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Inductive Definitions and Structural Induction

We define our data structures – or other objects of interest –
inductively.

This is useful because we can:

I Prove things about these objects inductively.
I Define operations on these objects inductively, i.e.,

recursively.
I Examples: lists, trees, xml
I Modern programming langugages allow recursive function

definitions on recursively defined datatypes (Python – hw4)
I Main examples today: logical formulas, truth
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Terms in PredCalc

Def: Let Σ be a PredCalc vocabulary. A term t ∈ term(Σ) is a
string of symbols that every world W ∈World[Σ] must interpret
as an element tW ∈ |W |. Terms are defined recursively as
follows:

base 0. v ∈ VAR → v ∈ term(Σ)
variables are terms

base 1. k ∈ Σ → k ∈ term(Σ)
constant symbols are terms

ind. 2. t1, . . . , tr ∈ term(Σ), f r ∈ Σ → f (t1, . . . , tr ) ∈ term(Σ)
terms are closed under function symbols

term(Σgarst) = VAR ∪ {s, t} = {s, t , x , y , z,u, v ,w , x1, . . .}

term(Σ#thy) = {0,1, x , . . . , . . . , x · y , . . . (x + 1) · (y + 0), . . .}
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Default Interpretation of variables: Unless explicitly stated
otherwise, vW = 0, (or the min value in |W | if 0 6∈ |W |).

Notation: W [e/v ] is same as W , except vW [e/v ] = e.

xG1 = 0 yG1 = 0 xG1[1/x 4/y ] = 1

iClicker 22.1 What is yG1[1/x 4/y ]

A: 0 B: 1 C: 3 D: 4
iClicker 22.2 What is tG1[1/x 4/y ]

A: 0 B: 1 C: 3 D: 4
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Worlds Recursively Interpret Terms

For t ∈ term(Σ); W ∈World[Σ], recursively define tW

base case 0: For v ∈ VAR, vW already has default value.

base case 1: For constant symbol, k ∈ Σ, kW already defined.

inductive case: For t1, . . . , tr ∈ term(Σ), f r ∈ Σ

( f (t1, . . . , tr ) )W def
= f W (tW

1 , . . . , tW
r )

Prop. For t ∈ term(Σ); W ∈World[Σ], tW ∈ |W |

Proof: By structural induction on t .

base cases: For v ∈ VAR, vW ∈ |W |; for k ∈ Σ, kW ∈ |W |

inductive case: indHyp: tW
1 , . . . , tW

r ∈ |W |.

f W : |W |r → |W |, so (f (t1, . . . , tr ))W = f W (tW
1 , . . . , tW

r ) ∈ |W |. �
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Tarski’s Recursive Definition of Truth

For every G ∈World[Σ] and t ∈ term(Σ) tG ∈ |G|

G |= t1 = t2 iff tG
1 = tG

2

G |= P(t1, . . . , ta) iff (tG
1 , . . . , t

G
a ) ∈ PG Pa ∈ Σ

G |= ∼α iff G 6|= α PropCalc

G |= α ∧ β iff G |= α and G |= β PropCalc

G |= α ∨ β iff G |= α or G |= β PropCalc

G |= ∀x(α) iff for all a ∈ |G| G[a/x ] |= α

G |= ∃x(α) iff exists a ∈ |G| G[a/x ] |= α
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Tarski’s Recursive Definition of Truth

G(t1 = t2)
def
= tG

1 == tG
2

G(P(t1, . . . , ta))
def
= (tG

1 , . . . , t
G
a ) ∈ PG

G(∼α)
def
= 1−G(α)

G(α ∧ β)
def
= min(G(α),G(β))

G(α ∨ β)
def
= max(G(α),G(β))

G(∀x(α))
def
= min

a∈|G|
G[a/x ](α)

G(∃x(α))
def
= max

a∈|G|
G[a/x ](α)
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Truth Game: a two player game that is an equivalent but more
fun way to tell whether W |= ϕ. First put ϕ into NNF.

Dumbledore wants to show that W |= ϕ

Gandalf wants to show that W 6|= ϕ.

base case: if ϕ is a literal, then D wins iff W |= ϕ.
inductive cases:

W |= ϕ ∧ ψ G chooses α ∈ {ϕ,ψ} continue on: W |= α

W |= ϕ ∨ ψ D chooses α ∈ {ϕ,ψ} continue on: W |= α

W |= ∀x ϕ G chooses a ∈ |W | continue on: W a/x |= ϕ

W |= ∃x ϕ D chooses a ∈ |W | continue on: W a/x |= ϕ
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Truth Game Example

Does W |= ∀x (x = s ∨ ∃y E(y , x)) ?

G moves, chooses x = 4

Does W [4/x ] |= x = s ∨ ∃y E(y , x) ?
D moves, chooses ∃y E(y , x)

Does W [4/x ] |= ∃y E(y , x) ?
D moves, chooses y = 1

Does W [4/x ,1/y ] |= E(y , x) ?
Yes, D wins!

W

0 1

2

3

4

ts

W [4/x ]

0 1

2

3

4

ts

x

W [4/x ,1/y ]

0 1

2

3

4

ts

x

y
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Tarski’s Def. of Truth and Truth Game are Equivalent

Thm. For any Σ, ϕ ∈ PredCalcΣ, in NNF, W ∈World[Σ],

D wins the truth game onW, ϕ iff W |= ϕ

G wins the truth game onW, ϕ iff W |=∼ϕ

Proof: By induction on the structure of ϕ.

Details in hw4 �
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