CS250: Discrete Math for Computer Science

L26: Equivalence Relations

Reflexive
$$\equiv \forall x E(x, x)$$

Reflexive
$$\equiv \forall x \, E(x, x)$$

Symmetric $\equiv \forall xy \, (E(x, y) \rightarrow E(y, x))$


```
Reflexive \equiv \forall x \, E(x, x)

Symmetric \equiv \forall xy \, (E(x, y) \rightarrow E(y, x))

Transitive \equiv \forall xyz \, (E(x, y) \land E(y, z) \rightarrow E(x, z))
```


Reflexive
$$\equiv \forall x \, E(x, x)$$

Symmetric $\equiv \forall xy \, (E(x, y) \rightarrow E(y, x))$
Transitive $\equiv \forall xyz \, (E(x, y) \land E(y, z) \rightarrow E(x, z))$
Reflexive $\equiv \forall xy \, (E(x, y) \land E(y, z) \rightarrow E(x, z))$
Transitive $\equiv (3]$
Succ/pred $\equiv (3)$

Def. An **equivalence relation** is a relation that is **reflexive**, **symmetric** and **transitive**.

```
Reflexive \equiv \forall x \, E(x, x)

Symmetric \equiv \forall xy \, (E(x, y) \rightarrow E(y, x))

Transitive \equiv \forall xyz \, (E(x, y) \land E(y, z) \rightarrow E(x, z))
```

```
Reflexive \equiv \forall x \, E(x, x)

Symmetric \equiv \forall xy \, (E(x, y) \rightarrow E(y, x))

Transitive \equiv \forall xyz \, (E(x, y) \land E(y, z) \rightarrow E(x, z))
```



```
Reflexive \equiv \forall x \, E(x, x)

Symmetric \equiv \forall xy \, (E(x, y) \rightarrow E(y, x))

Transitive \equiv \forall xyz \, (E(x, y) \land E(y, z) \rightarrow E(x, z))

\equiv

1
2
3
R
1
2
3
```



```
Reflexive \equiv \forall x \, E(x, x)

Symmetric \equiv \forall xy \, (E(x, y) \rightarrow E(y, x))

Transitive \equiv \forall xyz \, (E(x, y) \land E(y, z) \rightarrow E(x, z))
```


Def. A partition of a non-empty set V is collection of pairwise disjoint, non-empty subsets, $(P_1, P_2, ...)$ of V whose union is V:

$$\emptyset \neq P_i \subseteq V$$
 $P_i \cap P_j = \emptyset, i \neq j$ $\bigcup P_i = V$

Def. A partition of a non-empty set V is collection of pairwise disjoint, non-empty subsets, $(P_1, P_2, ...)$ of V whose union is V:

$$\emptyset \neq P_i \subseteq V$$
 $P_i \cap P_j = \emptyset, i \neq j$ $\bigcup P_i = V$

Def. A partition of a non-empty set V is collection of pairwise disjoint, non-empty subsets, $(P_1, P_2, ...)$ of V whose union is V:

$$\emptyset \neq P_i \subseteq V$$
 $P_i \cap P_j = \emptyset, i \neq j$ $\bigcup P_i = V$

$$(\{1\}, \{2\}, \{3\})$$
1 2 3

Def. A partition of a non-empty set V is collection of pairwise disjoint, non-empty subsets, $(P_1, P_2, ...)$ of V whose union is V:

$$\emptyset \neq P_i \subseteq V$$
 $P_i \cap P_j = \emptyset, i \neq j$ $\bigcup P_i = V$

Def. A **partition** of a non-empty set V is collection of pairwise disjoint, non-empty subsets, $(P_1, P_2, ...)$ of V whose union is V:

$$\emptyset \neq P_i \subseteq V$$
 $P_i \cap P_j = \emptyset, i \neq j$ $\bigcup P_i = V$

Partitions relate to Equivalence Relations, How?

Def. A partition of a non-empty set V is collection of pairwise disjoint, non-empty subsets, $(P_1, P_2, ...)$ of V whose union is V:

$$\emptyset \neq P_i \subseteq V$$
 $P_i \cap P_j = \emptyset, i \neq j$ $\bigcup P_i = V$

Proof: Let $P = (P_i), i \in I$ be a partition on V.

Proof: Let $P = (P_i), i \in I$ be a partition on V.

Let $p: V \to I$ be the function $p(v) \stackrel{\text{def}}{=}$ the unique $i \in I$, s.t. $v \in P_i$.

Proof: Let $P = (P_i), i \in I$ be a partition on V.

