CS250: Discrete Math for Computer Science

L24: Functions

We defined **function** back in L3. Now, we will review what we know and improve our knowledge and understanding about functions.

For two sets, A, B, a relation from A to B is a subset, $R \subseteq A \times B$.

- For two sets, A, B, a relation from A to B is a subset, $R \subseteq A \times B$.
- ▶ We say that *A* is the **domain** and *B* is the **co-domain**.

- For two sets, A, B, a relation from A to B is a subset, $R \subseteq A \times B$.
- ▶ We say that *A* is the **domain** and *B* is the **co-domain**.
- We say that *a* is related to *b* by *R*, *aRb*, iff $(a, b) \in R$.

- For two sets, A, B, a relation from A to B is a subset, $R \subseteq A \times B$.
- ▶ We say that *A* is the **domain** and *B* is the **co-domain**.
- We say that *a* is related to *b* by *R*, *aRb*, iff $(a, b) \in R$.

$$\triangleright <_{N} = \{(i,j) \in \mathbf{N} \times \mathbf{N} \mid i < j\},\$$

- For two sets, *A*, *B*, a relation from *A* to *B* is a subset, $R \subseteq A \times B$.
- ▶ We say that *A* is the **domain** and *B* is the **co-domain**.
- We say that *a* is related to *b* by *R*, *aRb*, iff $(a, b) \in R$.

►
$$<_N = \{(i,j) \in \mathbf{N} \times \mathbf{N} \mid i < j\}, 5 <_N 17,$$

- For two sets, *A*, *B*, a relation from *A* to *B* is a subset, $R \subseteq A \times B$.
- ▶ We say that *A* is the **domain** and *B* is the **co-domain**.
- We say that *a* is related to *b* by *R*, *aRb*, iff $(a, b) \in R$.
- ► $<_N = \{(i,j) \in \mathbf{N} \times \mathbf{N} \mid i < j\}, 5 <_N 17, (5,17) \in <_N \}$

- For two sets, *A*, *B*, a relation from *A* to *B* is a subset, $R \subseteq A \times B$.
- ▶ We say that *A* is the **domain** and *B* is the **co-domain**.
- We say that *a* is related to *b* by *R*, *aRb*, iff $(a, b) \in R$.

►
$$<_N = \{(i,j) \in \mathbf{N} \times \mathbf{N} \mid i < j\}, 5 <_N 17, (5,17) \in <_N \}$$

►
$$<_{[n]} \stackrel{\text{def}}{=} <_N \cap ([n] \times [n]), \text{ where } [n] \stackrel{\text{def}}{=} \{1, 2, \dots, n\}$$

- For two sets, *A*, *B*, a relation from *A* to *B* is a subset, $R \subseteq A \times B$.
- ▶ We say that *A* is the **domain** and *B* is the **co-domain**.
- We say that *a* is related to *b* by *R*, *aRb*, iff $(a, b) \in R$.

►
$$<_N = \{(i,j) \in \mathbb{N} \times \mathbb{N} \mid i < j\}, 5 <_N 17, (5,17) \in <_N \}$$

► $<_{[n]} \stackrel{\text{def}}{=} <_N \cap ([n] \times [n]), \text{ where } [n] \stackrel{\text{def}}{=} \{1, 2, \dots, n\}$

$$\blacktriangleright <_{[3]} = <_N \cap ([3] \times [3]) = \{(1,2), (1,3), (2,3)\}$$

- For two sets, *A*, *B*, a relation from *A* to *B* is a subset, $R \subseteq A \times B$.
- ▶ We say that *A* is the **domain** and *B* is the **co-domain**.
- We say that *a* is related to *b* by *R*, *aRb*, iff $(a, b) \in R$.

►
$$<_N = \{(i,j) \in \mathbf{N} \times \mathbf{N} \mid i < j\}, 5 <_N 17, (5,17) \in <_N \}$$

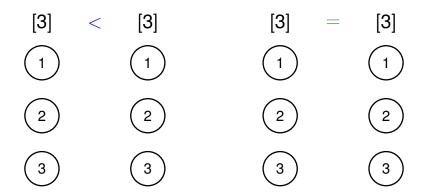
- ► $<_{[n]} \stackrel{\text{def}}{=} <_N \cap ([n] \times [n]), \text{ where } [n] \stackrel{\text{def}}{=} \{1, 2, \dots, n\}$
- ► $<_{[3]} = <_N \cap ([3] \times [3]) = \{(1, 2), (1, 3), (2, 3)\}$
- Awkwardness of Def. of Domain and Co-Domain: If R ⊆ A × B, A ⊆ A', B ⊆ B' then R is a relation from A to B; but R ⊆ A' × B' is also a relation from A' to B' so the domain and co-domain of R are not uniquely defined.

