CS250: Discrete Math for Computer Science

L22: Inductive Definitions and Structural Induction

This is useful because we can:

Prove things about these objects inductively.

- Prove things about these objects inductively.
- Define operations on these objects inductively, i.e., recursively.

- Prove things about these objects inductively.
- Define operations on these objects inductively, i.e., recursively.
- Examples: lists, trees, xml

- Prove things about these objects inductively.
- Define operations on these objects inductively, i.e., recursively.
- Examples: lists, trees, xml
- Modern programming langugages allow recursive function definitions on recursively defined datatypes (Python – hw4)

- Prove things about these objects inductively.
- Define operations on these objects inductively, i.e., recursively.
- Examples: lists, trees, xml
- Modern programming langugages allow recursive function definitions on recursively defined datatypes (Python – hw4)
- Main examples today: logical formulas, truth

Def: Let Σ be a PredCalc vocabulary. A **term** $t \in$ **term** (Σ) is a string of symbols that every world $W \in$ World $[\Sigma]$ must interpret as an element $t^W \in |W|$. Terms are defined recursively as follows:

base 0. $v \in VAR$

 $\rightarrow v \in \text{term}(\Sigma)$ variables are terms

Def: Let Σ be a PredCalc vocabulary. A **term** $t \in$ **term** (Σ) is a string of symbols that every world $W \in$ World $[\Sigma]$ must interpret as an element $t^W \in |W|$. Terms are defined recursively as follows:

base 0. $v \in VAR$ $\rightarrow v \in term(\Sigma)$ variables are terms

base 1. $k \in \Sigma$

 $\rightarrow k \in \text{term}(\Sigma)$ constant symbols are terms

Def: Let Σ be a PredCalc vocabulary. A **term** $t \in$ **term** (Σ) is a string of symbols that every world $W \in$ World $[\Sigma]$ must interpret as an element $t^W \in |W|$. Terms are defined recursively as follows:

- base 0. $v \in VAR$ $\rightarrow v \in term(\Sigma)$ variables are terms
- **base 1.** $k \in \Sigma$ \rightarrow $k \in \text{term}(\Sigma)$ constant symbols are terms
 - ind. 2. $t_1, \ldots, t_r \in \text{term}(\Sigma), f^r \in \Sigma \rightarrow f(t_1, \ldots, t_r) \in \text{term}(\Sigma)$ terms are closed under function symbols

Def: Let Σ be a PredCalc vocabulary. A **term** $t \in$ **term** (Σ) is a string of symbols that every world $W \in$ World $[\Sigma]$ must interpret as an element $t^W \in |W|$. Terms are defined recursively as follows:

- base 0. $v \in VAR$ $\rightarrow v \in term(\Sigma)$ variables are terms
- **base 1.** $k \in \Sigma$ \rightarrow $k \in \text{term}(\Sigma)$ constant symbols are terms

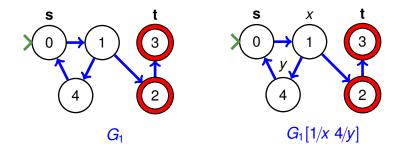
ind. 2. $t_1, \ldots, t_r \in \text{term}(\Sigma), f^r \in \Sigma \rightarrow f(t_1, \ldots, t_r) \in \text{term}(\Sigma)$ terms are closed under function symbols

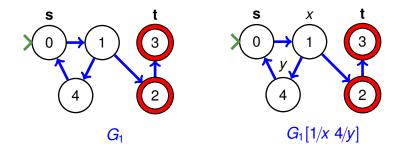
 $term(\Sigma_{garst}) = VAR \cup \{s, t\}$

Def: Let Σ be a PredCalc vocabulary. A **term** $t \in$ **term** (Σ) is a string of symbols that every world $W \in$ World[Σ] must interpret as an element $t^W \in |W|$. Terms are defined recursively as follows:

