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L25: Binary Relations and Digraphs



1:1 Functions

Def. A function f : A→ B is one-to-one (1 : 1) iff no element
has arrows from two elements: ∀xy (f (x) = f (y) → x = y)

id[2](x) = x
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iClicker 25.1 Which func-
tions on the left are 1:1 ?

A: just id[2]

B: just g

C: both of them

D: neither of them
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onto Functions

Def. A function f : A→ B is onto iff every element in B has an
arrow to it: ∀y ∈ B ∃x ∈ A f (x) = y
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Domain, Range, and Co-Domain

For f : A→ B, its domain and range are well defined.

Def. The domain of f : dom(f )
def
=

{
a

∣∣ ∃b (a,b) ∈ f
}

= A

g = {(1,1), (2,1)}

dom(g) = {1,2}

rng(g) = {1}
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Def. The range of f : rng(f )
def
=

{
b

∣∣ ∃a (a,b) ∈ f
}

For g : {1,2} → {1,2}, its co-domain is {1,2}; g is not onto.

For g : {1,2} → {1}, its co-domain is {1}; g is onto.

The co-domain must be given explicitly, it cannot be
determined from the function, g.

A function g is onto iff its range is equal to its co-domain.
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To tell if f : A→ B, i.e., is f a function, we must know A.

To tell if f is onto, we must know B.
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Composition of Functions

For f : A→ B and g : B → C,

Def. the composition of g and f : g ◦ f (x)
def
= g(f (x))

f : N→ N : f (n) = 2 · n g : N→ N : g(n) = n + 1

g ◦ f : N→ N : g ◦ f (n) = g(f (n)) = 2 · n + 1

f ◦ g : N→ N : f ◦ g(n) = f (g(n)) = 2 · (n + 1)
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Inverse of functions

For f : A→ B and g : B → A,

Def. f and g are inverse functions f = g−1 and g = f−1 iff

f ◦ g = idB; and g ◦ f = idA

f1 : Z→ Z f1(x) = x + 1; g1 : Z→ Z g1(x) = x − 1
f1 ◦ g1(x) = f1(g1(x)) = (x − 1) + 1 = x

g1 ◦ f1(x) = g1(f1(x)) = (x + 1)− 1 = x

f2 : Q→ Q f2(x) = x · 2; g2 : Q→ Q g2(x) = x/2

f2 ◦ g2(x) = f2(g2(x)) = (x/2) · 2 = x

g2 ◦ f2(x) = g2(f2(x)) = (x · 2)/2 = x
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When does f : A→ B have an inverse?

Does f1 : N→ N, f1(n) = bn/2c have an inverse?

No, f1 is not 1:1, so no g1 cannot satisfy g1(f1(0)) = 0 and
g1(f1(1)) = 1 because f1(0) = f1(1).

Does f2 : N→ N, f2(n) = n + 1 have an inverse?

No, f2 is not onto, so no g2 can satisfy f2(g2(0)) = 0 because
0 6∈ rng(f2)

Thm. f : A→ B has an inverse iff f is 1:1 and onto.

Proof: Already argued it is necessary that f is 1:1 and onto.

Assume that f is 1:1 and onto.

Let f T def
=

{
(b,a)

∣∣ (a,b) ∈ f
}

transpose of f .

f T : B → A and f T ◦ f = idA and f ◦ f T = idB �
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Claim: f ◦ f T = idR and f T ◦ f = idA

Proof: f is onto: ∀y ∈ R ∃x ∈ A (y , x) ∈ f T , thus f ◦ f T (y) = y

f is 1:1: ∀x ∈ A f T ◦ f (x) = x �
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Binary Relations from V to V

Def. A directed graph (digraph), G = (V G,EG) is a world of
vocabulary Σg = (E2; ). Thus a digraph, G, is just a binary
relation, EG, from V G to V G.

=[3]

1 2 3

<[3]

1 2 3

≤[3]

1 2 3

≡ (mod 2)

1 2 3
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reflexive ≡ ∀x E(x , x)

symmetric ≡ ∀xy (E(x , y)→ E(y , x))

transitive ≡ ∀xyz (E(x , y) ∧ E(y , z) → E(x , z))

=[3]

1 2 3

<[3]

1 2 3

≤[3]

1 2 3

≡ (mod 2)

1 2 3

iClicker 25.3 Which are Reflexive, Symmetric and Transitive ?

A: all B: just ≡ (mod 2) C: =[3] and ≡ (mod 2)

D: all but <[3]
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Transitive Closure

Def. Transitive Closure E+ is the smallest transitive relation
containing E .

The Reflexive Transitive Closure E∗ is the
smallest reflexive and transitive relation containing E .
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Connectivity

conn ≡ ∀xy E?(x , y)

Undirected graph G is connected iff G |= conn.

Directed graph G is strongly connected iff G |= conn.

G1

s t

G4

t

30 1 2

s

G1 is not strongly connected and G4 is not connected.



Recall: Transitive Closure

E+ def
= smallest transitive relation containing E

E? def
= smallest reflexive ∧ transitive relation containing E
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conn ≡ ∀xy E?(x , y)

Undirected graph G is connected iff G |= conn.
G1 is not connected.

Directed graph D is strongly connected iff D |= conn.
D1 is not strongly connected.
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Connected Components

Def: A connected component of an undirected graph G is a
maximal induced subgraph of G that is connected.
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Strongly Connected Components

Def: A strongly connected component of a directed graph G
is a maximal induced subgraph of G that is strongly
connected.
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Trees and Forests

Def: An undirected forest is an acyclic undirected graph

Def: An undirected tree is a connected forest
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