- For two sets, *A*, *B*, a relation from *A* to *B* is a subset, $R \subseteq A \times B$.
- ▶ We say that *A* is the **domain** and *B* is the **co-domain**.
- We say that *a* is related to *b* by *R*, *aRb*, iff $(a, b) \in R$.

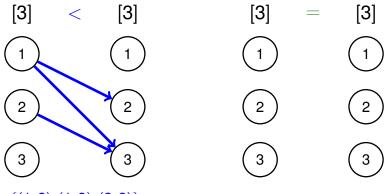
►
$$<_N = \{(i,j) \in \mathbf{N} \times \mathbf{N} \mid i < j\}, 5 <_N 17, (5,17) \in <_N \}$$

- ► $<_{[n]} \stackrel{\text{def}}{=} <_N \cap ([n] \times [n]), \text{ where } [n] \stackrel{\text{def}}{=} \{1, 2, \dots, n\}$
- ► $<_{[3]} = <_N \cap ([3] \times [3]) = \{(1, 2), (1, 3), (2, 3)\}$
- Awkwardness of Def. of Domain and Co-Domain: If R ⊆ A × B, A ⊆ A', B ⊆ B' then R is a relation from A to B; but R ⊆ A' × B' is also a relation from A' to B' so the domain and co-domain of R are not uniquely defined.
- We'll finally talk about this today.

For relation *R* from *A* to *B*, draw an arrow from *a* to *b* iff *aRb*.



For relation *R* from *A* to *B*, draw an arrow from *a* to *b* iff *aRb*.

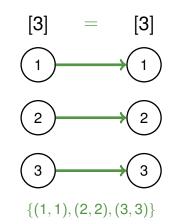


 $\{(1,2),(1,3),(2,3)\}$

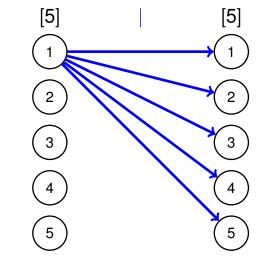
For relation *R* from *A* to *B*, draw an arrow from *a* to *b* iff *aRb*.



 $\{(1,2),(1,3),(2,3)\}$

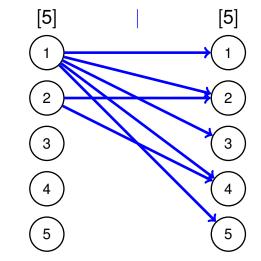


Arrow Diagram of Divides Relation



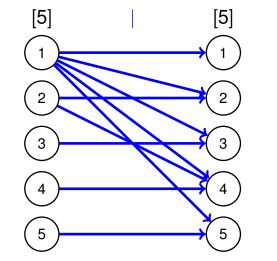
 $\{(1,1),(1,2),(1,3),(1,4),(1,5),$

Arrow Diagram of Divides Relation



 $\{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 2), (2, 4),$

Arrow Diagram of Divides Relation



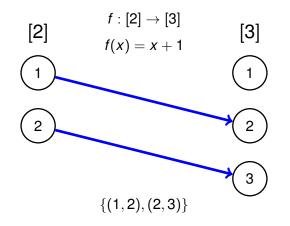
 $\{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 2), (2, 4), (3, 3), (4, 4), (5, 5)\}$

Def: *f* is a **function** from *A* to *B* ($f : A \rightarrow B$) iff $f \subseteq A \times B$, and

f is **defined** on domain *A*: $\forall a \in A \exists b \in B (a, b) \in f$, and

Functions $f : A \to B$ $(a, b) \in f$ iff f(a) = bDef: f is a function from A to B $(f : A \to B)$ iff $f \subseteq A \times B$, and

f is **defined** on domain *A*: $\forall a \in A \exists b \in B (a, b) \in f$, and

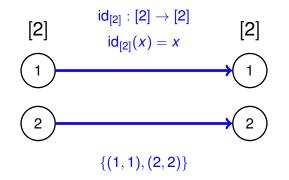


 $f: A \rightarrow B$ iff $f \subseteq A \times B$, and

f is **defined** on domain *A*: $\forall a \in A \exists b \in B (a, b) \in f$, and

