CS250: Discrete Math for Computer Science

L25: Binary Relations and Digraphs

Def. A function $f : A \to B$ is **one-to-one** (1 : 1) iff no element has arrows from two elements: $\forall xy \ (f(x) = f(y) \to x = y)$

1:1 Functions

Def. A function $f : A \to B$ is **one-to-one** (1 : 1) iff no element has arrows from two elements: $\forall xy \ (f(x) = f(y) \to x = y)$

1:1 Functions

Def. A function $f : A \to B$ is **one-to-one** (1 : 1) iff no element has arrows from two elements: $\forall xy \ (f(x) = f(y) \to x = y)$

1:1 Functions

Def. A function $f : A \to B$ is **one-to-one** (1 : 1) iff no element has arrows from two elements: $\forall xy \ (f(x) = f(y) \to x = y)$

iClicker 25.1 Which functions on the left are 1:1 ?

- A: just id_[2]
- B: just g
- C: both of them
- D: neither of them

Def. A function $f : A \rightarrow B$ is **onto** iff every element in *B* has an arrow to it: $\forall y \in B \exists x \in A \quad f(x) = y$

Def. A function $f : A \to B$ is **onto** iff every element in *B* has an arrow to it: $\forall y \in B \exists x \in A \quad f(x) = y$

Def. A function $f : A \to B$ is **onto** iff every element in *B* has an arrow to it: $\forall y \in B \exists x \in A \quad f(x) = y$

Def. A function $f : A \to B$ is **onto** iff every element in *B* has an arrow to it: $\forall y \in B \exists x \in A \quad f(x) = y$

iClicker 25.2 Which functions on the left are onto?

- A: just id_[2]
- B: just g
- C: both of them
- D: neither of them

For $f : A \rightarrow B$, its **domain** and **range** are well defined.

For $f : A \rightarrow B$, its **domain** and **range** are well defined.

Def. The domain of $f: \operatorname{dom}(f) \stackrel{\text{def}}{=} \{a \mid \exists b (a, b) \in f\} = A$

For $f : A \rightarrow B$, its **domain** and **range** are well defined.

Def. The domain of $f: \text{dom}(f) \stackrel{\text{def}}{=} \{a \mid \exists b (a, b) \in f\} = A$

For $f : A \rightarrow B$, its **domain** and **range** are well defined.

Def. The domain of $f: \text{dom}(f) \stackrel{\text{def}}{=} \{a \mid \exists b (a, b) \in f\} = A$

Def. The range of $f: \operatorname{rng}(f) \stackrel{\text{def}}{=} \{b \mid \exists a (a, b) \in f\}$

For $f : A \rightarrow B$, its **domain** and **range** are well defined.

Def. The domain of $f: \text{dom}(f) \stackrel{\text{def}}{=} \{a \mid \exists b (a, b) \in f\} = A$

Def. The range of f: rng $(f) \stackrel{\text{def}}{=} \{b \mid \exists a (a, b) \in f\}$

For $g : \{1,2\} \rightarrow \{1,2\}$, its co-domain is $\{1,2\}$; g is not onto.

For $f : A \rightarrow B$, its **domain** and **range** are well defined.

Def. The domain of $f: \text{dom}(f) \stackrel{\text{def}}{=} \{a \mid \exists b (a, b) \in f\} = A$

Def. The range of $f: \operatorname{rng}(f) \stackrel{\text{def}}{=} \{b \mid \exists a (a, b) \in f\}$

For $g : \{1,2\} \rightarrow \{1,2\}$, its co-domain is $\{1,2\}$; g is not onto. For $g : \{1,2\} \rightarrow \{1\}$, its co-domain is $\{1\}$; g is onto.

For $f : A \rightarrow B$, its **domain** and **range** are well defined.

Def. The domain of $f: \operatorname{dom}(f) \stackrel{\text{def}}{=} \{a \mid \exists b (a, b) \in f\} = A$

Def. The range of $f: \operatorname{rng}(f) \stackrel{\text{def}}{=} \{b \mid \exists a (a, b) \in f\}$

For $g : \{1,2\} \rightarrow \{1,2\}$, its co-domain is $\{1,2\}$; g is not onto.

For $g : \{1,2\} \rightarrow \{1\}$, its co-domain is $\{1\}$; g is onto.