Let $p: V \to I$ be the function $p(v) \stackrel{\text{def}}{=}$ the unique $i \in I$, s.t. $v \in P_i$. Let $x \equiv_P y$ iff p(x) = p(y).

Proof: Let $P = (P_i), i \in I$ be a partition on V.

Let $p: V \to I$ be the function $p(v) \stackrel{\text{def}}{=}$ the unique $i \in I$, s.t. $v \in P_i$.

Let $x \equiv_P y$ iff p(x) = p(y).

Observe that \equiv_P is an equivalence relation on V.

Proof: Let $P = (P_i), i \in I$ be a partition on V.

Let $p: V \to I$ be the function $p(v) \stackrel{\text{def}}{=}$ the unique $i \in I$, s.t. $v \in P_i$.

Let $x \equiv_P y$ iff p(x) = p(y).

Observe that \equiv_P is an equivalence relation on V.

Conversely, let \equiv be an Equivalence Relation on V.

Proof: Let $P = (P_i), i \in I$ be a partition on V.

Let
$$p: V \to I$$
 be the function $p(v) \stackrel{\text{def}}{=}$ the unique $i \in I$, s.t. $v \in P_i$.

Let
$$x \equiv_P y$$
 iff $p(x) = p(y)$.

Observe that \equiv_P is an equivalence relation on V.

Conversely, let \equiv be an Equivalence Relation on V.

Def. For any $v \in V$, let the **equivalence class** of v be

$$[v]_{\equiv} \stackrel{\mathrm{def}}{=} \{ w \in V \mid w \equiv v \}$$

Proof: Let $P = (P_i), i \in I$ be a partition on V.

Let $p: V \to I$ be the function $p(v) \stackrel{\text{def}}{=}$ the unique $i \in I$, s.t. $v \in P_i$.

Let $x \equiv_P y$ iff p(x) = p(y).

Observe that \equiv_P is an equivalence relation on V.

Conversely, let \equiv be an Equivalence Relation on V.

Def. For any $v \in V$, let the **equivalence class** of v be

$$[v]_{\equiv} \stackrel{\text{def}}{=} \{w \in V \mid w \equiv v\}$$

Observe that the set of distinct equivalence classes, $([v]_{\equiv}), v \in V$, is a partition.

Thm. For all m > 1, $x \equiv y \pmod{m}$ is an Equivalence Relation.

Thm. For all m > 1, $x \equiv y \pmod{m}$ is an Equivalence Relation.

Proof: R27 Reading Quiz

Thm. For all m > 1, $x \equiv y \pmod{m}$ is an Equivalence Relation.

Proof: R27 Reading Quiz

Thm. For all m > 1 and for all $a, a', b, b', n \in \mathbf{Z}$ if $a \equiv a' \pmod{m}$ and $b \equiv b' \pmod{m}$ then

Thm. For all m > 1, $x \equiv y \pmod{m}$ is an Equivalence Relation.

Proof: R27 Reading Quiz

Thm. For all m > 1 and for all $a, a', b, b', n \in \mathbf{Z}$ if $a \equiv a' \pmod{m}$ and $b \equiv b' \pmod{m}$ then

1. $a+b\equiv a'+b'\pmod{m}$

Thm. For all m > 1, $x \equiv y \pmod{m}$ is an Equivalence Relation.

Proof: R27 Reading Quiz

Thm. For all m > 1 and for all $a, a', b, b', n \in \mathbf{Z}$ if $a \equiv a' \pmod{m}$ and $b \equiv b' \pmod{m}$ then

- 1. $a+b \equiv a'+b' \pmod{m}$
- 2. $a \cdot b \equiv a' \cdot b' \pmod{m}$

Thm. For all m > 1, $x \equiv y \pmod{m}$ is an Equivalence Relation.

Proof: R27 Reading Quiz

Thm. For all m > 1 and for all $a, a', b, b', n \in \mathbf{Z}$ if $a \equiv a' \pmod{m}$ and $b \equiv b' \pmod{m}$ then

- 1. $a+b \equiv a'+b' \pmod{m}$
- 2. $a \cdot b \equiv a' \cdot b' \pmod{m}$
- 3. $a^n \equiv (a')^n \pmod{m}$

.Z/6Z	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

.Z/6Z	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

Def. \mathbf{Z}_m^* is the multiplicative group mod m.

