CS250: Discrete Math for Computer Science

L22: Inductive Definitions and Structural Induction
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Prove things about these objects inductively.

Define operations on these objects inductively, i.e.,
recursively.

Examples: lists, trees, xml

Modern programming langugages allow recursive function
definitions on recursively defined datatypes (Python — hw4)

Main examples today: logical formulas, truth
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Terms in PredCalc

Def: Let X be a PredCalc vocabulary. A term t € term(X) is a
string of symbols that every world W € World[X] must interpret
as an element tW ¢ |W|. Terms are defined recursively as

follows:
base 0. v e VAR — veterm(X)
variables are terms
base1. keX —  k eterm(X)

constant symbols are terms
ind.2. t,....t,cterm(X),f € — f(4,...,t) € term(X)

terms are closed under function symbols

term(Xyny) = {0, 1,x,...,....x-y,...(x+1)-(y+0),...}
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Worlds Recursively Interpret Terms

For t € term(X); W € World[X], recursively define tW

base case 0: For v € VAR, v already has default value.
base case 1: For constant symbol, k € ¥, kW already defined.
inductive case: For t1,...,t; e term(X),f € &

(6 S M@, )

Prop. For t € term(X); W € World[Z], tW ¢ |W|

Proof: By structural induction on ¢.

base cases: For v € VAR, v ¢ |W|;fork € &, kW ¢ |W|
inductive case: indHyp: t/V,... t" € |W|.
YW= (W, so (F(t, .. b)WY =YW, tW) e (W] O
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Tarski’s Recursive Definition of Truth

For every G € World[X] and t € term(X)

iff 1% =1t8
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(tG,...,t8) e PG
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forall a € |G|

Glan] = o
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exists a € |G|
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Truth Game: a two player game that is an equivalent but more
fun way to tell whether W = . First put ¢ into NNF.

\ /x‘

Dumbledore wants to show that W = ¢

Gandalf wants to show that W }~ .

base case: if ¢ is a literal, then D wins iff W = ¢.
inductive cases:

WEkEerd
WiEkEevy
WEVXe
WE3Ixe

G chooses a € {p, ¢} continueon: W =«
D chooses o € {¢,9} continueon: W =«
G chooses aec |W| continueon: Wa/x = ¢

D chooses ac |W| continueon: Wa/x = ¢
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Does W[4/x] = x =sVv 3y E(y,x)?
D moves, chooses Jy E(y, x)
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Does W[4/x] |= 3y E(y,x) ? W[4/x]
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Does W =Vx (x =sVv 3y E(y,x)) ?
G moves, chooses x = 4
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Does W[4/x] = x =sVv 3y E(y,x)? 1) @
D moves, chooses Jy E(y, x) v
@ (2
Does W[4/x] =3y E(y,x) ? W4 /x]
D moves, chooses y = 1
s y t
Does W[4/x,1/y] = E(y, x) ? OWO
Yes, D wins! X
4 2

Wi4/x,1/y]
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Tarski’s Def. of Truth and Truth Game are Equivalent

Thm. For any ¥, ¢ € PredCalck, in NNF, W € World[Y],
D wins the truth game on W, ¢ iff W ¢

G wins the truth game on W, ¢ iff W E~op

Proof: By induction on the structure of ¢.
Details in hw4 O