The co-domain must be **given explicitly**, it cannot be determined from the function, *g*.

For $f : A \rightarrow B$, its **domain** and **range** are well defined.

Def. The domain of $f: \operatorname{dom}(f) \stackrel{\text{def}}{=} \{a \mid \exists b (a, b) \in f\} = A$

Def. The range of $f: \operatorname{rng}(f) \stackrel{\text{def}}{=} \{b \mid \exists a (a, b) \in f\}$

For $g : \{1,2\} \rightarrow \{1,2\}$, its co-domain is $\{1,2\}$; g is not onto.

For $g : \{1, 2\} \rightarrow \{1\}$, its co-domain is $\{1\}$; g is onto.

The co-domain must be **given explicitly**, it cannot be determined from the function, *g*.

A function *g* is **onto** iff its **range** is equal to its **co-domain**.

- **Def.** The domain of $f: \text{dom}(f) \stackrel{\text{def}}{=} \{a \mid \exists b (a, b) \in f\} = A$
- **Def.** The range of $f: \operatorname{rng}(f) \stackrel{\text{def}}{=} \{ b \mid \exists a (a, b) \in f \}$

For $g : \{1,2\} \rightarrow \{1,2\}$, its co-domain is $\{1,2\}$; g is not onto.

For $g : \{1, 2\} \rightarrow \{1\}$, its co-domain is $\{1\}$; g is onto.

The co-domain must be **given explicitly**, it cannot be determined from the function, *g*.

A function g is **onto** iff its **range** is equal to its **co-domain**.

- **Def.** The domain of $f: \text{dom}(f) \stackrel{\text{def}}{=} \{a \mid \exists b (a, b) \in f\} = A$
- **Def.** The range of $f: \operatorname{rng}(f) \stackrel{\text{def}}{=} \{ b \mid \exists a (a, b) \in f \}$

For $g : \{1,2\} \rightarrow \{1,2\}$, its co-domain is $\{1,2\}$; g is not onto.

For $g : \{1, 2\} \rightarrow \{1\}$, its co-domain is $\{1\}$; g is onto.

The co-domain must be **given explicitly**, it cannot be determined from the function, *g*.

A function g is **onto** iff its **range** is equal to its **co-domain**.

For $f \subseteq A \times B$, we can tell if f is single valued and if it is 1:1.

- **Def.** The domain of $f: \text{dom}(f) \stackrel{\text{def}}{=} \{a \mid \exists b (a, b) \in f\} = A$
- **Def.** The range of $f: \operatorname{rng}(f) \stackrel{\text{def}}{=} \{ b \mid \exists a (a, b) \in f \}$

For $g : \{1,2\} \rightarrow \{1,2\}$, its co-domain is $\{1,2\}$; g is not onto.

For $g : \{1, 2\} \rightarrow \{1\}$, its co-domain is $\{1\}$; g is onto.

The co-domain must be **given explicitly**, it cannot be determined from the function, *g*.

A function *g* is **onto** iff its **range** is equal to its **co-domain**.

For $f \subseteq A \times B$, we can tell if f is single valued and if it is 1:1.

To tell if $f : A \rightarrow B$, i.e., is f a function, we must know A.

Def. The domain of $f: \text{dom}(f) \stackrel{\text{def}}{=} \{a \mid \exists b (a, b) \in f\} = A$

Def. The range of $f: \operatorname{rng}(f) \stackrel{\text{def}}{=} \{ b \mid \exists a (a, b) \in f \}$

For $g : \{1,2\} \rightarrow \{1,2\}$, its co-domain is $\{1,2\}$; g is not onto.

For $g : \{1, 2\} \rightarrow \{1\}$, its co-domain is $\{1\}$; g is onto.

The co-domain must be **given explicitly**, it cannot be determined from the function, *g*.

A function *g* is **onto** iff its **range** is equal to its **co-domain**.

For $f \subseteq A \times B$, we can tell if f is **single valued** and if it is **1:1**.

To tell if $f : A \rightarrow B$, i.e., is f a function, we must know A.

To tell if *f* is **onto**, we must know *B*.