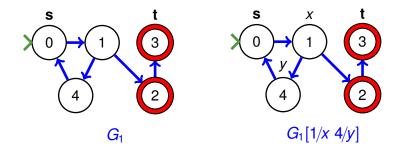
- base 0. $v \in VAR$ $\rightarrow v \in term(\Sigma)$ variables are terms
- **base 1.** $k \in \Sigma$ $\rightarrow k \in \text{term}(\Sigma)$ constant symbols are terms
 - ind. 2. $t_1, \ldots, t_r \in \text{term}(\Sigma), f^r \in \Sigma \rightarrow f(t_1, \ldots, t_r) \in \text{term}(\Sigma)$ terms are closed under function symbols

$$term(\Sigma_{garst}) = VAR \cup \{s, t\}$$
$$term(\Sigma_{\#thy}) = \{0, 1, x, \dots, x \cdot y, \dots (x+1) \cdot (y+0), \dots\}$$

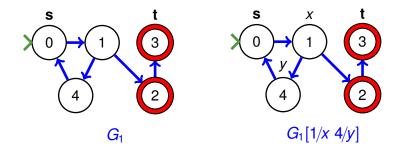




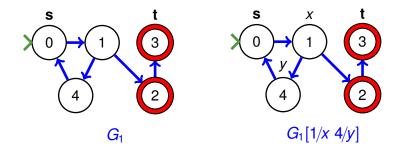
Notation: W[e/v] is same as W, except $v^{W[e/v]} = e$.



Default Interpretation of variables: Unless explicitly stated otherwise, $v^W = 0$, (or the min value in |W| if $0 \notin |W|$). **Notation:** W[e/v] is same as W, except $v^{W[e/v]} = e$. $x^{G_1} = 0$

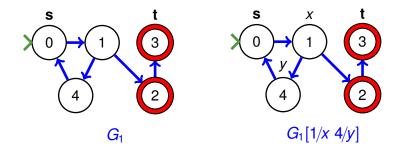


Notation: W[e/v] is same as W, except $v^{W[e/v]} = e$. $x^{G_1} = 0$ $v^{G_1} = 0$



Notation: W[e/v] is same as W, except $v^{W[e/v]} = e$.

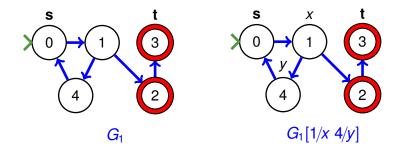
$$x^{G_1} = 0$$
 $y^{G_1} = 0$ $x^{G_1[1/x \ 4/y]} = 1$



Notation: W[e/v] is same as W, except $v^{W[e/v]} = e$.

$$x^{G_1} = 0$$
 $y^{G_1} = 0$ $x^{G_1[1/x \ 4/y]} = 1$

iClicker 22.1 What is $y^{G_1[1/x \ 4/y]}$ A: 0 B: 1 C: 3 D: 4



Notation: W[e/v] is same as W, except $v^{W[e/v]} = e$.

$$x^{G_1} = 0$$
 $y^{G_1} = 0$ $x^{G_1[1/x \ 4/y]} = 1$

iClicker 22.2 What is $t^{G_1[1/x \ 4/y]}$ A: 0 B: 1 C: 3 D: 4

For $t \in \text{term}(\Sigma)$; $W \in \text{World}[\Sigma]$, recursively define t^W

For $t \in \text{term}(\Sigma)$; $W \in \text{World}[\Sigma]$, recursively define t^W

base case 0: For $v \in VAR$, v^W already has default value.

For $t \in \text{term}(\Sigma)$; $W \in \text{World}[\Sigma]$, recursively define t^W

base case 0: For $v \in VAR$, v^W already has default value.

base case 1: For constant symbol, $k \in \Sigma$, k^W already defined.

