4	17	16	26	12
9	6	18	6	27	18
10	4	19	18	28	12

What's the pattern?

For p prime,

$$arphi(p) = p-1$$

 $arphi(p^{k+1}) = (p-1)p^k$

If gcd(a, b) = 1, $\varphi(ab) = \varphi(a)\varphi(b)$ Why? CRT, hw5

n	$\varphi(\mathbf{n})$	n	$\varphi(\mathbf{n})$	n	$\varphi(\mathbf{n})$	
2	1	11	10	20	8	
3	2	12	4	21	12	
4	2	13	12	22	10	
5	4	14	6	23	22	
6	2	15	8	24	8	lfg
7	6	16	8	25	20	
8	4	17	16	26	12	
9	6	18	6	27	18	
10	4	19	18	28	12	

What's the pattern? For *p* prime, $\varphi(p) = p-1$ $\varphi(p^{k+1}) = (p-1)p^k$ $\operatorname{pcd}(a,b)=1,$ $\varphi(ab) = \varphi(a)\varphi(b)$ Why? CRT, hw5 For primes, $p \neq q$, $\varphi(pq) = (p-1)(q-1)$

For m > 1, $a \in \mathbf{Z}_m^{\star}$, $a^{\varphi(m)} \equiv 1 \pmod{m}$.

For m > 1, $a \in \mathbf{Z}_m^*$, $a^{\varphi(m)} \equiv 1 \pmod{m}$. **proof:** For $a \in \mathbf{Z}_m^*$, $f_a : \mathbf{Z}_m^* \xrightarrow{1:1}_{\text{ordo}} \mathbf{Z}_m^*$, $f_a(x) = (a \cdot x) \% m$

For m > 1, $a \in \mathbf{Z}_m^*$, $a^{\varphi(m)} \equiv 1 \pmod{m}$. proof: For $a \in \mathbf{Z}_m^*$, $f_a : \mathbf{Z}_m^* \xrightarrow{1:1}_{\text{ordo}} \mathbf{Z}_m^*$, $f_a(x) = (a \cdot x) \% m$ $Z_m^* = \{b_1, \dots, b_{\varphi(m)}\} = \{f_a(b_1), \dots, f_a(b_{\varphi(m)})\}$

For m > 1, $a \in \mathbf{Z}_m^*$, $a^{\varphi(m)} \equiv 1 \pmod{m}$. proof: For $a \in \mathbf{Z}_m^*$, $f_a : \mathbf{Z}_m^* \xrightarrow{1:1}_{\text{onto}} \mathbf{Z}_m^*$, $f_a(x) = (a \cdot x) \% m$ $Z_m^* = \{b_1, \dots, b_{\varphi(m)}\} = \{f_a(b_1), \dots, f_a(b_{\varphi(m)})\}$ $\{b_1, \dots, b_{\varphi(m)}\} = \{a \cdot b_1, \dots, a \cdot b_{\varphi(m)}\}$

For m > 1, $a \in \mathbf{Z}_m^{\star}$, $a^{\varphi(m)} \equiv 1 \pmod{m}$. **proof:** For $a \in \mathbf{Z}_m^{\star}$, $f_a : \mathbf{Z}_m^{\star} \xrightarrow{1:1}_{ordio} \mathbf{Z}_m^{\star}$, $f_a(x) = (a \cdot x) \% m$ $Z_m^{\star} = \{b_1, \dots, b_{\varphi(m)}\} = \{f_a(b_1), \dots, f_a(b_{\varphi(m)})\}$ $\{b_1 \dots, b_{\varphi(m)}\} = \{a \cdot b_1, \dots, a \cdot b_{\varphi(m)}\}$ $b \equiv a \cdot b \pmod{m}$ $b \in \mathbf{Z}_m^{\star}$ $b \in \mathbf{Z}_m^{\star}$

