CS250: Discrete Math for Computer Science

L22: Inductive Definitions and Structural Induction

Inductive Definitions and Structural Induction

We define our data structures — or other objects of interest —
inductively.

This is useful because we can:

Inductive Definitions and Structural Induction

We define our data structures — or other objects of interest —
inductively.

This is useful because we can:

» Prove things about these objects inductively.

Inductive Definitions and Structural Induction

We define our data structures — or other objects of interest —
inductively.

This is useful because we can:

» Prove things about these objects inductively.

» Define operations on these objects inductively, i.e.,
recursively.

Inductive Definitions and Structural Induction

We define our data structures — or other objects of interest —
inductively.

This is useful because we can:

» Prove things about these objects inductively.

» Define operations on these objects inductively, i.e.,
recursively.

» Examples: lists, trees, xml

Inductive Definitions and Structural Induction

We define our data structures — or other objects of interest —
inductively.

This is useful because we can:

v

Prove things about these objects inductively.

Define operations on these objects inductively, i.e.,
recursively.

Examples: lists, trees, xml

Modern programming langugages allow recursive function
definitions on recursively defined datatypes (Python — hw4)

v

v

v

Inductive Definitions and Structural Induction

We define our data structures — or other objects of interest —
inductively.

This is useful because we can:

v

Prove things about these objects inductively.

Define operations on these objects inductively, i.e.,
recursively.

Examples: lists, trees, xml

Modern programming langugages allow recursive function
definitions on recursively defined datatypes (Python — hw4)

Main examples today: logical formulas, truth

v

v

v

v

Terms in PredCalc

Def: Let X be a PredCalc vocabulary. A term t € term(X) is a
string of symbols that every world W € World[X] must interpret
as an element tW ¢ |W|. Terms are defined recursively as
follows:

base 0. v e VAR — veterm(X)
variables are terms

Terms in PredCalc

Def: Let X be a PredCalc vocabulary. A term t € term(X) is a
string of symbols that every world W € World[X] must interpret
as an element tW ¢ |W|. Terms are defined recursively as

follows:
base 0. v e VAR — veterm(X)
variables are terms
base1. keX — k eterm(X)

constant symbols are terms

Terms in PredCalc

Def: Let X be a PredCalc vocabulary. A term t € term(X) is a
string of symbols that every world W € World[X] must interpret
as an element tW ¢ |W|. Terms are defined recursively as

follows:
base 0. v e VAR — veterm(X)
variables are terms
base1. keX — k eterm(X)

constant symbols are terms

ind.2. t,....t,cterm(X),f € — f(4,...,t) € term(X)
terms are closed under function symbols

Terms in PredCalc

Def: Let X be a PredCalc vocabulary. A term t € term(X) is a
string of symbols that every world W € World[X] must interpret
as an element tW ¢ |W|. Terms are defined recursively as

follows:
base 0. v e VAR — veterm(X)
variables are terms
base1. keX — k eterm(X)

constant symbols are terms

ind.2. t,....t,cterm(X),f € — f(4,...,t) € term(X)
terms are closed under function symbols

Terms in PredCalc

Def: Let X be a PredCalc vocabulary. A term t € term(X) is a
string of symbols that every world W € World[X] must interpret
as an element tW ¢ |W|. Terms are defined recursively as

follows:
base 0. v e VAR — veterm(X)
variables are terms
base1. keX — k eterm(X)

constant symbols are terms
ind.2. t,....t,cterm(X),f € — f(4,...,t) € term(X)

terms are closed under function symbols

term(Xyny) = {0, 1,x,...,....x-y,...(x+1)-(y+0),...}

oYolo BEoYolo
NG BB

Gi Gi[1/x 4/y]

Default Interpretation of variables: Unless explicitly stated
otherwise, v"W =0, (or the min value in |W| if 0 ¢ |W)|).

S t S X t
Gi Gi[1/x 4/y]
Default Interpretation of variables: Unless explicitly stated

otherwise, v"W =0, (or the min value in |W| if 0 ¢ |W)|).

Notation: W[e/v] is same as W, except vVIeV] = e,

oYolo BEoYolo
NG BB

Gi Gi[1/x 4/y]

Default Interpretation of variables: Unless explicitly stated
otherwise, v"W =0, (or the min value in |W| if 0 ¢ |W)|).

Notation: W[e/v] is same as W, except vVIeV] = e,

xG =0

oYolo BEoYolo
NG BB

Gi Gi[1/x 4/y]

Default Interpretation of variables: Unless explicitly stated
otherwise, v"W =0, (or the min value in |W| if 0 ¢ |W)|).