For $t \in \text{term}(\Sigma)$; $W \in \text{World}[\Sigma]$, recursively define t^W

base case 0: For $v \in VAR$, v^W already has default value.

base case 1: For constant symbol, $k \in \Sigma$, k^W already defined. **inductive case:** For $t_1, \ldots, t_r \in \text{term}(\Sigma), f^r \in \Sigma$

$$(f(t_1,\ldots,t_r))^W \stackrel{\text{def}}{=} f^W(t_1^W,\ldots,t_r^W)$$

For $t \in \text{term}(\Sigma)$; $W \in \text{World}[\Sigma]$, recursively define t^W

base case 0: For $v \in VAR$, v^W already has default value.

base case 1: For constant symbol, $k \in \Sigma$, k^W already defined. **inductive case:** For $t_1, \ldots, t_r \in \text{term}(\Sigma)$, $f^r \in \Sigma$

$$(f(t_1,\ldots,t_r))^W \stackrel{\text{def}}{=} f^W(t_1^W,\ldots,t_r^W)$$

Prop. For $t \in \text{term}(\Sigma)$; $W \in \text{World}[\Sigma]$, $t^W \in |W|$

For $t \in \text{term}(\Sigma)$; $W \in \text{World}[\Sigma]$, recursively define t^W

base case 0: For $v \in VAR$, v^W already has default value.

base case 1: For constant symbol, $k \in \Sigma$, k^W already defined. **inductive case:** For $t_1, \ldots, t_r \in \text{term}(\Sigma)$, $f^r \in \Sigma$

$$(f(t_1,\ldots,t_r))^W \stackrel{\text{def}}{=} f^W(t_1^W,\ldots,t_r^W)$$

Prop. For $t \in \text{term}(\Sigma)$; $W \in \text{World}[\Sigma]$, $t^W \in |W|$

Proof: By structural induction on *t*.

For $t \in \text{term}(\Sigma)$; $W \in \text{World}[\Sigma]$, recursively define t^W

base case 0: For $v \in VAR$, v^W already has default value.

base case 1: For constant symbol, $k \in \Sigma$, k^W already defined. **inductive case:** For $t_1, \ldots, t_r \in \text{term}(\Sigma)$, $f^r \in \Sigma$

$$(f(t_1,\ldots,t_r))^W \stackrel{\text{def}}{=} f^W(t_1^W,\ldots,t_r^W)$$

Prop. For $t \in \text{term}(\Sigma)$; $W \in \text{World}[\Sigma]$, $t^W \in |W|$

Proof: By structural induction on *t*. **base cases:** For $v \in VAR$, $v^W \in |W|$; for $k \in \Sigma$, $k^W \in |W|$

For $t \in \text{term}(\Sigma)$; $W \in \text{World}[\Sigma]$, recursively define t^W

base case 0: For $v \in VAR$, v^W already has default value.

base case 1: For constant symbol, $k \in \Sigma$, k^W already defined. **inductive case:** For $t_1, \ldots, t_r \in \text{term}(\Sigma), f^r \in \Sigma$

$$(f(t_1,\ldots,t_r))^W \stackrel{\text{def}}{=} f^W(t_1^W,\ldots,t_r^W)$$

Prop. For $t \in \text{term}(\Sigma)$; $W \in \text{World}[\Sigma]$, $t^W \in |W|$

Proof: By structural induction on *t*. **base cases:** For $v \in VAR$, $v^W \in |W|$; for $k \in \Sigma$, $k^W \in |W|$ **inductive case: indHyp:** $t_1^W, \ldots, t_r^W \in |W|$.

For $t \in \text{term}(\Sigma)$; $W \in \text{World}[\Sigma]$, recursively define t^W

base case 0: For $v \in VAR$, v^W already has default value. **base case 1:** For constant symbol, $k \in \Sigma$, k^W already defined.

inductive case: For $t_1, \ldots, t_r \in \text{term}(\Sigma), f^r \in \Sigma$

$$(f(t_1,\ldots,t_r))^W \stackrel{\text{def}}{=} f^W(t_1^W,\ldots,t_r^W)$$

Prop. For $t \in \text{term}(\Sigma)$; $W \in \text{World}[\Sigma]$, $t^W \in |W|$

Proof: By structural induction on *t*. **base cases:** For $v \in VAR$, $v^{W} \in |W|$; for $k \in \Sigma$, $k^{W} \in |W|$ **inductive case: indHyp:** $t_{1}^{W}, \ldots, t_{r}^{W} \in |W|$. $f^{W} : |W|^{r} \rightarrow |W|$, so $(f(t_{1}, \ldots, t_{r}))^{W} = f^{W}(t_{1}^{W}, \ldots, t_{r}^{W}) \in |W|$.

