
CS250: Discrete Math for Computer Science

L20: Complete Induction and Proof of Euler’s
Characterization of Eulerian-Walks



Last time: Eulerian Graphs
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Def. An Eulerian walk in a graph G is a walk from s to t that
traverses every edge exactly once and every vertex at least
once.

EC(G)
def
= G is connected ∧ ∀v 6∈ {s, t} deg(v) is even ∧(

s = t ∧ deg(s) = deg(t) is even ∨
s 6= t ∧ deg(s),deg(t) are odd

)
Thm. [Euler] G has an Eulerian walk from s to t iff EC(G).



EC(G)
def
= G is connected ∧ ∀v 6∈ {s, t} deg(v) is even ∧(

s = t ∧ deg(s) = deg(t) is even ∨
s 6= t ∧ deg(s),deg(t) are odd

)

Claim G has an Eulerian walk → EC(G).

Proof: For all vertices, v , besides s and t , the walk must
leave v the same number of times that it enters v . Thus, deg(v)
is even.

If s = t , then deg(s) = deg(t) is even for the same reason.

If s 6= t , then s is left once more than it is reached and t is
reached once more than it is left, so their degrees are both odd.

Since an Eulerian walk visits every vertex, G is connected. �
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Claim EC(G) → G has an Eulerian walk.

We will prove the Claim by induction: N |= ∀x α(x), where

α(x) def
= ∀G (|EG| ≤ x ∧ EC(G) → G has an Eulerian walk )

base case: α(0): Let G be an arbitrary graph with 0 edges and
EC(G). Since G is connected and has no edges it must consist
of a single vertex, s = t . Thus, the empty walk is an Eulerian
walk from s to t .
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s = t ∧ deg(s) = deg(t) is even ∨
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)
α(x) def

= ∀G (|EG| ≤ x ∧ EC(G) → G has an Eulerian walk )

Claim N |= ∀x α(x). We are proving this by induction.

inductive case: Assume α(x0) and try to prove α(x0 + 1).

Let G be an arbitrary graph with x0 + 1 edges and EC(G).

Using α(x0), construct an Eulerian walk through G.
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An inductive proof is a recursive algorithm: using calls to
α(x0), constructing Eulerian walks on graphs with at most x0
edges, we must construct an Eulerian walk through G.
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Let w be an exhaustive bb walk from s. w must end at t.
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Assume EC(G).

From s, take an

exhaustive bb walk

on G.

You must end

at t.
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Let w be an exhaustive bb walk from s. w must end at t.
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Let H def
= G −w 0

s t

1 2 3 4 5

|EH | ≤ x0, and EC(C) for each connected component of H.

By indHyp each C has an Eulerian walk. (recursive call)

The union of these Eulerian walks is an Eulerian walk for G .

0

s t

1 2 3 4 5



Let w be an exhaustive bb walk from s. w must end at t.

0

s t

1 2 3 4 5

Let H def
= G −w 0

s t

1 2 3 4 5

|EH | ≤ x0, and EC(C) for each connected component of H.

By indHyp each C has an Eulerian walk. (recursive call)

The union of these Eulerian walks is an Eulerian walk for G .

0

s t

1 2 3 4 5



Let w be an exhaustive bb walk from s. w must end at t.

0

s t

1 2 3 4 5

Let H def
= G −w 0

s t

1 2 3 4 5

|EH | ≤ x0, and EC(C) for each connected component of H.

By indHyp each C has an Eulerian walk. (recursive call)

The union of these Eulerian walks is an Eulerian walk for G .

0

s t

1 2 3 4 5



Let w be an exhaustive bb walk from s. w must end at t.

0

s t

1 2 3 4 5

Let H def
= G −w 0

s t

1 2 3 4 5

|EH | ≤ x0, and EC(C) for each connected component of H.

By indHyp each C has an Eulerian walk.

(recursive call)

The union of these Eulerian walks is an Eulerian walk for G .

0

s t

1 2 3 4 5



Let w be an exhaustive bb walk from s. w must end at t.

0

s t

1 2 3 4 5

Let H def
= G −w 0

s t

1 2 3 4 5

|EH | ≤ x0, and EC(C) for each connected component of H.

By indHyp each C has an Eulerian walk. (recursive call)

The union of these Eulerian walks is an Eulerian walk for G .

0

s t

1 2 3 4 5



Let w be an exhaustive bb walk from s. w must end at t.

0

s t

1 2 3 4 5

Let H def
= G −w 0

s t

1 2 3 4 5

|EH | ≤ x0, and EC(C) for each connected component of H.

By indHyp each C has an Eulerian walk. (recursive call)

The union of these Eulerian walks is an Eulerian walk for G .

0

s t

1 2 3 4 5



Let w be an exhaustive bb walk from s. w must end at t.

0

s t

1 2 3 4 5

Let H def
= G −w 0

s t

1 2 3 4 5

|EH | ≤ x0, and EC(C) for each connected component of H.

By indHyp each C has an Eulerian walk. (recursive call)

The union of these Eulerian walks is an Eulerian walk for G .

0

s t

1 2 3 4 5



iClicker 20.1 Did we need the assumption EC(G) to know
that in G, a bb walk from s always ends at t?

A: Yes B: No



iClicker 20.2 In the proof of Euler’s characterization of
Eulerian Graphs, why did we need α to say ||EG|| ≤ x0 as
opposed to ||EG|| = x0 ?

A: We didn’t, ||EG|| = x0 would have been enough.

B: We wanted to apply the inductive hypothesis to graphs
with fewer than x0 + 1 vertices. We didn’t have control of
exactly how many edges were removed in going from G to
the smaller graphs.



In complete induction, we strengthen the inductive hypothesis
from α(x0) to ∀z ≤ x0 (α(z)) .

Why is this allowed?

In order to prove ∀x α(x) by complete induction, we just prove
∀x αc(x) by normal induction, where,

αc(x)
def
= ∀z ≤ x (α(z)) .

This little trick allows us to use the stronger – complete –
inductive hypothesis whenever we want to!

In the proof of Euler’s characterization of Eulerian graphs, we
used complete induction:

α(x0) ≡ ∀G (|EG| ≤ x0 ∧ EC(G) → G has an Eulerian walk )
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iClicker 20.3 What is the difference between complete
induction and ordinary induction?

A: Complete induction just consists of certain instances of
ordinary induction, in which α(x) is of the form
∀z ≤ x (ψ(z)) .

B: Complete induction is stronger than ordinary induction
in the sense that there are worlds that are total orderings
satisfying all of ordinary induction, but not complete
induction.
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Thm: Euler’s Formula [1750] Let G be an undirected,
connected graph, drawn in the plane. Then v − e + f = 2.

We will prove this by induction next time.