Notation: W[e/v] is same as W, except vVIeV] = e,

xG =0 y& =0

oYolo BEoYolo
NG BB

Gi Gi[1/x 4/y]

Default Interpretation of variables: Unless explicitly stated
otherwise, v"W =0, (or the min value in |W| if 0 ¢ |W)|).

Notation: W[e/v] is same as W, except vVIeV] = e,
xG =0 yG =0 xGUIxH =1

oYolo BEoYolo
NG BB

Gi Gi[1/x 4/y]

Default Interpretation of variables: Unless explicitly stated
otherwise, v"W =0, (or the min value in |W| if 0 ¢ |W)|).

Notation: W[e/v] is same as W, except vVIeV] = e,
xG =0 yG =0 xGUIxH =1

iClicker 22.1 What is yGi[Vx 4]
A:0 B:1 C:3 D:4

oYolo BEoYolo
NG BB

Gi Gi[1/x 4/y]

Default Interpretation of variables: Unless explicitly stated
otherwise, v"W =0, (or the min value in |W| if 0 ¢ |W)|).

Notation: W[e/v] is same as W, except vVIeV] = e,
xG =0 yG =0 xGUIxH =1

iClicker 22.2 What is tGi[Vx 4¥]
A:0 B:1 C:3 D:4

Worlds Recursively Interpret Terms

For t € term(X); W € World[X], recursively define tW

Worlds Recursively Interpret Terms

For t € term(X); W € World[X], recursively define tW

base case 0: For v € VAR, v already has default value.

Worlds Recursively Interpret Terms

For t € term(X); W € World[X], recursively define tW

base case 0: For v € VAR, v already has default value.

base case 1: For constant symbol, k € ¥, kW already defined.

Worlds Recursively Interpret Terms

For t € term(X); W € World[X], recursively define tW

base case 0: For v € VAR, v already has default value.
base case 1: For constant symbol, k € ¥, kW already defined.
inductive case: For t1,...,t; e term(X),f € &

(6 S M@,)

Worlds Recursively Interpret Terms

For t € term(X); W € World[X], recursively define tW

base case 0: For v € VAR, v already has default value.
base case 1: For constant symbol, k € ¥, kW already defined.

inductive case: For t1,...,t; e term(X),f € &

(6 S M@,)

Prop. For t € term(X); W € World[Z], tW ¢ |W|

Worlds Recursively Interpret Terms

For t € term(X); W € World[X], recursively define tW

base case 0: For v € VAR, v already has default value.
base case 1: For constant symbol, k € ¥, kW already defined.

inductive case: For t1,...,t; e term(X),f € &

(6 S M@,)

Prop. For t € term(X); W € World[Z], tW ¢ |W|

Proof: By structural induction on ¢.

Worlds Recursively Interpret Terms

For t € term(X); W € World[X], recursively define tW

base case 0: For v € VAR, v already has default value.
base case 1: For constant symbol, k € ¥, kW already defined.
inductive case: For t1,...,t; e term(X),f € &

(6 S M@,)

Prop. For t € term(X); W € World[Z], tW ¢ |W|

Proof: By structural induction on ¢.
base cases: For v € VAR, v ¢ |W|;fork € &, kW ¢ |W|

Worlds Recursively Interpret Terms

For t € term(X); W € World[X], recursively define tW

base case 0: For v € VAR, v already has default value.
base case 1: For constant symbol, k € ¥, kW already defined.
inductive case: For t1,...,t; e term(X),f € &

(6 S M@,)

Prop. For t € term(X); W € World[Z], tW ¢ |W|

Proof: By structural induction on ¢.
base cases: For v € VAR, v ¢ |W|;fork € &, kW ¢ |W|

inductive case: indHyp: t/V,... t" € |W|.

