CS250: Discrete Math for Computer Science

L25: Binary Relations and Digraphs

1:1 Functions

Def. A function f : A — B is one-to-one (1 : 1) iff no element
has arrows from two elements: Vxy (f(x) =f(y) — x=y)

1:1 Functions

Def. A function f : A — B is one-to-one (1 : 1) iff no element
has arrows from two elements: Vxy (f(x) =f(y) — x=y)

@ idio(x) = x >®
@ [2]\A) =

1:1 Functions

Def. A function f : A — B is one-to-one (1 : 1) iff no element
has arrows from two elements: Vxy (f(x) =f(y) — x=y)

1:1 Functions

Def. A function f : A — B is one-to-one (1 : 1) iff no element
has arrows from two elements: Vxy (f(x) =f(y) — x=y)

iClicker 25.1 Which func-

1

i = @ tions on the left are 1:1 ?
@ >@ A: just idpy

B: just g

C: both of them

D: neither of them

onto Functions

Def. A function f: A — B is onto iff every element in B has an
arrowtoit: VyeBixeA f(x)=y

onto Functions

Def. A function f: A — B is onto iff every element in B has an
arrowtoit: VyeBixeA f(x)=y

% idpg)(x) = x i%

onto Functions

Def. A function f: A — B is onto iff every element in B has an
arrowtoit: VyeBixeA f(x)=y

8
L4

OO
o

onto Functions

Def. A function f: A — B is onto iff every element in B has an
VyeB3ixeA f(x)=y

arrow to it:

8
L4

8
L4

O,
O,

iClicker 25.2 Which func-
tions on the left are onto ?

A: just Id[g]
B: just g
C: both of them

D: neither of them

Domain, Range, and Co-Domain

For f : A — B, its domain and range are well defined.

Domain, Range, and Co-Domain

For f : A — B, its domain and range are well defined.

Def. The domain of f: dom(f) & {a | 3b(a,b)cf} = A

Domain, Range, and Co-Domain

For f : A— B, its domain and range are well defined.

Def. The domain of f: dom(f) & {a | 3b(a,b)cf} = A

dom(g) = {1,2}

Domain, Range, and Co-Domain

For f : A— B, its domain and range are well defined.

Def. The domain of f: dom(f) & {a | 3b(a,b)cf} = A

@ dom(g) = {1,2)
7= ((1.1).(2.1)) @ me(g) = (1)

Def. The range of f: mg(f) £ {b | 3a(a,b) € f}

Domain, Range, and Co-Domain

For f : A— B, its domain and range are well defined.

Def. The domain of f: dom(f) & {a | 3b(a,b)cf} = A

O,

dom(g) = {1,2}

7= ((1.1).(2.1)) @ me(g) = (1)

Def. The range of f: mg(f) £ {b | 3a(a,b) € f}
Forg: {1,2} — {1,2}, its co-domain is {1,2}; g is not onto.

Domain, Range, and Co-Domain

For f : A— B, its domain and range are well defined.

Def. The domain of f: dom(f) & {a | 3b(a,b)cf} = A

O,

dom(g) = {1,2}

7= ((1.1).(2.1)) @ me(g) = (1)

Def. The range of f: mg(f) £ {b | 3a(a,b) € f}
Forg: {1,2} — {1,2}, its co-domain is {1,2}; g is not onto.

Forg:{1,2} — {1}, its co-domain is {1}; g is onto.

Domain, Range, and Co-Domain

For f : A— B, its domain and range are well defined.
Def. The domain of f: dom(f) & {a | 3b(a,b)cf} = A

O,

dom(g) = {1,2}

7= ((1.1).(2.1)) @ me(g) = (1)

Def. The range of f: mg(f) £ {b | 3a(a,b) € f}
Forg: {1,2} — {1,2}, its co-domain is {1,2}; g is not onto.

Forg:{1,2} — {1}, its co-domain is {1}; g is onto.

The co-domain must be given explicitly, it cannot be
determined from the function, g.

Domain, Range, and Co-Domain

For f : A— B, its domain and range are well defined.
Def. The domain of f: dom(f) & {a | 3b(a,b)cf} = A

O,

dom(g) = {1,2}

7= ((1.1).(2.1)) @ me(g) = (1)

Def. The range of f: mg(f) £ {b | 3a(a,b) € f}
Forg: {1,2} — {1,2}, its co-domain is {1,2}; g is not onto.