For $f : A \rightarrow B$ and $g : B \rightarrow C$,

For $f : A \rightarrow B$ and $g : B \rightarrow C$,

Def. the composition of g and f: $g \circ f(x) \stackrel{\text{def}}{=} g(f(x))$

For $f : A \to B$ and $g : B \to C$, **Def.** the composition of g and $f : g \circ f(x) \stackrel{\text{def}}{=} g(f(x))$ $f : \mathbf{N} \to \mathbf{N} : f(n) = 2 \cdot n \qquad g : \mathbf{N} \to \mathbf{N} : g(n) = n + 1$ For $f : A \to B$ and $g : B \to C$, **Def.** the composition of g and $f : g \circ f(x) \stackrel{\text{def}}{=} g(f(x))$ $f : \mathbf{N} \to \mathbf{N} : f(n) = 2 \cdot n \qquad g : \mathbf{N} \to \mathbf{N} : g(n) = n + 1$ $g \circ f : \mathbf{N} \to \mathbf{N} : g \circ f(n) = g(f(n)) = 2 \cdot n + 1$ For $f : A \to B$ and $g : B \to C$, **Def.** the composition of g and $f : g \circ f(x) \stackrel{\text{def}}{=} g(f(x))$ $f : \mathbf{N} \to \mathbf{N} : f(n) = 2 \cdot n \qquad g : \mathbf{N} \to \mathbf{N} : g(n) = n + 1$ $g \circ f : \mathbf{N} \to \mathbf{N} : g \circ f(n) = g(f(n)) = 2 \cdot n + 1$ $f \circ g : \mathbf{N} \to \mathbf{N} : f \circ g(n) = f(g(n)) = 2 \cdot (n + 1)$

For $f : A \rightarrow B$ and $g : B \rightarrow A$,

For $f : A \rightarrow B$ and $g : B \rightarrow A$,

Def. *f* and *g* are **inverse functions** $f = g^{-1}$ and $g = f^{-1}$ iff

 $f \circ g = id_B$; and $g \circ f = id_A$

For $f : A \to B$ and $g : B \to A$, Def. f and g are inverse functions $f = g^{-1}$ and $g = f^{-1}$ iff $f \circ g = id_B$; and $g \circ f = id_A$

 $f_1: \mathbf{Z}
ightarrow \mathbf{Z} \quad f_1(x) = x+1; \quad g_1: \mathbf{Z}
ightarrow \mathbf{Z} \quad g_1(x) = x-1$

For $f : A \to B$ and $g : B \to A$, Def. f and g are inverse functions $f = g^{-1}$ and $g = f^{-1}$ iff $f \circ g = id_B$; and $g \circ f = id_A$ $f_1 : \mathbf{Z} \to \mathbf{Z}$ $f_1(x) = x + 1$; $g_1 : \mathbf{Z} \to \mathbf{Z}$ $g_1(x) = x - 1$ $f_1 \circ g_1(x) = f_1(g_1(x)) = (x - 1) + 1 = x$

For $f : A \rightarrow B$ and $g : B \rightarrow A$, Def. f and g are inverse functions $f = g^{-1}$ and $g = f^{-1}$ iff $f \circ g = id_B$; and $g \circ f = id_A$ $f_1 : \mathbb{Z} \rightarrow \mathbb{Z}$ $f_1(x) = x + 1$; $g_1 : \mathbb{Z} \rightarrow \mathbb{Z}$ $g_1(x) = x - 1$ $f_1 \circ g_1(x) = f_1(g_1(x)) = (x - 1) + 1 = x$ $g_1 \circ f_1(x) = g_1(f_1(x)) = (x + 1) - 1 = x$

For $f : A \rightarrow B$ and $g : B \rightarrow A$, Def. f and g are inverse functions $f = g^{-1}$ and $g = f^{-1}$ iff $f \circ g = id_B$; and $g \circ f = id_A$ $f_1 : \mathbf{Z} \rightarrow \mathbf{Z}$ $f_1(x) = x + 1$; $g_1 : \mathbf{Z} \rightarrow \mathbf{Z}$ $g_1(x) = x - 1$ $f_1 \circ g_1(x) = f_1(g_1(x)) = (x - 1) + 1 = x$ $g_1 \circ f_1(x) = g_1(f_1(x)) = (x + 1) - 1 = x$