Worlds Recursively Interpret Terms

For t € term(X); W € World[X], recursively define tW

base case 0: For v € VAR, v already has default value.
base case 1: For constant symbol, k € ¥, kW already defined.
inductive case: For t1,...,t; e term(X),f € &

(6 S M@,)

Prop. For t € term(X); W € World[Z], tW ¢ |W|

Proof: By structural induction on ¢.

base cases: For v € VAR, v ¢ |W|;fork € &, kW ¢ |W|
inductive case: indHyp: t/V,... t" € |W|.
YW= (W, so (F(t, .. b)WY =YW, tW) e (W] O

Tarski’s Recursive Definition of Truth

For every G € World[X] and t € term(X) t¢ c |G|

Tarski’s Recursive Definition of Truth

For every G € World[X] and t € term(X) t¢ c |G|

G E t=¢t iff ¢t =13

Tarski’s Recursive Definition of Truth

For every G € World[X] and t € term(X) t¢ c |G|
G E t=¢t iff ¢t =13

G E Pt,....ta) iff (t8,...,1) e PC pacy

Tarski’s Recursive Definition of Truth

For every G € World[X] and t € term(X) tG c |G|
G F ti=t iff t8 = 8
G E Pt,....ta) iff (t8,...,1) e PC pacy

G F ~o iff G a PropCalc

Tarski’s Recursive Definition of Truth

O O O O
L

For every G € World[X] and t € term(X)

b=t

Pt ...

~

aAp

’ ta)

iff

iff

iff

iff

te =1f
(tG,...,t8) e PG
Gl a

GEa and GEQJ

t¢ € |G|

Padcy
PropCalc

PropCalc

Tarski’s Recursive Definition of Truth

A O O O @
moomroom

For every G € World[X] and t € term(X)

b=t

Pt ...

~Q
aAp

aVp

’ ta)

iff

iff

iff

te =1f
(tG,...,t8) e PG
G o

GEa and GEQJ
GEa or GEJ

t¢ € |G|

Padcy
PropCalc
PropCalc

PropCalc

O O O O O O
B L | | | R |

Tarski’s Recursive Definition of Truth

For every G € World[X] and t € term(X)

iff 1% =1t8

iff

iff

iff

iff

iff

(tG,...,t8) e PG

GEa and GEQJ
GEa or

forall a € |G|

Glan] = o

t¢ € |G|

Padcy
PropCalc
PropCalc

PropCalc

A O O O O O @
B L | | | R | N |

Tarski’s Recursive Definition of Truth

For every G € World[X] and t € term(X)

iff 1% =1t8

iff

iff

iff

iff

iff

iff

(tG,...,t8) e PG

GEa and GEQJ
GEa or
forall a € |G|

Glan] = o
Glai] k= o

exists a € |G|

t¢ € |G|

Padcy
PropCalc
PropCalc

PropCalc

Tarski’s Recursive Definition of Truth

Tarski’s Recursive Definition of Truth

Tarski’s Recursive Definition of Truth

Tarski’s Recursive Definition of Truth

Tarski’s Recursive Definition of Truth

Tarski’s Recursive Definition of Truth

Tarski’s Recursive Definition of Truth

Truth Game: a two player game that is an equivalent but more
fun way to tell whether W |= ¢. First put ¢ into NNF.

Truth Game: a two player game that is an equivalent but more
fun way to tell whether W = . First put ¢ into NNF.

\ Dumbledore wants to show that W = ¢

Truth Game: a two player game that is an equivalent but more
fun way to tell whether W = . First put ¢ into NNF.

- . Dumbledore wants to show that W |= ¢

Gandalf wants to show that W }~ .

Truth Game: a two player game that is an equivalent but more
fun way to tell whether W = . First put ¢ into NNF.

'ﬁ Dumbledore wants to show that W = ¢

Gandalf wants to show that W }~ .

‘ \\

base case: if ¢ is a literal, then D wins iff W = ¢.

Truth Game: a two player game that is an equivalent but more
fun way to tell whether W = . First put ¢ into NNF.

’ﬁ Dumbledore wants to show that W = ¢

Gandalf wants to show that W }~ .

base case: if ¢ is a literal, then D wins iff W = ¢.
inductive cases:

Truth Game: a two player game that is an equivalent but more
fun way to tell whether W = . First put ¢ into NNF.

Dumbledore wants to show that W = ¢

Gandalf wants to show that W }~ .

base case: if ¢ is a literal, then D wins iff W = ¢.
inductive cases:

WEpny Gchooses a e {p, ¢} continueon: W«

Truth Game: a two player game that is an equivalent but more
fun way to tell whether W = . First put ¢ into NNF.

Dumbledore wants to show that W = ¢

Gandalf wants to show that W }~ .

base case: if ¢ is a literal, then D wins iff W = ¢.
inductive cases:

WE Ay Gchooses a e {p, ¢} continueon: W«
Wil=¢Vvey Dchooses ac {p,} continueon: W =«

Truth Game: a two player game that is an equivalent but more
fun way to tell whether W = . First put ¢ into NNF.