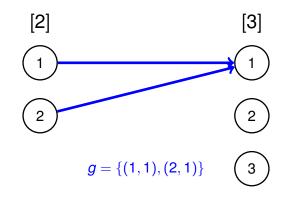
 $f: A \rightarrow B$ iff $f \subseteq A \times B$, and

f is **defined** on domain *A*: $\forall a \in A \exists b \in B (a, b) \in f$, and



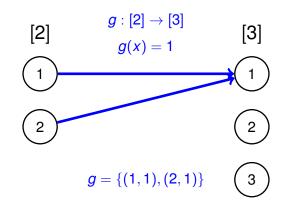
f is a **function** from *A* to *B* iff $f \subseteq A \times B$, and *f* is **defined** on domain *A*: $\forall a \in A \exists b \in B (a, b) \in f$, and *f* is **single valued**: $\forall (a, b), (a', b') \in f (a = a' \rightarrow b = b')$.

iClicker 3.2 Let $g = \{(1, 1), (2, 1)\}$. Is $g : [2] \rightarrow [3]$?



f is a **function** from *A* to *B* iff $f \subseteq A \times B$, and *f* is **defined** on domain *A*: $\forall a \in A \exists b \in B (a, b) \in f$, and *f* is **single valued**: $\forall (a, b), (a', b') \in f (a = a' \rightarrow b = b')$.

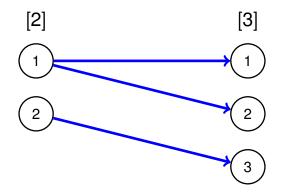
iClicker 3.2 Let $g = \{(1, 1), (2, 1)\}$. Is $g : [2] \rightarrow [3]$? A: Yes



 $f: A \rightarrow B$ iff $f \subseteq A \times B$, and

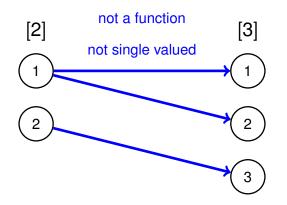
f is **defined** on domain *A*: $\forall a \in A \exists b \in B (a, b) \in f$, and *f* is **single valued**: $\forall (a, b), (a', b') \in f (a = a' \rightarrow b = b')$.

iClicker 3.3 Let $h = \{(1, 1), (1, 2), (2, 3)\}$. Is $h : [2] \to [3]$?



 $f: A \to B$ iff $f \subseteq A \times B$, and f is defined on domain A: $\forall a \in A \exists b \in B (a, b) \in f$, and f is single valued: $\forall (a, b), (a', b') \in f (a = a' \to b = b')$.

iClicker 3.3 Let $h = \{(1, 1), (1, 2), (2, 3)\}$. Is $h : [2] \rightarrow [3]$? B: No



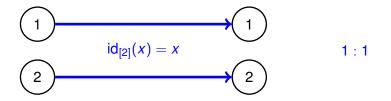
1:1 Functions

Def. A function $f : A \rightarrow B$ is **one-to-one** (1 : 1) iff no element in *B* has arrows from two elements in *A*:

 $\forall xy \ (f(x) = f(y) \ \rightarrow \ x = y)$

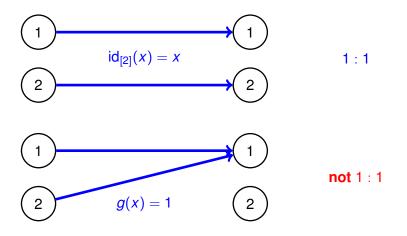
1:1 Functions

Def. A function $f : A \to B$ is **one-to-one** (1 : 1) iff no element in *B* has arrows from two elements in *A*: $\forall xy \ (f(x) = f(y) \to x = y)$



1:1 Functions

Def. A function $f : A \to B$ is **one-to-one** (1 : 1) iff no element in *B* has arrows from two elements in *A*: $\forall xy \ (f(x) = f(y) \to x = y)$



onto Functions

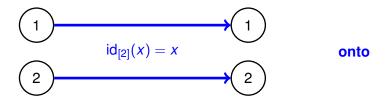
Def. A function $f : A \rightarrow B$ is **onto** iff every element in *B* has an arrow to it.

 $\forall y \in B \ \exists x \in A \ f(x) = y$

onto Functions

Def. A function $f : A \rightarrow B$ is **onto** iff every element in *B* has an arrow to it.

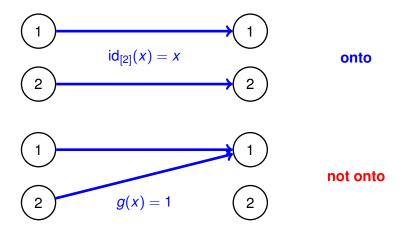
 $\forall y \in B \ \exists x \in A \ f(x) = y$



onto Functions

Def. A function $f : A \rightarrow B$ is **onto** iff every element in *B* has an arrow to it.