 $f_2: \mathbf{Q}
ightarrow \mathbf{Q} \quad f_2(x) = x \cdot 2; \quad g_2: \mathbf{Q}
ightarrow \mathbf{Q} \quad g_2(x) = x/2$

For $f : A \rightarrow B$ and $g : B \rightarrow A$, Def. f and g are inverse functions $f = g^{-1}$ and $g = f^{-1}$ iff $f \circ g = id_B$; and $g \circ f = id_A$ $f_1 : \mathbf{Z} \rightarrow \mathbf{Z}$ $f_1(x) = x + 1$; $g_1 : \mathbf{Z} \rightarrow \mathbf{Z}$ $g_1(x) = x - 1$ $f_1 \circ g_1(x) = f_1(g_1(x)) = (x - 1) + 1 = x$ $g_1 \circ f_1(x) = g_1(f_1(x)) = (x + 1) - 1 = x$

 $egin{array}{rl} f_2: {f Q} o {f Q} & f_2(x) = x \cdot 2; & g_2: {f Q} o {f Q} & g_2(x) = x/2 \ & f_2 \circ g_2(x) & = & f_2(g_2(x)) & = & (x/2) \cdot 2 & = & x \end{array}$

For $f : A \rightarrow B$ and $q : B \rightarrow A$, **Def.** f and g are inverse functions $f = g^{-1}$ and $g = f^{-1}$ iff $f \circ q = \mathrm{id}_{B}$: and $q \circ f = \mathrm{id}_{A}$ $f_1: \mathbf{Z} \rightarrow \mathbf{Z}$ $f_1(x) = x + 1;$ $q_1: \mathbf{Z} \rightarrow \mathbf{Z}$ $q_1(x) = x - 1$ $f_1 \circ g_1(x) = f_1(g_1(x)) = (x-1)+1 = x$ $q_1 \circ f_1(x) = q_1(f_1(x)) = (x+1) - 1 = x$ $f_2: \mathbf{Q} \to \mathbf{Q}$ $f_2(x) = x \cdot 2;$ $g_2: \mathbf{Q} \to \mathbf{Q}$ $g_2(x) = x/2$ $f_2 \circ g_2(x) = f_2(g_2(x)) = (x/2) \cdot 2 = x$ $g_2 \circ f_2(x) = g_2(f_2(x)) = (x \cdot 2)/2 = x$

For $f : A \to B$ and $g : B \to A$, f and g are inverse functions $f = g^{-1}$ and $g = f^{-1}$ iff

For $f : A \to B$ and $g : B \to A$, f and g are inverse functions $f = g^{-1}$ and $g = f^{-1}$ iff $f \circ g = id_B$

Inverse of functions

For $f : A \to B$ and $g : B \to A$, f and g are inverse functions $f = g^{-1}$ and $g = f^{-1}$ iff $f \circ g = id_B$ and $g \circ f = id_A$

Does $f_1 : \mathbf{N} \to \mathbf{N}$, $f_1(n) = \lfloor n/2 \rfloor$ have an inverse?

Does $f_1 : \mathbf{N} \to \mathbf{N}$, $f_1(n) = \lfloor n/2 \rfloor$ have an inverse?

No, f_1 is not 1:1, so no g_1 cannot satisfy $g_1(f_1(0)) = 0$ and $g_1(f_1(1)) = 1$ because $f_1(0) = f_1(1)$.

Does $f_1 : \mathbf{N} \to \mathbf{N}$, $f_1(n) = \lfloor n/2 \rfloor$ have an inverse?

No, f_1 is not 1:1, so no g_1 cannot satisfy $g_1(f_1(0)) = 0$ and $g_1(f_1(1)) = 1$ because $f_1(0) = f_1(1)$.

Does $f_2 : \mathbf{N} \to \mathbf{N}$, $f_2(n) = n + 1$ have an inverse?

Does $f_1 : \mathbf{N} \to \mathbf{N}$, $f_1(n) = \lfloor n/2 \rfloor$ have an inverse?

No, f_1 is not 1:1, so no g_1 cannot satisfy $g_1(f_1(0)) = 0$ and $g_1(f_1(1)) = 1$ because $f_1(0) = f_1(1)$.

Does $f_2 : \mathbf{N} \to \mathbf{N}$, $f_2(n) = n + 1$ have an inverse?