For every $G \in World[\Sigma]$ and $t \in term(\Sigma)$ $t^G \in |G|$

For every $G \in World[\Sigma]$ and $t \in term(\Sigma)$

 $t^G \in |G|$

$$G \models t_1 = t_2 \qquad \text{iff} \quad t_1^G = t_2^G$$

For every $G \in World[\Sigma]$ and $t \in term(\Sigma)$ $t^G \in |G|$

$$G \models t_1 = t_2 \qquad \text{iff} \quad t_1^G = t_2^G$$

$$egin{array}{ccc} G &\models & P(t_1,\ldots,t_a) & ext{iff} & (t_1^G,\ldots,t_a^G) \in P^G & P^a \in \Sigma \end{array}$$

G

For every
$$G \in World[\Sigma]$$
 and $t \in term(\Sigma)$ $t^G \in |G|$
 $\models t_1 = t_2$ iff $t_1^G = t_2^G$

For every
$$G \in World[\Sigma]$$
 and $t \in term(\Sigma)$ $t^G \in |G|$
 $G \models t_1 = t_2$ iff $t_1^G = t_2^G$
 $G \models P(t_1, \dots, t_a)$ iff $(t_1^G, \dots, t_a^G) \in P^G$ $P^a \in \Sigma$
 $G \models \sim \alpha$ iff $G \not\models \alpha$ PropCalc
 $G \models \alpha \land \beta$ iff $G \models \alpha$ and $G \models \beta$ PropCalc

For every
$$G \in World[\Sigma]$$
 and $t \in term(\Sigma)$ $t^G \in |G|$
 $G \models t_1 = t_2$ iff $t_1^G = t_2^G$
 $G \models P(t_1, \dots, t_a)$ iff $(t_1^G, \dots, t_a^G) \in P^G$ $P^a \in \Sigma$
 $G \models \sim \alpha$ iff $G \nvDash \alpha$ PropCalc
 $G \models \alpha \land \beta$ iff $G \models \alpha$ and $G \models \beta$ PropCalc
 $G \models \alpha \lor \beta$ iff $G \models \alpha$ or $G \models \beta$ PropCalc

 $t^G \in |G|$ For every $G \in World[\Sigma]$ and $t \in term(\Sigma)$ $G \models t_1 = t_2$ iff $t_1^G = t_2^G$ $G \models P(t_1, \ldots, t_a) \quad \text{iff} \quad (t_1^G, \ldots, t_a^G) \in P^G$ $P^a \in \Sigma$ $G \models \sim \alpha$ iff $G \nvDash \alpha$ PropCalc $G \models \alpha \land \beta$ iff $G \models \alpha$ and $G \models \beta$ PropCalc $G \models \alpha \lor \beta$ iff $G \models \alpha$ or $G \models \beta$ PropCalc $G \models \forall x(\alpha)$ iff for all $a \in |G|$ $G[a|x] \models \alpha$