 $\forall y \in B \ \exists x \in A \ f(x) = y$



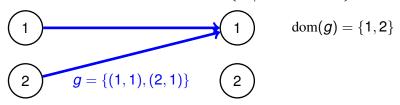
For $f : A \rightarrow B$, it's **domain** and **range** are well defined.

For $f : A \rightarrow B$, it's **domain** and **range** are well defined.

Def. The domain of $f: \operatorname{dom}(f) \stackrel{\text{def}}{=} \{a \mid \exists b (a, b) \in f\} = A$

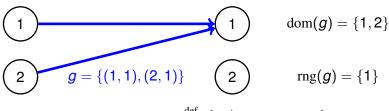
For $f : A \rightarrow B$, it's **domain** and **range** are well defined.

Def. The domain of $f: \text{dom}(f) \stackrel{\text{def}}{=} \{a \mid \exists b (a, b) \in f\} = A$



For $f : A \rightarrow B$, it's **domain** and **range** are well defined.

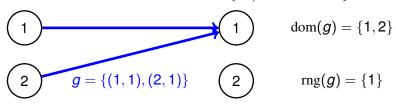
Def. The domain of $f: \text{dom}(f) \stackrel{\text{def}}{=} \{a \mid \exists b (a, b) \in f\} = A$



Def. The range of $f: \operatorname{rng}(f) \stackrel{\text{def}}{=} \{b \mid \exists a (a, b) \in f\}$

For $f : A \rightarrow B$, it's **domain** and **range** are well defined.

Def. The domain of $f: \text{dom}(f) \stackrel{\text{def}}{=} \{a \mid \exists b (a, b) \in f\} = A$

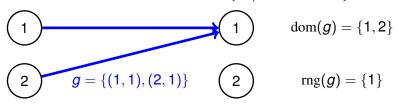


Def. The range of f: rng $(f) \stackrel{\text{def}}{=} \{b \mid \exists a (a, b) \in f\}$

For $g : \{1,2\} \rightarrow \{1,2\}$, its co-domain is $\{1,2\}$; g is not onto.

For $f : A \rightarrow B$, it's **domain** and **range** are well defined.

Def. The domain of $f: \text{dom}(f) \stackrel{\text{def}}{=} \{a \mid \exists b (a, b) \in f\} = A$

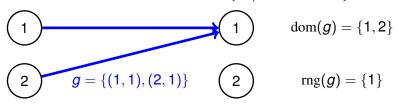


Def. The range of $f: \operatorname{rng}(f) \stackrel{\text{def}}{=} \{b \mid \exists a (a, b) \in f\}$

For $g : \{1,2\} \rightarrow \{1,2\}$, its co-domain is $\{1,2\}$; g is not onto. For $g : \{1,2\} \rightarrow \{1\}$, its co-domain is $\{1\}$; g is onto.

For $f : A \rightarrow B$, it's **domain** and **range** are well defined.

Def. The domain of $f: \text{dom}(f) \stackrel{\text{def}}{=} \{a \mid \exists b (a, b) \in f\} = A$



Def. The range of $f: \operatorname{rng}(f) \stackrel{\text{def}}{=} \{b \mid \exists a (a, b) \in f\}$

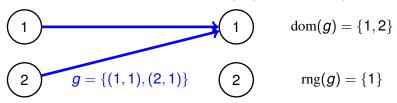
For $g : \{1,2\} \rightarrow \{1,2\}$, its co-domain is $\{1,2\}$; g is not onto.

For $g : \{1, 2\} \rightarrow \{1\}$, its co-domain is $\{1\}$; g is onto.

The co-domain must be **given explicitly**, it cannot be determined from the function, *g*.

For $f : A \rightarrow B$, it's **domain** and **range** are well defined.

Def. The domain of $f: \text{dom}(f) \stackrel{\text{def}}{=} \{a \mid \exists b (a, b) \in f\} = A$



Def. The range of $f: \operatorname{rng}(f) \stackrel{\text{def}}{=} \{b \mid \exists a (a, b) \in f\}$

For $g : \{1,2\} \rightarrow \{1,2\}$, its co-domain is $\{1,2\}$; g is not onto.

For $g : \{1, 2\} \rightarrow \{1\}$, its co-domain is $\{1\}$; g is onto.

The co-domain must be **given explicitly**, it cannot be determined from the function, *g*.