For m > 1, $a \in \mathbf{Z}_m^*$, $a^{\varphi(m)} \equiv 1 \pmod{m}$. **proof:** For $a \in \mathbf{Z}_m^{\star}$, $f_a : \mathbf{Z}_m^{\star} \xrightarrow{1:1}_{onto} \mathbf{Z}_m^{\star}$, $f_a(x) = (a \cdot x) \% m$ $Z_m^{\star} = \{b_1, \dots, b_{\varphi(m)}\} = \{f_a(b_1), \dots, f_a(b_{\varphi(m)})\}$ $\{b_1,\ldots,b_{\omega(m)}\} = \{a \cdot b_1,\ldots,a \cdot b_{\omega(m)}\}$ $b \equiv a \cdot b \pmod{m}$ $b \in \mathbf{Z}_m^{\star}$ $b \in \mathbf{Z}_m^{\star}$ $\prod b \equiv a^{\varphi(m)} \prod b \pmod{m}$ $b \in \mathbf{Z}_m^{\star}$ $b \in \mathbf{Z}_n^{\star}$

For m > 1, $a \in \mathbf{Z}_m^*$, $a^{\varphi(m)} \equiv 1 \pmod{m}$. **proof:** For $a \in \mathbf{Z}_m^{\star}$, $f_a : \mathbf{Z}_m^{\star} \xrightarrow{1:1}_{onto} \mathbf{Z}_m^{\star}$, $f_a(x) = (a \cdot x) \% m$ $Z_m^{\star} = \{b_1, \dots, b_{\varphi(m)}\} = \{f_a(b_1), \dots, f_a(b_{\varphi(m)})\}$ $\{b_1,\ldots,b_{\omega(m)}\} = \{a \cdot b_1,\ldots,a \cdot b_{\omega(m)}\}$ $b \equiv a \cdot b \pmod{m}$ $b \in \mathbf{Z}_m^{\star}$ $b \in \mathbf{Z}_m^{\star}$ $\prod b \equiv a^{\varphi(m)} \prod b \pmod{m}$ $b \in \mathbf{Z}_m^{\star}$ $b \in \mathbf{Z}_n^{\star}$ $1 \equiv a^{\varphi(m)} \pmod{m} \square$

Encryption and **decryption** functions are the same: bitwise **exclusive or** with **random**, **secret** one-time pad, *p*.

р	0	1	1	0	0	1	0	1	0	1

 $E(p,m) = p \oplus m$ $D(p,s) = p \oplus s$

One-Time Pad, Continued

р	0	1	1	0	0	1	0	1	0	1
т	0	0	0	0	1	1	1	1	0	0

 $E(p,m) = p \oplus m$ $D(p,s) = p \oplus s$

One-Time Pad, Continued

р	0	1	1	0	0	1	0	1	0	1
т	0	0	0	0	1	1	1	1	0	0
<i>E</i> (<i>p</i> , <i>m</i>)	0	1	1	0	1	0	1	0	0	1

 $E(p,m) = p \oplus m$ $D(p,s) = p \oplus s$

One-Time Pad, Continued

 $E(\rho,m) = \rho \oplus m$ $D(\rho,s) = \rho \oplus s$

$$E(p,m) = p \oplus m$$
 $D(p,s) = p \oplus s$

Thm: If *p* is chosen at random and known only by *A* and *B*,

$$E(p,m) = p \oplus m$$
 $D(p,s) = p \oplus s$

Thm: If *p* is **chosen at random** and **known only** by *A* and *B*, Then E(p, m) provides **no information** about *m*

$$E(p,m) = p \oplus m$$
 $D(p,s) = p \oplus s$

Thm: If p is chosen at random and known only by A and B, Then E(p, m) provides no information about mexcept perhaps its length.

$$E(p,m) = p \oplus m$$
 $D(p,s) = p \oplus s$

Thm: If p is chosen at random and known only by A and B, Then E(p, m) provides no information about mexcept perhaps its length.

Do not use *p* more than once!