No, f_2 is not onto, so no g_2 can satisfy $f_2(g_2(0)) = 0$ because $0 \notin \operatorname{rng}(f_2)$

Does $f_1 : \mathbf{N} \to \mathbf{N}$, $f_1(n) = \lfloor n/2 \rfloor$ have an inverse?

No, f_1 is not 1:1, so no g_1 cannot satisfy $g_1(f_1(0)) = 0$ and $g_1(f_1(1)) = 1$ because $f_1(0) = f_1(1)$.

Does $f_2 : \mathbf{N} \to \mathbf{N}$, $f_2(n) = n + 1$ have an inverse?

No, f_2 is not onto, so no g_2 can satisfy $f_2(g_2(0)) = 0$ because $0 \notin \operatorname{rng}(f_2)$

Thm. $f : A \rightarrow B$ has an inverse iff f is 1:1 and onto.

Does $f_1 : \mathbf{N} \to \mathbf{N}$, $f_1(n) = \lfloor n/2 \rfloor$ have an inverse?

No, f_1 is not 1:1, so no g_1 cannot satisfy $g_1(f_1(0)) = 0$ and $g_1(f_1(1)) = 1$ because $f_1(0) = f_1(1)$.

Does $f_2 : \mathbf{N} \to \mathbf{N}$, $f_2(n) = n + 1$ have an inverse?

No, f_2 is not onto, so no g_2 can satisfy $f_2(g_2(0)) = 0$ because $0 \notin \operatorname{rng}(f_2)$

Thm. $f : A \rightarrow B$ has an inverse iff f is 1:1 and onto.

Proof: Already argued it is necessary that *f* is 1:1 and onto.

Does $f_1 : \mathbf{N} \to \mathbf{N}$, $f_1(n) = \lfloor n/2 \rfloor$ have an inverse?

No, f_1 is not 1:1, so no g_1 cannot satisfy $g_1(f_1(0)) = 0$ and $g_1(f_1(1)) = 1$ because $f_1(0) = f_1(1)$.

Does $f_2 : \mathbf{N} \to \mathbf{N}$, $f_2(n) = n + 1$ have an inverse?

No, f_2 is not onto, so no g_2 can satisfy $f_2(g_2(0)) = 0$ because $0 \notin \operatorname{rng}(f_2)$

Thm. $f : A \rightarrow B$ has an inverse iff f is 1:1 and onto.

Proof: Already argued it is necessary that f is 1:1 and onto. Assume that f is 1:1 and onto.

Does $f_1 : \mathbf{N} \to \mathbf{N}$, $f_1(n) = \lfloor n/2 \rfloor$ have an inverse?

No, f_1 is not 1:1, so no g_1 cannot satisfy $g_1(f_1(0)) = 0$ and $g_1(f_1(1)) = 1$ because $f_1(0) = f_1(1)$.

Does $f_2 : \mathbf{N} \to \mathbf{N}$, $f_2(n) = n + 1$ have an inverse?

No, f_2 is not onto, so no g_2 can satisfy $f_2(g_2(0)) = 0$ because $0 \notin \operatorname{rng}(f_2)$

Thm. $f : A \rightarrow B$ has an inverse iff f is 1:1 and onto.

Proof: Already argued it is necessary that f is 1:1 and onto. Assume that f is 1:1 and onto.

Let $f^T \stackrel{\text{def}}{=} \{(b, a) \mid (a, b) \in f\}$ transpose of f.

Does $f_1 : \mathbf{N} \to \mathbf{N}$, $f_1(n) = \lfloor n/2 \rfloor$ have an inverse?

No, f_1 is not 1:1, so no g_1 cannot satisfy $g_1(f_1(0)) = 0$ and $g_1(f_1(1)) = 1$ because $f_1(0) = f_1(1)$.

Does $f_2 : \mathbf{N} \to \mathbf{N}$, $f_2(n) = n + 1$ have an inverse?

No, f_2 is not onto, so no g_2 can satisfy $f_2(g_2(0)) = 0$ because $0 \notin \operatorname{rng}(f_2)$

Thm. $f : A \rightarrow B$ has an inverse iff f is 1:1 and onto.

Proof: Already argued it is necessary that f is 1:1 and onto. Assume that f is 1:1 and onto.