A function *g* is **onto** iff its **range** is equal to its **co-domain**.

Def. The domain of $f: \text{dom}(f) \stackrel{\text{def}}{=} \{a \mid \exists b (a, b) \in f\} = A$

Def. The range of $f: \operatorname{rng}(f) \stackrel{\text{def}}{=} \{ b \mid \exists a (a, b) \in f \}$

For $g : \{1,2\} \rightarrow \{1,2\}$, its co-domain is $\{1,2\}$; g is not onto.

For $g : \{1, 2\} \rightarrow \{1\}$, its co-domain is $\{1\}$; g is onto.

The co-domain must be **given explicitly**, it cannot be determined from the function, *g*.

A function g is **onto** iff its **range** is equal to its **co-domain**.

Def. The domain of $f: \text{dom}(f) \stackrel{\text{def}}{=} \{a \mid \exists b (a, b) \in f\} = A$

Def. The range of $f: \operatorname{rng}(f) \stackrel{\text{def}}{=} \{ b \mid \exists a (a, b) \in f \}$

For $g : \{1,2\} \rightarrow \{1,2\}$, its co-domain is $\{1,2\}$; g is not onto.

For $g : \{1, 2\} \rightarrow \{1\}$, its co-domain is $\{1\}$; g is onto.

The co-domain must be **given explicitly**, it cannot be determined from the function, *g*.

A function g is **onto** iff its **range** is equal to its **co-domain**.

For $f \subseteq A \times B$, we can tell if f is single valued and if it is 1:1.

Def. The domain of $f: \text{dom}(f) \stackrel{\text{def}}{=} \{a \mid \exists b (a, b) \in f\} = A$

Def. The range of $f: \operatorname{rng}(f) \stackrel{\text{def}}{=} \{ b \mid \exists a (a, b) \in f \}$

For $g : \{1,2\} \rightarrow \{1,2\}$, its co-domain is $\{1,2\}$; g is not onto.

For $g : \{1, 2\} \rightarrow \{1\}$, its co-domain is $\{1\}$; g is onto.

The co-domain must be **given explicitly**, it cannot be determined from the function, *g*.

A function *g* is **onto** iff its **range** is equal to its **co-domain**.

For $f \subseteq A \times B$, we can tell if f is single valued and if it is 1:1.

To tell if $f : A \rightarrow B$, i.e., is f a function, we must know A.

Def. The domain of $f: \text{dom}(f) \stackrel{\text{def}}{=} \{a \mid \exists b (a, b) \in f\} = A$

Def. The range of $f: \operatorname{rng}(f) \stackrel{\text{def}}{=} \{ b \mid \exists a (a, b) \in f \}$

For $g : \{1,2\} \rightarrow \{1,2\}$, its co-domain is $\{1,2\}$; g is not onto.

For $g : \{1, 2\} \rightarrow \{1\}$, its co-domain is $\{1\}$; g is onto.

The co-domain must be **given explicitly**, it cannot be determined from the function, *g*.

A function *g* is **onto** iff its **range** is equal to its **co-domain**.

For $f \subseteq A \times B$, we can tell if f is **single valued** and if it is **1:1**.

To tell if $f : A \rightarrow B$, i.e., is f a function, we must know A.

To tell if *f* is **onto**, we must know *B*.

For $f : A \rightarrow B$ and $g : B \rightarrow C$,

For $f : A \rightarrow B$ and $g : B \rightarrow C$,

Def. the composition of g and f: $g \circ f(x) \stackrel{\text{def}}{=} g(f(x))$

For $f : A \to B$ and $g : B \to C$, **Def.** the composition of g and $f : g \circ f(x) \stackrel{\text{def}}{=} g(f(x))$ $f : \mathbf{N} \to \mathbf{N} : f(n) = 2 \cdot n \qquad g : \mathbf{N} \to \mathbf{N} : g(n) = n + 1$ For $f : A \to B$ and $g : B \to C$, **Def.** the composition of g and $f : g \circ f(x) \stackrel{\text{def}}{=} g(f(x))$ $f : \mathbf{N} \to \mathbf{N} : f(n) = 2 \cdot n \qquad g : \mathbf{N} \to \mathbf{N} : g(n) = n + 1$ $g \circ f : \mathbf{N} \to \mathbf{N} : g \circ f(n) = g(f(n)) = 2 \cdot n + 1$ For $f : A \to B$ and $g : B \to C$, **Def.** the composition of g and $f : g \circ f(x) \stackrel{\text{def}}{=} g(f(x))$ $f : \mathbf{N} \to \mathbf{N} : f(n) = 2 \cdot n \qquad g : \mathbf{N} \to \mathbf{N} : g(n) = n + 1$ $g \circ f : \mathbf{N} \to \mathbf{N} : g \circ f(n) = g(f(n)) = 2 \cdot n + 1$ $f \circ g : \mathbf{N} \to \mathbf{N} : f \circ g(n) = f(g(n)) = 2 \cdot (n + 1)$