Public-Key Cryptography

[Diffie, Hellman, 1976] Using computational complexity,

[Diffie, Hellman, 1976] Using computational complexity, publish key for sending secret messages to me,

RSA [Rivest, Shamir, Adleman, 1976]

RSA [Rivest, Shamir, Adleman, 1976]

For slightly over 3 weeks, each day Rivest and Shamir came up with a new scheme to do public-key cryptography, ..., and by the next morning Adleman had broken it.

RSA [Rivest, Shamir, Adleman, 1976]

For slightly over 3 weeks, each day Rivest and Shamir came up with a new scheme to do public-key cryptography, ..., and by the next morning Adleman had broken it. The 23rd scheme, Adleman couldn't break.

RSA [Rivest, Shamir, Adleman, 1976]

For slightly over 3 weeks, each day Rivest and Shamir came up with a new scheme to do public-key cryptography, ..., and by the next morning Adleman had broken it. The 23rd scheme, Adleman couldn't break.

This is the **RSA Public-Key Algorithm** that is used today in the **SSL algorithm**

RSA [Rivest, Shamir, Adleman, 1976]

For slightly over 3 weeks, each day Rivest and Shamir came up with a new scheme to do public-key cryptography, ..., and by the next morning Adleman had broken it. The 23rd scheme, Adleman couldn't break.

This is the **RSA Public-Key Algorithm** that is used today in the **SSL algorithm**

Lets your browser generate key to send order to Amazon

RSA [Rivest, Shamir, Adleman, 1976]

For slightly over 3 weeks, each day Rivest and Shamir came up with a new scheme to do public-key cryptography, ..., and by the next morning Adleman had broken it. The 23rd scheme, Adleman couldn't break.

This is the **RSA Public-Key Algorithm** that is used today in the **SSL algorithm**

Lets your browser generate key to send order to Amazon

without, **we believe**, divulging any **useful** information about your credit card number, or what you bought.

B chooses p, q *n*-bit primes, and *e*, s.t. $gcd(e, \varphi(pq)) = 1$

Using Euclid's algorithm, *B* computes *d*, *k*, s.t. $ed + k\varphi(pq) = 1$ $[\varphi(pq) = (p-1)(q-1)].$

Using Euclid's algorithm, *B* computes *d*, *k*, s.t. $ed + k\varphi(pq) = 1$ $[\varphi(pq) = (p-1)(q-1)].$

Using Euclid's algorithm, *B* computes *d*, *k*, s.t. $ed + k\varphi(pq) = 1$ [$\varphi(pq) = (p-1)(q-1)$].

$$E_B(x) \equiv x^{\mathbf{e}} \pmod{pq}$$

Using Euclid's algorithm, *B* computes *d*, *k*, s.t. $ed + k\varphi(pq) = 1$ $[\varphi(pq) = (p-1)(q-1)].$

$E_B(x)$	≡	x ^e	(mod <i>pq</i>)
$D_B(x)$	=	xd	(mod <i>pq</i>)

Using Euclid's algorithm, *B* computes *d*, *k*, s.t. $ed + k\varphi(pq) = 1$ $[\varphi(pq) = (p-1)(q-1)].$

$E_B(x)$	\equiv	x ^e	(mod <i>pq</i>)
$D_B(x)$	≡	х ^d	(mod <i>pq</i>)
$D_B(E_B(m))$	\equiv	$(m^e)^d$	(mod <i>pq</i>)

Using Euclid's algorithm, *B* computes *d*, *k*, s.t. $ed + k\varphi(pq) = 1$ $[\varphi(pq) = (p-1)(q-1)].$

$E_B(x)$	\equiv	xe	(mod <i>pq</i>)
$D_B(x)$	\equiv	xd	(mod <i>pq</i>)
$D_B(E_B(m))$	≡	$(m^e)^d$	(mod <i>pq</i>)
	\equiv	$m^{1-k\varphi(pq)}$	(mod <i>pq</i>)

Using Euclid's algorithm, *B* computes *d*, *k*, s.t. $ed + k\varphi(pq) = 1$ $[\varphi(pq) = (p-1)(q-1)].$

