CS250: Discrete Math for Computer Science

L25: Binary Relations and Digraphs
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iClicker 25.2 Which func-
tions on the left are onto ?

A: just Id[g]
B: just g
C: both of them

D: neither of them
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reflexive = VxE(x,x)
symmetric = Vxy(E(x,y) — E(y,x))
_[3] <3l
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reflexive = VxE(x,x)
symmetric = Vxy(E(x,y) — E(y,x))
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iClicker 25.3 Which are Reflexive, Symmetric and Transitive ?
A: all B: just = (mod 2) C: =Bl and = (mod 2)
D: all but <[]
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Def. Transitive Closure E* is the smallest transitive relation
containing E. The Reflexive Transitive Closure E* is the
smallest reflexive and transitive relation containing E.
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Connectivity

conn = VxyE*(x,y)

Undirected graph G is connected iff G = conn.

Directed graph G is strongly connected iff G = conn.
O—0~0—0 a9 & 7§

G is not strongly connected and Gy is not connected.
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conn = Vxy E*(x,y)

Undirected graph G is connected iff G = conn.

Directed graph D is strongly connected iff D = conn.
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conn = Vxy E*(x,y)

Undirected graph G is connected iff G = conn.
G, is not connected.

Directed graph D is strongly connected iff D = conn.
D, is not strongly connected.
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Connected Components

Def: A connected component of an undirected graph G is a
maximal induced subgraph of G that is connected.
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Def: A connected component of an undirected graph G is a
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Strongly Connected Components

Def: A strongly connected component of a directed graph G
is a maximal induced subgraph of G that is strongly
connected.
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Strongly Connected Components

Def: A strongly connected component of a directed graph G
is a maximal induced subgraph of G that is strongly
connected.
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Trees and Forests

Def: An undirected forest is an acyclic undirected graph

Def: An undirected tree is a connected forest
o0 o ©
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