For $f : A \rightarrow B$ and $g : B \rightarrow A$,

For $f : A \rightarrow B$ and $g : B \rightarrow A$,

Def. *f* and *g* are **inverse functions** $f = g^{-1}$ and $g = f^{-1}$ iff

 $f \circ g = id_B$; and $g \circ f = id_A$

For $f : A \to B$ and $g : B \to A$, **Def.** f and g are inverse functions $f = g^{-1}$ and $g = f^{-1}$ iff $f \circ g = id_B$; and $g \circ f = id_A$ $f_1 : \mathbf{Z} \to \mathbf{Z}$ $f_1(x) = x + 1$; $g_1 : \mathbf{Z} \to \mathbf{Z}$ $g_1(x) = x - 1$

For $f : A \to B$ and $g : B \to A$, **Def.** f and g are inverse functions $f = g^{-1}$ and $g = f^{-1}$ iff $f \circ g = id_B$; and $g \circ f = id_A$ $f_1 : \mathbf{Z} \to \mathbf{Z}$ $f_1(x) = x + 1$; $g_1 : \mathbf{Z} \to \mathbf{Z}$ $g_1(x) = x - 1$ $f_1 \circ g_1(x) = f_1(g_1(x)) = (x - 1) + 1 = x$

For $f : A \rightarrow B$ and $g : B \rightarrow A$, Def. f and g are inverse functions $f = g^{-1}$ and $g = f^{-1}$ iff $f \circ g = id_B$; and $g \circ f = id_A$ $f_1 : \mathbb{Z} \rightarrow \mathbb{Z}$ $f_1(x) = x + 1$; $g_1 : \mathbb{Z} \rightarrow \mathbb{Z}$ $g_1(x) = x - 1$ $f_1 \circ g_1(x) = f_1(g_1(x)) = (x - 1) + 1 = x$ $g_1 \circ f_1(x) = g_1(f_1(x)) = (x + 1) - 1 = x$

For $f : A \rightarrow B$ and $g : B \rightarrow A$, Def. f and g are inverse functions $f = g^{-1}$ and $g = f^{-1}$ iff $f \circ g = id_B$; and $g \circ f = id_A$ $f_1 : \mathbb{Z} \rightarrow \mathbb{Z}$ $f_1(x) = x + 1$; $g_1 : \mathbb{Z} \rightarrow \mathbb{Z}$ $g_1(x) = x - 1$ $f_1 \circ g_1(x) = f_1(g_1(x)) = (x - 1) + 1 = x$ $g_1 \circ f_1(x) = g_1(f_1(x)) = (x + 1) - 1 = x$

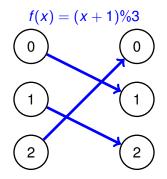
 $f_2: \mathbf{Q}
ightarrow \mathbf{Q} \quad f_2(x) = x \cdot 2; \quad g_2: \mathbf{Q}
ightarrow \mathbf{Q} \quad g_2(x) = x/2$

For $f : A \rightarrow B$ and $a : B \rightarrow A$. **Def.** f and g are inverse functions $f = g^{-1}$ and $g = f^{-1}$ iff $f \circ q = \mathrm{id}_{B}$; and $q \circ f = \mathrm{id}_{A}$ $f_1: \mathbf{Z} \rightarrow \mathbf{Z}$ $f_1(x) = x + 1;$ $g_1: \mathbf{Z} \rightarrow \mathbf{Z}$ $g_1(x) = x - 1$ $f_1 \circ g_1(x) = f_1(g_1(x)) = (x-1)+1 = x$ $q_1 \circ f_1(x) = q_1(f_1(x)) = (x+1) - 1 = x$ $f_2: \mathbf{Q} \to \mathbf{Q}$ $f_2(x) = x \cdot 2;$ $g_2: \mathbf{Q} \to \mathbf{Q}$ $g_2(x) = x/2$

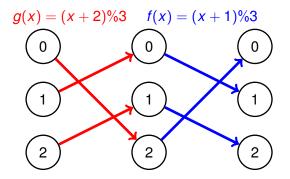
 $f_2 \circ g_2(x) = f_2(g_2(x)) = (x/2) \cdot 2 = x$