For every ${\it G} \in { m World}[\Sigma]$ and $t \in { m term}(\Sigma)$				$t^G \in G $	
G	Þ	$t_1 = t_2$	iff	$t_1^G = t_2^G$	
G	Þ	$P(t_1,\ldots,t_a)$	iff	$(t_1^G,\ldots,t_a^G)\in P^G$	$P^a \in \Sigma$
G	Þ	$\sim \alpha$	iff	${\boldsymbol{G}} \not\models \alpha$	PropCalc
G	Þ	$\alpha \wedge \beta$	iff	$\boldsymbol{G} \models \alpha$ and $\boldsymbol{G} \models \beta$	PropCalc
G	Þ	$\alpha \vee \beta$	iff	$\boldsymbol{G} \models \alpha$ or $\boldsymbol{G} \models \beta$	PropCalc
G	Þ	$\forall \mathbf{x}(\alpha)$	iff	for all $a \in G $ $G[a x] \models \alpha$	
G	Þ	$\exists \mathbf{x}(\alpha)$	iff	exists $a \in G $ $G[a x] \models \alpha$	

$$G(t_1 = t_2) \stackrel{\text{def}}{=} t_1^G == t_2^G$$

$$\begin{array}{rcl} G(t_1 = t_2) & \stackrel{\mathrm{def}}{=} & t_1^G == t_2^G \\ G(P(t_1, \dots, t_a)) & \stackrel{\mathrm{def}}{=} & (t_1^G, \dots, t_a^G) \in P^G \end{array}$$

$$\begin{array}{rcl} G(t_1 = t_2) & \stackrel{\mathrm{def}}{=} & t_1^G == t_2^G \\ G(P(t_1, \dots, t_a)) & \stackrel{\mathrm{def}}{=} & (t_1^G, \dots, t_a^G) \in P^G \\ & G(\sim \alpha) & \stackrel{\mathrm{def}}{=} & 1 - G(\alpha) \end{array}$$

$$\begin{array}{rcl} G(t_1 = t_2) & \stackrel{\mathrm{def}}{=} & t_1^G == t_2^G \\ G(P(t_1, \dots, t_a)) & \stackrel{\mathrm{def}}{=} & (t_1^G, \dots, t_a^G) \in P^G \\ & G(\sim \alpha) & \stackrel{\mathrm{def}}{=} & 1 - G(\alpha) \\ & G(\alpha \wedge \beta) & \stackrel{\mathrm{def}}{=} & \min(G(\alpha), G(\beta)) \end{array}$$

$$G(t_1 = t_2) \stackrel{\text{def}}{=} t_1^G == t_2^G$$

$$G(P(t_1, \dots, t_a)) \stackrel{\text{def}}{=} (t_1^G, \dots, t_a^G) \in P^G$$

$$G(\sim \alpha) \stackrel{\text{def}}{=} 1 - G(\alpha)$$

$$G(\alpha \land \beta) \stackrel{\text{def}}{=} \min(G(\alpha), G(\beta))$$

$$G(\alpha \lor \beta) \stackrel{\text{def}}{=} \max(G(\alpha), G(\beta))$$

$$G(t_1 = t_2) \stackrel{\text{def}}{=} t_1^G == t_2^G$$

$$G(P(t_1, \dots, t_a)) \stackrel{\text{def}}{=} (t_1^G, \dots, t_a^G) \in P^G$$

$$G(\sim \alpha) \stackrel{\text{def}}{=} 1 - G(\alpha)$$

$$G(\alpha \land \beta) \stackrel{\text{def}}{=} \min(G(\alpha), G(\beta))$$

$$G(\alpha \lor \beta) \stackrel{\text{def}}{=} \max(G(\alpha), G(\beta))$$

$$G(\forall x(\alpha)) \stackrel{\text{def}}{=} \min_{a \in [G]} G[a/x](\alpha)$$

$$G(t_1 = t_2) \stackrel{\text{def}}{=} t_1^G == t_2^G$$

$$G(P(t_1, \dots, t_a)) \stackrel{\text{def}}{=} (t_1^G, \dots, t_a^G) \in P^G$$

$$G(\sim \alpha) \stackrel{\text{def}}{=} 1 - G(\alpha)$$

$$G(\alpha \land \beta) \stackrel{\text{def}}{=} \min(G(\alpha), G(\beta))$$

$$G(\alpha \lor \beta) \stackrel{\text{def}}{=} \max(G(\alpha), G(\beta))$$

$$G(\forall x(\alpha)) \stackrel{\text{def}}{=} \min_{a \in |G|} G[a/x](\alpha)$$

$$G(\exists x(\alpha)) \stackrel{\text{def}}{=} \max_{a \in |G|} G[a/x](\alpha)$$

Dumbledore wants to show that $W \models \varphi$

Dumbledore wants to show that $W \models \varphi$

Gandalf wants to show that $W \not\models \varphi$.