Forg:{1,2} — {1}, its co-domain is {1}; g is onto.

The co-domain must be given explicitly, it cannot be
determined from the function, g.

A function g is onto iff its range is equal to its co-domain.

Domain, Range, and Co-Domain

For f: A— B, its domain and range are well defined.

Def. The domain of f: dom(f) & {a | 3b(a,b)ecf} = A
Def. The range of f: mg(f) & {b | 3a(a,b) € f}

Forg: {1,2} — {1,2}, its co-domain is {1,2}; g is not onto.
Forg:{1,2} — {1}, its co-domainis {1}; g is onto.

The co-domain must be given explicitly, it cannot be
determined from the function, g.

A function g is onto iff its range is equal to its co-domain.

Domain, Range, and Co-Domain

For f: A— B, its domain and range are well defined.

Def. The domain of f: dom(f) & {a | 3b(a,b)ecf} = A
Def. The range of f: mg(f) & {b | 3a(a,b) € f}

Forg: {1,2} — {1,2}, its co-domain is {1,2}; g is not onto.
Forg:{1,2} — {1}, its co-domainis {1}; g is onto.

The co-domain must be given explicitly, it cannot be
determined from the function, g.

A function g is onto iff its range is equal to its co-domain.
For f C A x B, we can tell if f is single valued and if it is 1:1.

Domain, Range, and Co-Domain

For f: A— B, its domain and range are well defined.

Def. The domain of f: dom(f) & {a | 3b(a,b)ecf} = A
Def. The range of f: mg(f) & {b | 3a(a,b) € f}

Forg: {1,2} — {1,2}, its co-domain is {1,2}; g is not onto.
Forg:{1,2} — {1}, its co-domainis {1}; g is onto.

The co-domain must be given explicitly, it cannot be
determined from the function, g.

A function g is onto iff its range is equal to its co-domain.
For f C A x B, we can tell if f is single valued and if it is 1:1.

Totellif f: A— B, i.e., is f a function, we must know A.

Domain, Range, and Co-Domain

For f: A— B, its domain and range are well defined.
Def. The domain of f: dom(f) & {a | 3b(a,b)ecf} = A

Def. The range of f: mg(f) & {b | 3a(a,b) € f}
Forg: {1,2} — {1,2}, its co-domain is {1,2}; g is not onto.
Forg:{1,2} — {1}, its co-domainis {1}; g is onto.

The co-domain must be given explicitly, it cannot be
determined from the function, g.

A function g is onto iff its range is equal to its co-domain.
For f C A x B, we can tell if f is single valued and if it is 1:1.
Totellif f: A— B, i.e., is f a function, we must know A.

To tell if f is onto, we must know B.

Composition of Functions

Forf:A— Bandg:B— C,

Composition of Functions

Forf:A— Bandg:B— C,
Def. the composition of gand f: go f(x) & g(f(x))

Composition of Functions

Forf:A— Bandg:B— C,
Def. the composition of gand f: go f(x) & g(f(x))
f<N—=N: f(n)=2-n g:N—=N: gn=n+1

Composition of Functions

Forf:A— Bandg: B — C,

Def. the composition of gand f: go f(x) & g(f(x))
f<N—=N: f(n)=2-n g:N—=N: gn=n+1
gof:N—=N: gof(n) = g(f(n)) = 2-n+1

Composition of Functions

Forf:A— Bandg:B— C,

Def. the composition of gand f: go f(x) & g(f(x))
f<N—=N: f(n)=2-n g:N—=N: gn=n+1
gof:N=N: gof(n) = g(f(n) = 2-n+1
fog:N—=N: fog(n) = f(g(n)) = 2-(n+1)