For $f : A \rightarrow B$ and $a : B \rightarrow A$. **Def.** f and g are inverse functions $f = g^{-1}$ and $g = f^{-1}$ iff $f \circ q = \mathrm{id}_{B}$; and $q \circ f = \mathrm{id}_{A}$ $f_1: \mathbf{Z} \rightarrow \mathbf{Z}$ $f_1(x) = x + 1;$ $g_1: \mathbf{Z} \rightarrow \mathbf{Z}$ $g_1(x) = x - 1$ $f_1 \circ g_1(x) = f_1(g_1(x)) = (x-1)+1 = x$ $q_1 \circ f_1(x) = q_1(f_1(x)) = (x+1) - 1 = x$ $f_2: \mathbf{Q} \to \mathbf{Q}$ $f_2(x) = x \cdot 2;$ $g_2: \mathbf{Q} \to \mathbf{Q}$ $g_2(x) = x/2$ $f_2 \circ g_2(x) = f_2(g_2(x)) = (x/2) \cdot 2 = x$ $q_2 \circ f_2(x) = q_2(f_2(x)) = (x \cdot 2)/2 = x$

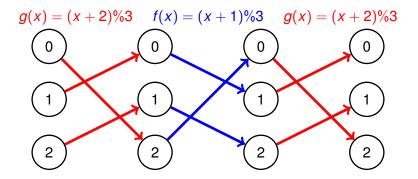
For $f : A \to B$ and $g : B \to A$, f and g are inverse functions $f = g^{-1}$ and $g = f^{-1}$ iff



For $f : A \to B$ and $g : B \to A$, f and g are inverse functions $f = g^{-1}$ and $g = f^{-1}$ iff $f \circ g = id_B$



For $f : A \to B$ and $g : B \to A$, f and g are **inverse functions** $f = g^{-1}$ and $g = f^{-1}$ iff $f \circ g = id_B$ and $g \circ f = id_A$



Does $f_1 : \mathbf{N} \to \mathbf{N}$, $f_1(n) = \lfloor n/2 \rfloor$ have an inverse?

Does $f_1 : \mathbf{N} \to \mathbf{N}$, $f_1(n) = \lfloor n/2 \rfloor$ have an inverse?

No, f_1 is not 1:1, so no g_1 cannot satisfy $g_1(f_1(0)) = 0$ and $g_1(f_1(1)) = 1$ because $f_1(0) = f_1(1)$.

Does $f_1 : \mathbf{N} \to \mathbf{N}$, $f_1(n) = \lfloor n/2 \rfloor$ have an inverse?

No, f_1 is not 1:1, so no g_1 cannot satisfy $g_1(f_1(0)) = 0$ and $g_1(f_1(1)) = 1$ because $f_1(0) = f_1(1)$.

Does $f_2 : \mathbf{N} \to \mathbf{N}$, $f_2(n) = n + 1$ have an inverse?

Does $f_1 : \mathbf{N} \to \mathbf{N}$, $f_1(n) = \lfloor n/2 \rfloor$ have an inverse?

No, f_1 is not 1:1, so no g_1 cannot satisfy $g_1(f_1(0)) = 0$ and $g_1(f_1(1)) = 1$ because $f_1(0) = f_1(1)$.

Does $f_2 : \mathbf{N} \to \mathbf{N}$, $f_2(n) = n + 1$ have an inverse?

No, f_2 is not onto, so no g_2 can satisfy $f_2(g_2(0)) = 0$ because $0 \notin \operatorname{rng}(f_2)$

Does $f_1 : \mathbf{N} \to \mathbf{N}$, $f_1(n) = \lfloor n/2 \rfloor$ have an inverse?

No, f_1 is not 1:1, so no g_1 cannot satisfy $g_1(f_1(0)) = 0$ and $g_1(f_1(1)) = 1$ because $f_1(0) = f_1(1)$.

Does $f_2 : \mathbf{N} \to \mathbf{N}$, $f_2(n) = n + 1$ have an inverse?

No, f_2 is not onto, so no g_2 can satisfy $f_2(g_2(0)) = 0$ because $0 \notin \operatorname{rng}(f_2)$

Thm. $f : A \rightarrow B$ has an inverse iff f is 1:1 and onto.

Does $f_1 : \mathbf{N} \to \mathbf{N}$, $f_1(n) = \lfloor n/2 \rfloor$ have an inverse?