Dumbledore wants to show that $W \models \varphi$

Gandalf wants to show that
$$W \not\models \varphi$$
.

base case: if φ is a literal, then **D** wins iff $W \models \varphi$.

Dumbledore wants to show that $W \models \varphi$

Gandalf wants to show that $W \not\models \varphi$.

base case: if φ is a literal, then **D** wins iff $W \models \varphi$. inductive cases:

Dumbledore wants to show that $W \models \varphi$

Gandalf wants to show that $W \not\models \varphi$.

base case: if φ is a literal, then **D** wins iff $W \models \varphi$. **inductive cases:**

 $W \models \varphi \land \psi$ **G** chooses $\alpha \in \{\varphi, \psi\}$ continue on: $W \models \alpha$

Dumbledore wants to show that $W \models \varphi$

Gandalf wants to show that $W \not\models \varphi$.

base case: if φ is a literal, then **D** wins iff $W \models \varphi$. **inductive cases:**

$$\begin{split} & \textbf{\textit{W}} \models \varphi \land \psi \quad \textbf{G} \text{ chooses } \alpha \in \{\varphi, \psi\} \text{ continue on: } \quad \textbf{\textit{W}} \models \alpha \\ & \textbf{\textit{W}} \models \varphi \lor \psi \quad \textbf{D} \text{ chooses } \alpha \in \{\varphi, \psi\} \text{ continue on: } \quad \textbf{\textit{W}} \models \alpha \end{split}$$

Dumbledore wants to show that $W \models \varphi$

Gandalf wants to show that $W \not\models \varphi$.

base case: if φ is a literal, then **D** wins iff $W \models \varphi$. **inductive cases:**

$$\begin{split} & \textbf{W} \models \varphi \land \psi \quad \textbf{G} \text{ chooses } \alpha \in \{\varphi, \psi\} \text{ continue on: } \quad \textbf{W} \models \alpha \\ & \textbf{W} \models \varphi \lor \psi \quad \textbf{D} \text{ chooses } \alpha \in \{\varphi, \psi\} \text{ continue on: } \quad \textbf{W} \models \alpha \\ & \textbf{W} \models \forall x \varphi \quad \textbf{G} \text{ chooses } a \in |\textbf{W}| \text{ continue on: } \quad \textbf{W} a / x \models \varphi \end{split}$$

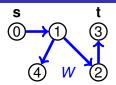
Dumbledore wants to show that $W \models \varphi$

Gandalf wants to show that $W \not\models \varphi$.

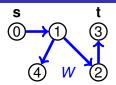
base case: if φ is a literal, then **D** wins iff $W \models \varphi$. **inductive cases:**

 $\begin{array}{ll} W \models \varphi \land \psi & \textbf{G} \text{ chooses } \alpha \in \{\varphi, \psi\} \text{ continue on: } & W \models \alpha \\ W \models \varphi \lor \psi & \textbf{D} \text{ chooses } \alpha \in \{\varphi, \psi\} \text{ continue on: } & W \models \alpha \\ W \models \forall x \varphi & \textbf{G} \text{ chooses } a \in |W| \text{ continue on: } & Wa/x \models \varphi \\ W \models \exists x \varphi & \textbf{D} \text{ chooses } a \in |W| \text{ continue on: } & Wa/x \models \varphi \end{array}$

Does
$$W \models \forall x \ (x = s \lor \exists y \ E(y, x))$$
?