Let $f^T \stackrel{\text{def}}{=} \{(b, a) \mid (a, b) \in f\}$ transpose of f. $f^T : B \to A \text{ and } f^T \circ f = \text{id}_A \text{ and } f \circ f^T = \text{id}_B$ **Claim:** $f \circ f^T = id_R$ and $f^T \circ f = id_A$

Claim: $f \circ f^T = id_R$ and $f^T \circ f = id_A$ **Proof:** f is onto: $\forall y \in R \exists x \in A (y, x) \in f^T$, thus $f \circ f^T(y) = y$

Claim: $f \circ f^T = id_R$ and $f^T \circ f = id_A$

Proof: *f* is onto: $\forall y \in R \exists x \in A (y, x) \in f^T$, thus $f \circ f^T(y) = y$ *f* is 1:1: $\forall x \in A \quad f^T \circ f(x) = x$

reflexive $\equiv \forall x E(x, x)$

reflexive
$$\equiv \forall x E(x, x)$$

symmetric $\equiv \forall xy (E(x, y) \rightarrow E(y, x))$

iClicker 25.3 Which are Reflexive, Symmetric and Transitive ?A: allB: just \equiv (mod 2)C: $=^{[3]}$ and \equiv (mod 2)D: all but $<^{[3]}$

Def. Transitive Closure E^+ is the smallest **transitive** relation containing *E*.

Def. Transitive Closure E^+ is the smallest **transitive** relation containing *E*.

Def. Transitive Closure E^+ is the smallest **transitive** relation containing *E*. The **Reflexive Transitive Closure** E^* is the smallest **reflexive** and **transitive** relation containing *E*.

Def. Transitive Closure E^+ is the smallest **transitive** relation containing *E*. The **Reflexive Transitive Closure** E^* is the smallest **reflexive** and **transitive** relation containing *E*.

Def. Transitive Closure E^+ is the smallest **transitive** relation containing *E*. The **Reflexive Transitive Closure** E^* is the smallest **reflexive** and **transitive** relation containing *E*.

$$\mathsf{conn} \equiv \forall xy \, E^*(x,y)$$

Undirected graph *G* is **connected** iff $\mathcal{G} \models$ **conn**.

Directed graph *G* is **strongly connected** iff $\mathcal{G} \models \text{conn}$.

 G_1 is not strongly connected and G_4 is not connected.

 $E^+ \stackrel{\text{def}}{=}$ smallest **transitive** relation containing *E*

 $E^+ \stackrel{\text{def}}{=}$ smallest **transitive** relation containing *E*

 $E^+ \stackrel{\text{def}}{=}$ smallest **transitive** relation containing E

 $E^{\star} \stackrel{\text{def}}{=}$ smallest reflexive \land transitive relation containing *E*

 $E^+ \stackrel{\text{def}}{=}$ smallest **transitive** relation containing E

 $E^{\star} \stackrel{\text{def}}{=} \text{smallest reflexive} \land \text{transitive}$ relation containing E

Undirected graph *G* is **connected** iff $G \models$ **conn**.

Directed graph *D* is **strongly connected** iff $D \models$ **conn**.

.

Undirected graph *G* is **connected** iff $G \models$ **conn**.

Directed graph *D* is **strongly connected** iff $D \models$ **conn**.

$\mathsf{conn} \equiv \forall xy \, E^{\star}(x, y)$

Undirected graph *G* is **connected** iff $G \models$ **conn**. G_1 is **not connected**.

Directed graph *D* is **strongly connected** iff $D \models$ **conn**.

D₁ is not strongly connected.

Def: A **connected component** of an undirected graph *G* is a **maximal induced subgraph** of *G* that is connected.

Def: A **connected component** of an undirected graph *G* is a **maximal induced subgraph** of *G* that is connected.

Def: A strongly connected component of a directed graph *G* is a maximal induced subgraph of *G* that is strongly connected.

Def: A strongly connected component of a directed graph *G* is a maximal induced subgraph of *G* that is strongly connected.

Def: An undirected forest is an acyclic undirected graph

Def: An undirected forest is an acyclic undirected graph

Def: An undirected tree is a connected forest

Def: An undirected forest is an acyclic undirected graph

Def: An undirected tree is a connected forest