$E_B(x)$	\equiv	x ^e	(mod <i>pq</i>)
$D_B(x)$	≡	х ^d	(mod <i>pq</i>)
$D_B(E_B(m))$	≡	$(m^e)^d$	(mod <i>pq</i>)
	≡	$m^{1-k\varphi(pq)}$	(mod <i>pq</i>)
	≡	$m \cdot (m^{arphi(pq)})^{-k}$	(mod <i>pq</i>)

Using Euclid's algorithm, *B* computes *d*, *k*, s.t. $ed + k\varphi(pq) = 1$ $[\varphi(pq) = (p-1)(q-1)].$

[Break message into pieces shorter than 2n bits]

 $E_B(x) \equiv$ xe $(\mod pq)$ $D_B(x) \equiv x^{\mathsf{d}}$ $(\mod pq)$ $D_B(E_B(m)) \equiv (m^e)^d$ $(\mod pq)$ $\equiv m^{1-k\varphi(pq)}$ $(\mod pq)$ $m \cdot (m^{\varphi(pq)})^{-k}$ \equiv $(\mod pq)$ $(\mod pq)$ by Euler's Thm \equiv m

Using Euclid's algorithm, *B* computes *d*, *k*, s.t. $ed + k\varphi(pq) = 1$ $[\varphi(pq) = (p-1)(q-1)].$

\equiv	x ^e	(mod <i>pq</i>)	
≡	x ^d	(mod <i>pq</i>)	
≡	$(m^e)^d$	(mod <i>pq</i>)	
≡	$m^{1-k\varphi(pq)}$	(mod <i>pq</i>)	
≡	$m \cdot (m^{\varphi(pq)})^{-k}$	(mod <i>pq</i>)	
≡	т	(mod <i>pq</i>)	by Euler's Thm
≡	$E_B(D_B(m))$	(mod <i>pq</i>)	
		$ = x^{e} $ $ = x^{d} $ $ = (m^{e})^{d} $ $ = m^{1-k\varphi(pq)} $ $ = m \cdot (m^{\varphi(pq)})^{-k} $ $ = m $ $ = E_{B}(D_{B}(m)) $	$ = x^{e} (\mod pq) $ $ = x^{d} (\mod pq) $ $ = (m^{e})^{d} (\mod pq) $ $ = m^{1-k\varphi(pq)} (\mod pq) $ $ = m \cdot (m^{\varphi(pq)})^{-k} (\mod pq) $ $ = m (\mod pq) $ $ = E_{B}(D_{B}(m)) (\mod pq) $

For sufficiently large n, $[n \ge 1000$ bits is currently fine],

Message signing:

Let m = "B promises to give A \$10, valid until 12/17/16."

Let m' = m, r where *r* is nonce or current date and time.

Message signing:

Let m = "B promises to give A \$10, valid until 12/17/16."

Let m' = m, r where *r* is nonce or current date and time.

It is widely believed $D_B(m')$ could be produced only by *B*.

Message signing:

Let m = "B promises to give A \$10, valid until 12/17/16."

Let m' = m, r where *r* is nonce or current date and time.

It is widely believed $D_B(m')$ could be produced only by *B*.

Thus it can be used as a **contract** signed by *B*.

Message signing:

Let m = "B promises to give A \$10, valid until 12/17/16."

Let m' = m, r where *r* is nonce or current date and time.

It is widely believed $D_B(m')$ could be produced only by *B*.

Thus it can be used as a **contract** signed by *B*.

Useful for proving authenticity.

Message signing:

Let m = "B promises to give A \$10, valid until 12/17/16."

Let m' = m, r where *r* is nonce or current date and time.

It is widely believed $D_B(m')$ could be produced only by *B*.

Thus it can be used as a **contract** signed by *B*.

Useful for proving authenticity.

Public Key Cryptography is a **theoretical underpinning** for possible computer security even over the web.