Inverse of functions

Forf:A— Bandg: B — A,

Inverse of functions

Forf:A— Bandg: B — A,
Def. f and g are inverse functions f = g~' and g = ! iff

fog=idg;, and gof=idga

Inverse of functions

Forf:A— Bandg: B — A,
Def. f and g are inverse functions f = g~' and g = ! iff

fog=idg;, and gof=idga
i:Z—-2Z f(x)=x+1;, g1:Z—-2Z gi(x)=x—-1

Inverse of functions

Forf:A— Bandg: B — A,
Def. f and g are inverse functions f = g~' and g = ! iff

fog=idg;, and gof=idga

f:Z—Z f(X)=x+1, 9g1:Z—Z gi(x)=x—1
fiogi(x) = f(gi(x)) = (x-1)+1 = x

Inverse of functions

Forf:A— Bandg: B — A,
Def. f and g are inverse functions f = g~' and g = ! iff
fog=idg;, and gof=idga
fi:Z2—-2Z f(x)=x+1, g1:Z2—-2Z gi(x)=x—1
fiogi(x) = fi(1(x)) = (x—1)+1 = x
grofi(x) = g1(fh(x)) = (x+1)—-1 = x

Inverse of functions

Forf:A— Bandg: B — A,
Def. f and g are inverse functions f = g~' and g = ! iff

fog=idg;, and gof=idga

fi:Z2—-2Z f(x)=x+1, g1:Z2—-2Z gi(x)=x—1
ficgi(x) = h(gi(x)) = (x=1)+1 = x
gioh(x) = aih(0)) = (x+1)-1 = x

L:QA—=Q hH(X)=x-2; g:Q@—->Q g(x)=x/2

Inverse of functions

Forf:A— Bandg: B — A,
Def. f and g are inverse functions f = g~' and g = ! iff

fog=idg;, and gof=idga

fi:Z2—-2Z f(x)=x+1, g1:Z2—-2Z gi(x)=x—1
ficgi(x) = h(gi(x)) = (x=1)+1 = x
gioh(x) = aih(0)) = (x+1)-1 = x

L:QA—=Q hH(X)=x-2; g:Q@—->Q g(x)=x/2
hoga(x) = h(g(x)) = (x/2)-2 = x

Inverse of functions

Forf:A— Bandg: B — A,
Def. f and g are inverse functions f = g~' and g = ! iff

fog=idg;, and gof=idga

fi:Z2—-2Z f(x)=x+1, g1:Z2—-2Z gi(x)=x—1
ficgi(x) = h(gi(x)) = (x=1)+1 = x
gioh(x) = aih(0)) = (x+1)-1 = x

L:QA—=Q hH(X)=x-2; g:Q@—->Q g(x)=x/2

hog(x) = h(g(x) = (x/2)-2 = x
G2oh(x) = g(hk(x) = (x-2)/2 = x

Inverse of functions

Forf:A— Bandg: B — A,
f and g are inverse functions f = g~ and g = ' iff

Inverse of functions

Forf:A— Bandg: B — A,
f and g are inverse functions f = g~ and g = ' iff
fo g= idg

gx)=(x+2)%3 f(x)=(x+1)%3

Inverse of functions

Forf:A— Bandg: B — A,
f and g are inverse functions f = g~ and g = ' iff
fog=idg and gof=idy

gx)=(x+2)%3 f(x)=x+1)%3 9g(x)=(x+2)%3

When does f : A — B have an inverse?

Does fi :N— N, fi(n) = [n/2] have an inverse?

When does f : A — B have an inverse?

Does fi :N— N, fi(n) = [n/2] have an inverse?

No, f; is not 1:1, so no gy cannot satisfy g;(f;(0)) = 0 and
91(fi(1)) = 1 because £;(0) = f1(1).

When does f : A — B have an inverse?

Does fi :N— N, fi(n) = [n/2] have an inverse?

No, f; is not 1:1, so no gy cannot satisfy g;(f;(0)) = 0 and
91(fi(1)) = 1 because £;(0) = f1(1).

Does f, : N— N, £f(n) = n+ 1 have an inverse?

When does f : A — B have an inverse?

Does fi :N— N, fi(n) = [n/2] have an inverse?

No, f; is not 1:1, so no gy cannot satisfy g;(f;(0)) = 0 and
91(fi(1)) = 1 because £;(0) = f1(1).

Does f, : N— N, £f(n) = n+ 1 have an inverse?

No, £ is not onto, so no g» can satisfy (g-(0)) = 0 because
0 ¢ mg(f)

When does f : A — B have an inverse?

