CS250: Discrete Math for Computer Science

L20: Complete Induction and Proof of Euler’s
Characterization of Eulerian-Walks



Last time: Eulerian Graphs
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Def. An Eulerian walk in a graph G is a walk from s to f that
traverses every edge exactly once and every vertex at least
once.

EC(G) LT Gis connected A Vv ¢ {s,t} deg(v)iseven A
(s=t A deg(s) =deg(t)iseven Vv
s#t A deg(s),deg(t) are odd )

Thm. [Euler] G has an Eulerian walk from s to t iff EC(G).
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Proof: For all vertices, v, besides s and t, the walk must
leave v the same number of times that it enters v. Thus, deg(v)
is even.
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leave v the same number of times that it enters v. Thus, deg(v)
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If s = t, then deg(s) = deg(t) is even for the same reason.

If s £ t, then s is left once more than it is reached and t is
reached once more than it is left, so their degrees are both odd.

Since an Eulerian walk visits every vertex, G is connected. [
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Claim EC(G) — G has an Eulerian walk.
We will prove the Claim by induction: N = Vx a(x), where

a(X) ' vG (|IEC| < x NEC(G) — G has an Eulerian walk )

base case: a(0): Let G be an arbitrary graph with 0 edges and
EC(G). Since G is connected and has no edges it must consist
of a single vertex, s = t. Thus, the empty walk is an Eulerian

walk fromstot.
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An inductive proof is a recursive algorithm: using calls to

a(Xp), constructing Eulerian walks on graphs with at most xg
edges, we must construct an Eulerian walk through G.
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Let w be an exhaustive bb walk from s. w must end at t.

=
letH® G-w 0 1 2
|EH| < xp, and EC(C) for each connected component of H.

By indHyp each C has an Eulerian walk. (recursive call)

The union of these Eulerian walks is an Eulerian walk for G .
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iClicker 20.1 Did we need the assumption EC(G) to know
that in G, a bb walk from s always ends at t?

A: Yes B: No



iClicker 20.2 In the proof of Euler’s characterization of
Eulerian Graphs, why did we need o to say |EC| < x; as
opposed to |EC| = xp ?

A: We didn’t, |[EG| = x, would have been enough.

B: We wanted to apply the inductive hypothesis to graphs
with fewer than xy + 1 vertices. We didn’t have control of
exactly how many edges were removed in going from G to
the smaller graphs.



In complete induction, we strengthen the inductive hypothesis
from a(x) to Vz<xy(a(2)).
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In complete induction, we strengthen the inductive hypothesis
from a(x) to Vz<xy(a(2)).
Why is this allowed?

In order to prove ¥x a(x) by complete induction, we just prove
Vx ae(x) by normal induction, where,
def
ac(x) = Vz<x(a(2)).

This little trick allows us to use the stronger — complete —
inductive hypothesis whenever we want to!

In the proof of Euler’s characterization of Eulerian graphs, we
used complete induction:

a(x) = VG (JE® < xo AEC(G) — G has an Eulerian walk )



iClicker 20.3 What is the difference between complete
induction and ordinary induction?

A: Complete induction just consists of certain instances of
ordinary induction, in which «(x) is of the form
vz < x (1(2)) .

B: Complete induction is stronger than ordinary induction
in the sense that there are worlds that are total orderings
satisfying all of ordinary induction, but not complete
induction.
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|G |v]e|[flv—e+f]
Gi|6|9|5 2
To | 101 2
T, 3121 2
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Thm: Euler’s Formula [1750] Let G be an undirected,
connected graph, drawn in the plane. Thenv — e+ f = 2.

We will prove this by induction next time.