.Z/6Z	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

Def. \mathbf{Z}_m^* is the multiplicative group mod m.

$$|\mathbf{Z}_{m}^{*}| = \{a \in \mathbf{Z}/m\mathbf{Z} \mid \gcd(a, m) = 1\}$$
 $x \cdot Z_{m}^{*} y = (x \cdot y) \% m$

.Z/6Z	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

Def. \mathbf{Z}_m^* is the multiplicative group mod m.

$$|\mathbf{Z}_{m}^{*}| = \{a \in \mathbf{Z}/m\mathbf{Z} \mid \gcd(a, m) = 1\}$$
 $x \cdot Z_{m}^{*} y = (x \cdot y) \% m$

$$|{\bm Z}_6^*| = \{1,5\}$$

.Z ₆ *	1	5
1	1	5
5	5	1

\mathbf{Z}_{m}^{*} is the multiplicative group mod m

$$|\bm{Z}_5^{\star}| \ = \ \{1,2,3,4\}$$

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
2 2 4 1 3 3 3 1 4 2	Z_5^*	1	2	3	4
3 3 1 4 2	1	1	2	3	4
- -	2	2	4	1	3
4 4 9 9 4	3	3	1	4	2
4 4 3 2 1	4	4	3	2	1

$$\Sigma_{group} \stackrel{\text{def}}{=} (; 1, \cdot [\inf\! x]^2, ^{-1} [post \! f \! i x]^1)$$

$$\Sigma_{group} \stackrel{\text{def}}{=} (; 1, \cdot [\text{infix}]^2, ^{-1} [\text{postfix}]^1)$$

$$G_1 = \forall x \ y \ z \quad x \cdot (y \cdot z) = (x \cdot y) \cdot z$$
 associative

$$\Sigma_{group} \stackrel{\text{def}}{=} (; 1, \cdot [\text{infix}]^2, ^{-1} [\text{postfix}]^1)$$

$$G_1 = \forall x \ y \ z \quad x \cdot (y \cdot z) = (x \cdot y) \cdot z$$
 associative
 $G_2 = \forall x \quad x \cdot 1 = x$ identity

$$\Sigma_{group} \stackrel{\text{def}}{=} (; 1, \cdot [\text{infix}]^2, ^{-1} [\text{postfix}]^1)$$

$$G_1 = \forall x \ y \ z \quad x \cdot (y \cdot z) = (x \cdot y) \cdot z$$
 associative $G_2 = \forall x \quad x \cdot 1 = x$ identity $G_3 = \forall x \quad x \cdot x^{-1} = 1$ inverses

$$\Sigma_{group} \stackrel{\text{def}}{=} (; 1, \cdot [\text{infix}]^2, ^{-1} [\text{postfix}]^1)$$

$$G_1 = \forall x \ y \ z \quad x \cdot (y \cdot z) = (x \cdot y) \cdot z$$
 associative
 $G_2 = \forall x \quad x \cdot 1 = x$ identity
 $G_3 = \forall x \quad x \cdot x^{-1} = 1$ inverses

Def. A group is a $G \in \text{World}[\Sigma_{\text{group}}]$ s.t. $G \models G_1 \wedge G_2 \wedge G_3$.

$$\Sigma_{group} \stackrel{\text{def}}{=} (; 1, \cdot [\text{infix}]^2, ^{-1} [\text{postfix}]^1)$$

$$G_1 = \forall x \ y \ z \quad x \cdot (y \cdot z) = (x \cdot y) \cdot z$$
 associative
 $G_2 = \forall x \quad x \cdot 1 = x$ identity
 $G_3 = \forall x \quad x \cdot x^{-1} = 1$ inverses

Def. A group is a $G \in \text{World}[\Sigma_{\text{group}}]$ s.t. $G \models G_1 \wedge G_2 \wedge G_3$. **Prop.** For all m > 1, Z_m^* is a group.

Euler's phi function, φ

Def. For m > 1,

$$\varphi(m) \stackrel{\text{def}}{=} \|\mathbf{Z}_m^*\| = \left| \left\{ a \in \mathbf{Z}/m\mathbf{Z} \mid \gcd(a, m) = 1 \right\} \right|$$

m	$\varphi(m)$	$ \mathbf{Z}_m^* $
2	1	{1}
3	2	{1,2}
4	2	{1,3}
5	4	{1,2,3,4}
6	2	{1,5}
7	6	{1,2,3,4,5,6}
8	4	{1,3,5,7}
9	6	{1,2,4,5,7,8}
10	4	{1,3,7,9}
11	10	{1,2,3,4,5,6,7,8,9,10}
12	4	{1,5,7,11}

Thm: For p prime, $a \in \mathbf{Z}_p^*$, $a^{p-1} \equiv 1 \pmod{p}$

$$f_a: \mathbf{Z}_p^{\star} \xrightarrow{1:1 \text{ ortho}} \mathbf{Z}_p^{\star}; \quad f_a(x) = (a \cdot x) \quad f_a^{-1}(x) = ((a^{-1} \pmod{p})) \cdot x)$$