Does fi :N— N, fi(n) = [n/2] have an inverse?

No, f; is not 1:1, so no gy cannot satisfy g;(f;(0)) = 0 and
91(fi(1)) = 1 because £;(0) = f1(1).

Does f, : N— N, £f(n) = n+ 1 have an inverse?

No, £ is not onto, so no g» can satisfy (g-(0)) = 0 because
0 ¢ mg(f)
Thm. f:A — Bhasaninverse iff fis 1:1 and onto.

When does f : A — B have an inverse?

Does fi :N— N, fi(n) = [n/2] have an inverse?

No, f; is not 1:1, so no gy cannot satisfy g;(f;(0)) = 0 and
91(fi(1)) = 1 because £;(0) = f1(1).

Does f, : N— N, £f(n) = n+ 1 have an inverse?

No, £ is not onto, so no g» can satisfy (g-(0)) = 0 because
0 ¢ mg(f)
Thm. f:A — Bhasaninverse iff fis 1:1 and onto.

Proof: Already argued it is necessary that f is 1:1 and onto.

When does f : A — B have an inverse?

Does fi :N— N, fi(n) = [n/2] have an inverse?

No, f; is not 1:1, so no gy cannot satisfy g;(f;(0)) = 0 and
91(fi(1)) = 1 because £;(0) = f1(1).

Does f, : N— N, £f(n) = n+ 1 have an inverse?

No, £ is not onto, so no g» can satisfy (g-(0)) = 0 because
0 ¢ mg(f)

Thm. f:A — Bhasaninverse iff fis 1:1 and onto.

Proof: Already argued it is necessary that f is 1:1 and onto.

Assume that f is 1:1 and onto.

When does f : A — B have an inverse?

Does fi :N— N, fi(n) = [n/2] have an inverse?

No, f; is not 1:1, so no gy cannot satisfy g;(f;(0)) = 0 and
91(fi(1)) = 1 because £;(0) = f1(1).

Does f, : N— N, £f(n) = n+ 1 have an inverse?

No, £ is not onto, so no g» can satisfy (g-(0)) = 0 because
0 ¢ mg(f)

Thm. f:A — Bhasaninverse iff fis 1:1 and onto.

Proof: Already argued it is necessary that f is 1:1 and onto.
Assume that f is 1:1 and onto.

Let fT & {(b,a) | (a,b) € f} transpose of .

When does f : A — B have an inverse?

Does fi :N— N, fi(n) = [n/2] have an inverse?

No, f; is not 1:1, so no gy cannot satisfy g;(f;(0)) = 0 and
91(fi(1)) = 1 because £;(0) = f1(1).

Does f, : N— N, £f(n) = n+ 1 have an inverse?

No, £ is not onto, so no g» can satisfy (g-(0)) = 0 because

0 ¢ mg(f>)

Thm. f:A — Bhasaninverse iff fis 1:1 and onto.

Proof: Already argued it is necessary that f is 1:1 and onto.
Assume that f is 1:1 and onto.

Let fT & {(b,a) | (a,b) € f} transpose of .

fT:B— AandfTof=idgand fof! =idg O

Claim: fofl =idg and flof=idy

Claim: fofl =idg and flof=idy

Proof: fisonto:Vyc RIxc A(y,x)cfl thusfofl(y)=y

Claim: fofl =idg and flof=idy

Proof: fisonto:Vyc RIxc A(y,x)cfl thusfofl(y)=y
fis1:1: vxcA flof(x)=x O

fofl = idn

Binary Relations from V to V

Def. A directed graph (digraph), G = (V¢ E®) is a world of
vocabulary ¥4 = (E?;). Thus a digraph, G, is just a binary
relation, EC, from V& to VC.

Binary Relations from V to V

Def. A directed graph (digraph), G = (V¢ E®) is a world of
vocabulary ¥4 = (E?;). Thus a digraph, G, is just a binary
relation, EC, from V& to VC.

—[3]

QR

Binary Relations from V to V

Def. A directed graph (digraph), G = (V¢ E®) is a world of
vocabulary ¥4 = (E?;). Thus a digraph, G, is just a binary
relation, EC, from V& to VC.