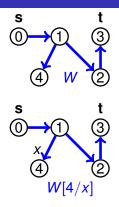


Does
$$W \models \forall x \ (x = s \lor \exists y \ E(y, x))$$
?
G moves, chooses $x = 4$



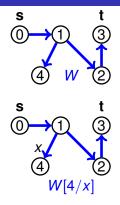
Does
$$W \models \forall x \ (x = s \lor \exists y \ E(y, x))$$
?
G moves, chooses $x = 4$

Does
$$W[4/x] \models x = s \lor \exists y \ E(y, x)$$
?



Does
$$W \models \forall x \ (x = s \lor \exists y \ E(y, x))$$
?
G moves, chooses $x = 4$

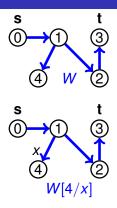
Does
$$W[4/x] \models x = s \lor \exists y \ E(y,x)$$
?
D moves, chooses $\exists y \ E(y,x)$



Does
$$W \models \forall x \ (x = s \lor \exists y \ E(y, x))$$
?
G moves, chooses $x = 4$

Does $W[4/x] \models x = s \lor \exists y \ E(y,x)$? D moves, chooses $\exists y \ E(y,x)$

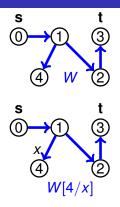
Does $W[4/x] \models \exists y \ E(y,x)$?



Does
$$W \models \forall x \ (x = s \lor \exists y \ E(y, x))$$
?
G moves, chooses $x = 4$

Does $W[4/x] \models x = s \lor \exists y \ E(y, x)$? D moves, chooses $\exists y \ E(y, x)$

Does $W[4/x] \models \exists y \ E(y,x)$? D moves, chooses y = 1

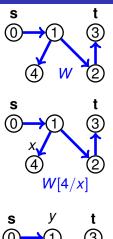


Does
$$W \models \forall x \ (x = s \lor \exists y \ E(y, x))$$
?
G moves, chooses $x = 4$

Does $W[4/x] \models x = s \lor \exists y \ E(y, x)$? D moves, chooses $\exists y \ E(y, x)$

Does $W[4/x] \models \exists y \ E(y,x)$? D moves, chooses y = 1

Does $W[4/x, 1/y] \models E(y, x)$?

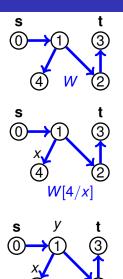


Does
$$W \models \forall x \ (x = s \lor \exists y \ E(y, x))$$
?
G moves, chooses $x = 4$

Does $W[4/x] \models x = s \lor \exists y \ E(y, x)$? D moves, chooses $\exists y \ E(y, x)$

Does $W[4/x] \models \exists y \ E(y,x)$? D moves, chooses y = 1

Does $W[4/x, 1/y] \models E(y, x)$? Yes, **D** wins!



W[4/x, 1/y]

Thm. For any Σ , $\varphi \in \operatorname{PredCalc}\Sigma$, in NNF, $W \in \operatorname{World}[\Sigma]$, **D** wins the truth game on W, φ iff $W \models \varphi$

G wins the truth game on \mathcal{W}, φ iff $\mathcal{W} \models \sim \varphi$

Thm. For any Σ , $\varphi \in \operatorname{PredCalc}\Sigma$, in NNF, $\mathcal{W} \in \operatorname{World}[\Sigma]$,

D wins the truth game on \mathcal{W}, φ iff $\mathcal{W} \models \varphi$

G wins the truth game on \mathcal{W}, φ iff $\mathcal{W} \models \sim \varphi$

Proof: By induction on the structure of φ .

Thm. For any Σ , $\varphi \in \operatorname{PredCalc}\Sigma$, in NNF, $\mathcal{W} \in \operatorname{World}[\Sigma]$,

D wins the truth game on \mathcal{W}, φ iff $\mathcal{W} \models \varphi$

G wins the truth game on \mathcal{W}, φ iff $\mathcal{W} \models \sim \varphi$

Proof: By induction on the structure of φ . **Details in hw4**