Thm: For *p* prime, $a \in \mathbf{Z}_p^*$, $a^{p-1} \equiv 1 \pmod{p}$

$$f_a: \mathbf{Z}_p^* \xrightarrow[\text{onto}]{1:1} \mathbf{Z}_p^*; \quad f_a(x) = (a \cdot x) \quad f_a^{-1}(x) = ((a^{-1} \pmod{p})) \cdot x)$$

$$Z_p^{\star} = \{1, 2, \dots, p-1\} = \{f_a(1), f_a(2), \dots, f_a(p-1)\}$$

Thm: For p prime, $a \in \mathbf{Z}_p^*$, $a^{p-1} \equiv 1 \pmod{p}$

$$f_a: \mathbf{Z}_{p}^{\star} \xrightarrow{\text{i:1}} \mathbf{Z}_{p}^{\star}; \quad f_a(x) = (a \cdot x) \quad f_a^{-1}(x) = ((a^{-1} \pmod{p}) \cdot x)$$

$$Z_{p}^{\star} = \{1, 2, \dots, p-1\} = \{f_a(1), f_a(2), \dots, f_a(p-1)\}$$

$$\{1, 2, \dots, p-1\} = \{a \cdot 1, a \cdot 2, \dots, a \cdot (p-1)\}$$

Thm: For p prime, $a \in \mathbf{Z}_p^*$, $a^{p-1} \equiv 1 \pmod{p}$

$$f_a: \mathbf{Z}_p^{\star} \xrightarrow{\text{i.i.1}} \mathbf{Z}_p^{\star}; \quad f_a(x) = (a \cdot x) \quad f_a^{-1}(x) = ((a^{-1} \pmod{p}) \cdot x)$$

$$Z_p^{\star} = \{1, 2, \dots, p-1\} = \{f_a(1), f_a(2), \dots, f_a(p-1)\}$$

$$\{1, 2, \dots, p-1\} = \{a \cdot 1, a \cdot 2, \dots, a \cdot (p-1)\}$$

$$\prod_{i \in \mathbf{Z}_p^*} i \equiv \prod_{i \in \mathbf{Z}_p^*} a \cdot i \pmod{p}$$

Thm: For p prime, $a \in \mathbf{Z}_p^*$, $a^{p-1} \equiv 1 \pmod{p}$

Proof:

$$f_a: \mathbf{Z}_p^{\star} \xrightarrow{\text{1:1}} \mathbf{Z}_p^{\star}; \quad f_a(x) = (a \cdot x) \quad f_a^{-1}(x) = ((a^{-1} \pmod{p}) \cdot x)$$

 $\mathbf{Z}_p^{\star} = \{1, 2, \dots, p-1\} = \{f_a(1), f_a(2), \dots, f_a(p-1)\}$
 $\{1, 2, \dots, p-1\} = \{a \cdot 1, a \cdot 2, \dots, a \cdot (p-1)\}$
 $\prod_{i \in \mathbf{Z}_p^{\star}} i \equiv \prod_{i \in \mathbf{Z}_p^{\star}} a \cdot i \pmod{p}$

$$\prod_{i \in \mathbf{Z}_p^{\star}} i \equiv a^{p-1} \prod_{i \in \mathbf{Z}_p^{\star}} i \pmod{p}$$

Thm: For p prime, $a \in \mathbf{Z}_p^*$, $a^{p-1} \equiv 1 \pmod{p}$

$$f_a: \mathbf{Z}_p^{\star} \xrightarrow{\text{1:1}} \mathbf{Z}_p^{\star}; \quad f_a(x) = (a \cdot x) \quad f_a^{-1}(x) = ((a^{-1} \pmod{p}) \cdot x)$$

$$\mathbf{Z}_p^{\star} = \{1, 2, \dots, p-1\} \quad = \quad \{f_a(1), f_a(2), \dots, f_a(p-1)\}$$

$$\{1, 2, \dots, p-1\} \quad = \quad \{a \cdot 1, a \cdot 2, \dots, a \cdot (p-1)\}$$

$$\prod_{i \in \mathbf{Z}_p^{\star}} i \equiv \prod_{i \in \mathbf{Z}_p^{\star}} a \cdot i \pmod{p}$$

$$\prod_{i \in \mathbf{Z}_p^{\star}} i \equiv a^{p-1} \prod_{i \in \mathbf{Z}_p^{\star}} i \pmod{p}$$

$$1 \equiv a^{p-1} \pmod{p}$$