_[3] <3l

Binary Relations from V to V

Def. A directed graph (digraph), G = (V¢ E®) is a world of
vocabulary ¥4 = (E?;). Thus a digraph, G, is just a binary
relation, EC, from V& to VC.

_[3] <3l

Binary Relations from V to V

Def. A directed graph (digraph), G = (V¢ E®) is a world of
vocabulary ¥4 = (E?;). Thus a digraph, G, is just a binary
relation, EC, from V& to VC.

_[3] <3l

reflexive

Vx E(x, x)

reflexive = VxE(x,x)
symmetric = Vxy(E(x,y) — E(y,x))
_[3] <3l

T IR

= (mod?2)

reflexive = VxE(x,x)
symmetric = Vxy(E(x,y) — E(y,x))
transitive = Vxyz(E(x,y)ANE(y,z) — E(x,2))
=03 <3l

reflexive = VxE(x,x)
symmetric = Vxy(E(x,y) — E(y,x))
transitive = Vxyz(E(x,y)ANE(y,z) — E(x,2))
=03 <3l

iClicker 25.3 Which are Reflexive, Symmetric and Transitive ?
A: all B: just = (mod 2) C: =Bl and = (mod 2)
D: all but <[]

Transitive Closure

Def. Transitive Closure ET is the smallest transitive relation
containing E.

E

O

Transitive Closure

Def. Transitive Closure ET is the smallest transitive relation
containing E.

@ RO

Transitive Closure

Def. Transitive Closure E* is the smallest transitive relation
containing E. The Reflexive Transitive Closure E* is the
smallest reflexive and transitive relation containing E.

@ RO

Transitive Closure

Def. Transitive Closure E* is the smallest transitive relation
containing E. The Reflexive Transitive Closure E* is the
smallest reflexive and transitive relation containing E.

@ RO

0030

Transitive Closure

Def. Transitive Closure E* is the smallest transitive relation
containing E. The Reflexive Transitive Closure E* is the
smallest reflexive and transitive relation containing E.

@ RO

E*
F Fr = F*

Connectivity

conn = VxyE*(x,y)

Undirected graph G is connected iff G = conn.

Directed graph G is strongly connected iff G = conn.
O—0~0—0 a9 & 7§

G is not strongly connected and Gy is not connected.

Recall: Transitive Closure

HORENORNO O

0 (O —(—0)

Recall: Transitive Closure

def
E+ = smallest transitive relation containing £

HORENORNO O

)
o
1

Recall: Transitive Closure

def
E+ = smallest transitive relation containing £

D+ QL@)

Recall: Transitive Closure

def
E+ = smallest transitive relation containing £

def . . . -
E* = smallest reflexive A transitive relation containing E

o O
D+ QL@ >

Recall: Transitive Closure

def
E+ = smallest transitive relation containing £

def . . . -
E* = smallest reflexive A transitive relation containing E

oy (o

W

conn = Vxy E*(x,y)

Undirected graph G is connected iff G = conn.

Directed graph D is strongly connected iff D = conn.

a0 O G0

Dy (0 s s ——s(5)

conn = Vxy E*(x,y)

Undirected graph G is connected iff G = conn.

Directed graph D is strongly connected iff D = conn.

conn = Vxy E*(x,y)

Undirected graph G is connected iff G = conn.
G, is not connected.

Directed graph D is strongly connected iff D = conn.
D, is not strongly connected.

o (7 (D (o

Connected Components

Def: A connected component of an undirected graph G is a
maximal induced subgraph of G that is connected.

6 T) (—

Connected Components

Def: A connected component of an undirected graph G is a
maximal induced subgraph of G that is connected.

«@ O O—

Strongly Connected Components

Def: A strongly connected component of a directed graph G
is a maximal induced subgraph of G that is strongly
connected.

JONNOINO eSO

Strongly Connected Components

Def: A strongly connected component of a directed graph G
is a maximal induced subgraph of G that is strongly
connected.

«@ O a—0

Trees and Forests

Def: An undirected forest is an acyclic undirected graph

NN

Trees and Forests

Def: An undirected forest is an acyclic undirected graph

Def: An undirected tree is a connected forest

NN

Trees and Forests

Def: An undirected forest is an acyclic undirected graph

Def: An undirected tree is a connected forest
o0 o ©

F=TUT