Dumbledore wants to show that W = ¢

Gandalf wants to show that W }~ .

base case: if ¢ is a literal, then D wins iff W = ¢.
inductive cases:

WE Ay Gchooses a e {p, ¢} continueon: W«
Wil=¢Vvey Dchooses ac {p,} continueon: W =«
WEVxe Gchooses ac |W| continueon: Wa/x = ¢

Truth Game: a two player game that is an equivalent but more
fun way to tell whether W = . First put ¢ into NNF.

\ /x‘

Dumbledore wants to show that W = ¢

Gandalf wants to show that W }~ .

base case: if ¢ is a literal, then D wins iff W = ¢.
inductive cases:

WEkEerd
WiEkEevy
WEVXe
WE3Ixe

G chooses a € {p, ¢} continueon: W =«
D chooses o € {¢,9} continueon: W =«
G chooses aec |W| continueon: Wa/x = ¢

D chooses ac |W| continueon: Wa/x = ¢

Truth Game Example

S

t
(1 ©

Does W =Vx (x =sVv 3y E(y,x)) ?
@ w @

S t
O—(1) ©
Does W =Vx (x =sVv 3y E(y,x)) ?
G moves, chooses x = 4 4 w (@

Truth Game Example

Does W |=Vx (x = sV 3y E(y,x)) ?
G moves, chooses x = 4

(7]

S
s B
OOk

Does W[4/x] = x =sVv 3y E(y,x)?

OF
S,
=) ~

Wi4/x]

Truth Game Example

Does W |=Vx (x = sV 3y E(y,x)) ?
G moves, chooses x = 4

(7]

S
s B
OOk

(7]

Does W[4/x] = x =sVv 3y E(y,x)?
D moves, chooses Jy E(y, x)

OF
S,
=) ~

Wi4/x]

Truth Game Example

Does W |=Vx (x = sV 3y E(y,x)) ?
G moves, chooses x = 4

(7]

S
s B
OOk

(7]

Does W[4/x] = x =sVv 3y E(y,x)?
D moves, chooses Jy E(y, x)

A=
(=)
=) ~

Does W[4/x] |= 3y E(y,x) ? W[4/x]

Truth Game Example

S t
O—1) ©@
Does W =Vx (x =sVv 3y E(y,x)) ?
G moves, chooses x = 4 4 w (@
S t
Does W[4/x] Ex=sVv 3y E(y,x)? O—1) ®
D moves, chooses Jy E(y, x) v
@) (2
Does W[4/x] =3y E(y,x) ? W4 /x]

D moves, chooses y = 1

Truth Game Example

Does W =Vx (x =sVv 3y E(y,x)) ?
G moves, chooses x = 4

(7]

S
s B
OOk

s t
Does W[4/x] = x =sVv 3y E(y,x)? 1) @
D moves, chooses Jy E(y, x) v
@ (2
Does W[4/x] =3y E(y,x) ?
D moves, chooses y = 1 Wi4/x]
s y t
Does W[4/x,1/y] = E(y,x) ?
X,
4 2

Wi4/x,1/y]

Truth Game Example

Does W =Vx (x =sVv 3y E(y,x)) ?
G moves, chooses x = 4

(7]

S
s B
OOk

s t
Does W[4/x] = x =sVv 3y E(y,x)? 1) @
D moves, chooses Jy E(y, x) v
@ (2
Does W[4/x] =3y E(y,x) ? W4 /x]
D moves, chooses y = 1
s y t
Does W[4/x,1/y] = E(y, x) ? OWO
Yes, D wins! X
4 2

Wi4/x,1/y]

Tarski’s Def. of Truth and Truth Game are Equivalent

Thm. For any ¥, ¢ € PredCalck, in NNF, W € World[Y],
D wins the truth game on W, ¢ iff W ¢

G wins the truth game on W, ¢ iff W E~op

Tarski’s Def. of Truth and Truth Game are Equivalent

Thm. For any ¥, ¢ € PredCalck, in NNF, W € World[Y],
D wins the truth game on W, ¢ iff W ¢

G wins the truth game on W, ¢ iff W E~op

Proof: By induction on the structure of ¢.

Tarski’s Def. of Truth and Truth Game are Equivalent

Thm. For any ¥, ¢ € PredCalck, in NNF, W € World[Y],
D wins the truth game on W, ¢ iff W ¢

G wins the truth game on W, ¢ iff W E~op

Proof: By induction on the structure of ¢.
Details in hw4 O