No, f_1 is not 1:1, so no g_1 cannot satisfy $g_1(f_1(0)) = 0$ and $g_1(f_1(1)) = 1$ because $f_1(0) = f_1(1)$.

Does $f_2 : \mathbf{N} \to \mathbf{N}$, $f_2(n) = n + 1$ have an inverse?

No, f_2 is not onto, so no g_2 can satisfy $f_2(g_2(0)) = 0$ because $0 \notin \operatorname{rng}(f_2)$

Thm. $f : A \rightarrow B$ has an inverse iff f is 1:1 and onto.

Proof: Already argued it is necessary that *f* is 1:1 and onto.

Does $f_1 : \mathbf{N} \to \mathbf{N}$, $f_1(n) = \lfloor n/2 \rfloor$ have an inverse?

No, f_1 is not 1:1, so no g_1 cannot satisfy $g_1(f_1(0)) = 0$ and $g_1(f_1(1)) = 1$ because $f_1(0) = f_1(1)$.

Does $f_2 : \mathbf{N} \to \mathbf{N}$, $f_2(n) = n + 1$ have an inverse?

No, f_2 is not onto, so no g_2 can satisfy $f_2(g_2(0)) = 0$ because $0 \notin \operatorname{rng}(f_2)$

Thm. $f : A \rightarrow B$ has an inverse iff f is 1:1 and onto.

Proof: Already argued it is necessary that f is 1:1 and onto. Assume that f is 1:1 and onto.

Does $f_1 : \mathbf{N} \to \mathbf{N}$, $f_1(n) = \lfloor n/2 \rfloor$ have an inverse?

No, f_1 is not 1:1, so no g_1 cannot satisfy $g_1(f_1(0)) = 0$ and $g_1(f_1(1)) = 1$ because $f_1(0) = f_1(1)$.

Does $f_2 : \mathbf{N} \to \mathbf{N}$, $f_2(n) = n + 1$ have an inverse?

No, f_2 is not onto, so no g_2 can satisfy $f_2(g_2(0)) = 0$ because $0 \notin \operatorname{rng}(f_2)$

Thm. $f : A \rightarrow B$ has an inverse iff f is 1:1 and onto.

Proof: Already argued it is necessary that *f* is 1:1 and onto. Assume that *f* is 1:1 and onto.

Let $g \stackrel{\text{def}}{=} \{(b, a) \mid (a, b) \in f\}$ converse or transpose of f.

Does $f_1 : \mathbf{N} \to \mathbf{N}$, $f_1(n) = \lfloor n/2 \rfloor$ have an inverse?

No, f_1 is not 1:1, so no g_1 cannot satisfy $g_1(f_1(0)) = 0$ and $g_1(f_1(1)) = 1$ because $f_1(0) = f_1(1)$.

Does $f_2 : \mathbf{N} \to \mathbf{N}$, $f_2(n) = n + 1$ have an inverse?

No, f_2 is not onto, so no g_2 can satisfy $f_2(g_2(0)) = 0$ because $0 \notin \operatorname{rng}(f_2)$

Thm. $f : A \rightarrow B$ has an inverse iff f is 1:1 and onto.

Proof: Already argued it is necessary that *f* is 1:1 and onto. Assume that *f* is 1:1 and onto.

Let $g \stackrel{\text{def}}{=} \{(b, a) \mid (a, b) \in f\}$ converse or transpose of f. Claim: $g : B \to A$ and $g \circ f = \text{id}_A$ and $f \circ g = \text{id}_B$

Does $f_1 : \mathbf{N} \to \mathbf{N}$, $f_1(n) = \lfloor n/2 \rfloor$ have an inverse?

No, f_1 is not 1:1, so no g_1 cannot satisfy $g_1(f_1(0)) = 0$ and $g_1(f_1(1)) = 1$ because $f_1(0) = f_1(1)$.

Does $f_2 : \mathbf{N} \to \mathbf{N}$, $f_2(n) = n + 1$ have an inverse?

No, f_2 is not onto, so no g_2 can satisfy $f_2(g_2(0)) = 0$ because $0 \notin \operatorname{rng}(f_2)$

Thm. $f : A \rightarrow B$ has an inverse iff f is 1:1 and onto.

Proof: Already argued it is necessary that *f* is 1:1 and onto. Assume that *f* is 1:1 and onto.

Let $g \stackrel{\text{def}}{=} \{(b, a) \mid (a, b) \in f\}$ converse or transpose of f.

Claim: $g : B \to A$ and $g \circ f = id_A$ and $f \circ g = id_B$

Check on your own. We'll talk about this more next week.