CS250: Discrete Math for Computer Science

L26: Equivalence Relations
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Def. An equivalence relation is a relation that is reflexive,

and transitive.
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Equivalence Relations on 3-Element Sets

Reflexive = VxE(x,x)
= Vxy (E(x,y) = E(y,X))
Transitive = Vxyz(E(x,y)NE(y,z) — E(x,2))
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Partitions

Def. A partition of a non-empty set V is collection of pairwise
disjoint, non-empty subsets, (Py, P»,...) of V whose unionis V:
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Partitions

Def. A partition of a non-empty set V is collection of pairwise
disjoint, non-empty subsets, (Py, P»,...) of V whose unionis V:

D#PCV PiNF=0,i#] Up =
Prop. There are exactly five partitions of V = {1,2,3}:
({1}.{2},{3}) ({1,2,3})
({1,2},{3})

({1},{2,3}) ({1.3},{2})



Partitions relate to Equivalence Relations, How?

Def. A partition of a non-empty set V is collection of pairwise
disjoint, non-empty subsets, (Py, P»,...) of V whose unionis V:

D#PCV PinF=0,i#] Up =
Prop. There are exactly five partitions of V = {1,2,3}:
({1}.{2},{3}) ({1,2,3})
({1,2},{3})

({13.{2,3}) ({1.3}.{2})



Thm. Let V be any nonempty set. Then there is a 1:1
correspondence, fy, from Partitions on V to Equivalence
Relations on V.
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Thm. Let V be any nonempty set. Then there is a 1:1
correspondence, fy, from Partitions on V to Equivalence
Relations on V.

Proof: Let P = (P;),i € | be a partition on V.
Let p: V — I be the function p(v) & the unique i € I, st.v € P;.
Let x =p y iff p(x) = p(y).

Observe that =p is an equivalence relation on V.

Conversely, let = be an Equivalence Relation on V.
Def. For any v € V, let the equivalence class of v be
Ve & {weVv|w=v}

Observe that the set of distinct equivalence classes,
([v]z),v € V, is a partition. O



Congruence mod m Equivalence Relations on Z

Thm. Forallm > 1, x = y (mod m) is an Equivalence Relation.



Congruence mod m Equivalence Relations on Z

Thm. Forallm > 1, x = y (mod m) is an Equivalence Relation.

Proof: R27 Reading Quiz O



Congruence mod m Equivalence Relations on Z

Thm. Forallm > 1, x = y (mod m) is an Equivalence Relation.

Proof: R27 Reading Quiz O

Thm. Forallm > 1 andforall a,&,b,b',n e Zif a= & (mod m)
and b = b’ (mod m) then



Congruence mod m Equivalence Relations on Z

Thm. Forallm > 1, x = y (mod m) is an Equivalence Relation.

Proof: R27 Reading Quiz O

Thm. Forallm > 1 andforall a,&,b,b',n e Zif a= & (mod m)
and b = b’ (mod m) then

1. a+b=a + b (modm)



Congruence mod m Equivalence Relations on Z

Thm. Forallm > 1, x = y (mod m) is an Equivalence Relation.

Proof: R27 Reading Quiz O

Thm. Forallm > 1 andforall a,&,b,b',n e Zif a= & (mod m)
and b = b’ (mod m) then

1. a+b=a + b (modm)
2. a-b=4d b (modm)



Congruence mod m Equivalence Relations on Z

Thm. Forallm > 1, x = y (mod m) is an Equivalence Relation.

Proof: R27 Reading Quiz O

Thm. Forallm > 1 andforall a,&,b,b',n e Zif a= & (mod m)
and b = b’ (mod m) then

1. a+b=a + b (modm)

2. a-b=4d b (modm)

3. a"=(d)"(modm)
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Recall L17:  a ' mod m exists iff gcd(a, m) = 1

eezjol1]2[3[4[5]
0 0o|0o(0|0|0O]|O
1 0/1]2|3|4|5
2 0|2|4|0|2 |4
3 0/3(0|3|0]|3
4 0|4(2|0(4]|2
5 0|5|/4|3|2]|1
Def. Z;, is the multiplicative group mod m.
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Z_ is the multiplicative group mod m

1Z5] = {1,2,3,4}

W= &I
N A= W||W
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def

Ygoup = (; '|,-[inﬁ)(]2,_1 [pOStﬁx]1)
G = Vxyz x-(y-z)=(xy)z associative
Gy = Vx x-1=x identity
Gy = vx x-x'=1 inverses

Def. Agroupisa G < World[~group]s.t. G = Gy A Ga A Gs.
Prop. Forallm>1, Z; is agroup.



Euler’s phi function, ¢

Def. Form>1,

o(m) € |Z5] = |[{ac2/mZ | ged(a,m) =1}

ol Dol o No| o A w3

| e(m) | 1Znl |
{1}
1.2}
{1,3}
{1,2,3,4}

{1,5}
{1,2,3,4,5,6}
{1,3,5,7}
{1,2,4,5,7,8}
{1,3,7,9}
{1,2,3,4,5,6,7,8,9,10}
{1,5,7,11}
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Fermat’s Little Theorem

Thm: For p prime, a € Z},, &' = 1 (mod p)

Proof:
faiZp 1 Zy fa(x)=(a-x) () =((a"(modp))x)

onto



Fermat’s Little Theorem

Thm: For p prime, a € Z},, &' = 1 (mod p)

Proof:
fa:Zy B Zy fa(x)=(a-x) f'(x)=((@"(modp))- x)

nto

Z; = {1,2,...,p=1} = {f(1),fa(2),...,fa(p— 1)}



Fermat’s Little Theorem

Thm: For p prime, a € Z},, &' = 1 (mod p)

Proof:
faiZp 1 Zy fa(x)=(a-x) () =((a"(modp))x)

onto

Z; = {1,2,...,p=1} = {f(1),fa(2),...,fa(p— 1)}

{1,2,...,p—1} {a-1,a-2,...,a-(p—1)}



Fermat’s Little Theorem

Thm: For p prime, a € Z},, &' = 1 (mod p)

Proof:

onto

fa:Z;‘, L Z,*);
~{1,2,...

(1,2,...

fa(x) = (a- x)

7p_1}

ap_1}

I

. *
icZ,

a'(mod p)) - x)

fa(lp—1)}

fa () = ((
{fa(1). fa(2), . ..,

{a-1,a-2,...,a

[Tai

ieZ;

(p—1)}

(mod p)
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Fermat’s Little Theorem

Thm: For p prime, a € Z},, &' = 1 (mod p)

Proof:
faiZp 1 Zy fa(x)=(a-x) () =((a"(modp))x)

onto

={1,2,...,p—1} = {fz(1),fa(2),... . fa(p—1)}

{1,2,...,p—1} = {a-1,a-2,...,a-(p—1)}
I[i = [[ai (modp)
ieZ; ieZ;
[Ii = &[]/ (modp)
icZ; ieZ;
1 = &' (modp) O



