
CS250: Discrete Math for Computer Science

L13: Number Theory: Divisibility



Vocabulary of Number Theory, Σ#thy

Σ#thy
def
= (≤2 [infix]; 0,1,+2[infix], ·2[infix])

N, Z, Q, R ∈ World[Σ#thy]; for now, concentrate on Z.

Definition x divides y (x |y) iff ∃z (x · z = y).

Examples: 3|6, 2|6, 4 6 | 6, 1|1, 1|2, 1|3

Proposition ∀y (1|y)

Proof.
Let y0 ∈ Z be arbitrary

1 · y0 = y0 Axiom for Z: 1 is identity for ·
∃z (1 · z = y0) ∃-i

1|y0 Def. of divides |
∀y (1|y) ∀-i, since y0 was arbitrary
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x |y ↪→ ∃z (x · z = y)

Proposition 1. ∀xyz (x |y ∧ x |z → x |(y + z))

Proof.
Let x0, y0, z0 ∈ Z be arbitrary s.t. x0|y0 ∧ x0|z0

∃uv (x0 · u = y0 ∧ x0 · v = z0) Def. of divides |
(x0 · u0 = y0 ∧ x0 · v0 = z0) hypothesis
(x0 · (u0 + v0) = y0 + z0) Z distributive
∃w (x0 · w = y0 + z0) ∃-i
x0|(y0 + z0) Def. of divides |

x0|(y0 + z0) ∃-e
∀xyz (x |y ∧ x |z → x |(y + z)) ∀-i
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x |y ↪→ ∃z (x · z = y)

ΓZ is the set of axioms in Epp that we use about Z.

Prop. 1 ΓZ ` ∀xyz (x |y ∧ x |z → x |(y + z))

1 x0|y0 ∧ x0|z0

2 ∃uv (x0 · u = y0 ∧ x0 · v = z0) ↪→, 1

3 x0 · u0 = y0 ∧ x0 · v0 = z0

4 x0 · (u0 + v0) = y0 + z0 ΓZ, 3

5 ∃w (x0 · w = y0 + z0) ∃-i, 4

6 x0|(y0 + z0) ↪→, 5

7 x0|(y0 + z0) ∃-e, 2, 3–6
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iClicker 13.1 Is line 8 correct and if so, using what ND rule?

A: No B: Yes, ΓZ C: Yes,→-i D: Yes, ∀-i
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A: No B: Yes, ΓZ C: Yes,→-i D: Yes, ∀-i
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Prop. 1 ΓZ ` ∀xyz (x |y ∧ x |z → x |(y + z))

1 x0|y0 ∧ x0|z0

2 ∃uv (x0 · u = y0 ∧ x0 · v = z0) ↪→, 1

3 x0 · u0 = y0 ∧ x0 · v0 = z0
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9 ∀xyz (x |y ∧ x |z → x |(y + z)) ∀-i, 8



Prop. 2 ΓZ ` ∀xyz (x |y → x |(y · z))

1 x0|y0

2 ∃u x0 · u = y0 ↪→, 1

3 x0 · u0 = y0

4 y0 · z0 = y0 · z0

iClicker 13.3 Is line 4 correct and if so, using what ND rule?

A: No B: Yes, ΓZ C: Yes, =-i D: Yes, =-e
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Prop. 2 ΓZ ` ∀xyz (x |y → x |(y · z))

1 x0|y0

2 ∃u x0 · u = y0 ↪→, 1

3 x0 · u0 = y0

4 y0 · z0 = y0 · z0 =-i

5 (x0 · u0) · z0 = y0 · z0 =-e, 3, 4

6 x0 · (u0 · z0) = y0 · z0 ΓZ, 5

7 ∃w (x0 · w = y0 · z0) ∃-i, 6

8 x0|(y0 · z0) ↪→, 7



Prop. 2 ΓZ ` ∀xyz (x |y → x |(y · z))

1 x0|y0

2 ∃u x0 · u = y0 ↪→, 1

3 x0 · u0 = y0

4 y0 · z0 = y0 · z0 =-i

5 (x0 · u0) · z0 = y0 · z0 =-e, 3, 4

6 x0 · (u0 · z0) = y0 · z0 ΓZ, 5

7 ∃w (x0 · w = y0 · z0) ∃-i, 6

8 x0|(y0 · z0) ↪→, 7

9 x0|(y0 · z0) ∃-e, 2, 3–8

10 x0|y0 → x0|(y0 · z0) →-i, 1–9

11 ∀xyz (x |y → x |(y · z)) ∀-i, 10



Prop. 3 ΓZ ` ∀xyz (x |y ∧ y |z → x |z)

1 x0|y0 ∧ y0|z0

2 ∃uv (x0 · u = y0 ∧ y0 · v = z0) ↪→, 1

3 x0 · u0 = y0 ∧ y0 · v0 = z0

4 y0 · v0 = y0 · v0 =-i

5 (x0 · u0) · v0 = y0 · v0 =-e, 3, 4

6 x0 · (u0 · v0) = y0 · v0 ΓZ, 5

7 x0 · (u0 · v0) = z0 =-e, 3, 6

8 ∃u x0 · u = z0 ∃-i, 7

9 x0|z0 ↪→, 8

10 x0|z0 ∃-e, 2, 3–9

11 x0|y0 ∧ y0|z0 → x0|z0 →-i, 1–10

12 ∀xyz (x |y ∧ y |z → x |z) ∀-i, 11


