CS250: Discrete Math for Computer Science

L10: Natural Deduction for PredCalc

Tarski's Recursive Definition of Truth

	For every $G \in \operatorname{World}[\Sigma]$ and $t \in \operatorname{term}(\Sigma)$ $t^G \in G $				
G	Þ	$t_1 = t_2$	iff	$t_1^G = t_2^G$	
G	Þ	$P(t_1,\ldots,t_a)$	iff	$(t^G_1,\ldots,t^G_a)\in {P}^G$	$P^a \in \Sigma$
G	Þ	$\sim \alpha$	iff	$\boldsymbol{G} \not\models \alpha$	PropCalc
G	Þ	$\alpha \wedge \beta$	iff	$\boldsymbol{G} \models \alpha$ and $\boldsymbol{G} \models \beta$	PropCalc
G	⊨	$\alpha \vee \beta$	iff	$\boldsymbol{G} \models \alpha$ or $\boldsymbol{G} \models \beta$	PropCalc
G	Þ	$\forall \mathbf{x}(\alpha)$	iff	for all $a \in G $ $G[a x] \models \alpha$	
G	⊨	$\exists \mathbf{x}(\alpha)$	iff	exists $a \in G $ $G[a x] \models \alpha$	

	introduction	elimination
=	$\overline{t} = \overline{t}$	$\frac{t_1 = t_2 \varphi[t_1/x]}{\varphi[t_2/x]}$
A		$\frac{\forall x \varphi}{\varphi[t/x]}$
Ξ	$\frac{\varphi[t/x]}{\exists x \varphi}$	

	introduction	elimination
=	$\overline{t} = \overline{t}$	$\frac{t_1 = t_2 \varphi[t_1/x]}{\varphi[t_2/x]}$
V		$\frac{\forall x \varphi}{\varphi[t/x]}$
Ξ	$\frac{\varphi[t/x]}{\exists x \varphi}$	

1
$$x = x = -i$$

	introduction	elimination
=	$\overline{t} = \overline{t}$	$\frac{t_1 = t_2 \varphi[t_1/x]}{\varphi[t_2/x]}$
V		$\frac{\forall x \varphi}{\varphi[t/x]}$
Е	$\frac{\varphi[t/x]}{\exists x \varphi}$	

$$1 \quad | \ x = x \qquad =-i$$

1
$$x = y$$

2 $R(x)$
3 $R(y)$ =-e, 1, 2

	introduction	elimination
=	$\overline{t} = \overline{t}$	$\frac{t_1 = t_2 \varphi[t_1/x]}{\varphi[t_2/x]}$
V		$\frac{\forall x \varphi}{\varphi[t/x]}$
Е	$\frac{\varphi[t/x]}{\exists x \varphi}$	

Prop: By Tarski's Def of Truth: =-i and =-e are sound.

1
$$| x = y$$

1 $| x = x = -i$
2 $R(x)$
3 $R(y) = -e, 1, 2$

	introduction	elimination
=	$\overline{t} = \overline{t}$	$\frac{t_1 = t_2 \varphi[t_1/x]}{\varphi[t_2/x]}$
A		$\frac{\forall x \ \varphi}{\varphi[t/x]}$
Ξ	$\frac{\varphi[t/x]}{\exists x \varphi}$	

	introduction	elimination
=	$\overline{t} = \overline{t}$	$\frac{t_1 = t_2 \varphi[t_1/x]}{\varphi[t_2/x]}$
V		$\frac{\forall x \varphi}{\varphi[t/x]}$
E	$\frac{\varphi[t/x]}{\exists x \varphi}$	

$$\begin{array}{c|c} 1 & \forall x \left(A(x) \rightarrow R(x) \right) \\ 2 & A(z) \rightarrow R(z) & \forall \text{-e, 1} \end{array}$$

	introduction	elimination
=	$\overline{t} = \overline{t}$	$\frac{t_1 = t_2 \varphi[t_1/x]}{\varphi[t_2/x]}$
A		$\frac{\forall x \ \varphi}{\varphi[t/x]}$
Е	$\frac{\varphi[t/x]}{\exists x \varphi}$	

$$\begin{array}{c|c} 1 & \forall x \left(A(x) \rightarrow R(x) \right) \\ 2 & A(z) \rightarrow R(z) & \forall \text{-e, 1} \end{array}$$

1
$$\forall x (A(x) \rightarrow R(x))$$
2 $A(s)$ 3 $A(s) \rightarrow R(s)$ \forall -e, 14 $R(s)$ \rightarrow -e, 2, 3

1
$$\forall x (A(x) \rightarrow R(x))$$
2 $R(s)$ 3 $A(s) \rightarrow R(s)$ 4 $A(s)$ No: S_1 is counterexample

1
$$\forall x (A(x) \rightarrow R(x))$$
2 $\sim A(s)$ 3 $A(s) \rightarrow R(s)$ \forall -e, 14 $\sim R(s)$ No: S_1 is counterexample

1
$$\forall x (A(x) \rightarrow R(x))$$
2 $\sim R(s)$ 3 $A(s) \rightarrow R(s)$ \forall -e, 14 $\sim A(s)$ \rightarrow -e, 2, 3

	introduction	elimination
=	$\overline{t} = \overline{t}$	$\frac{t_1 = t_2 \varphi[t_1/x]}{\varphi[t_2/x]}$
A		$\frac{\forall x \ \varphi}{\varphi[t/x]}$
Ξ	$\frac{\varphi[t/x]}{\exists x \varphi}$	

	introduction	elimination
=	$\overline{t} = \overline{t}$	$\frac{t_1 = t_2 \varphi[t_1/x]}{\varphi[t_2/x]}$
V		$\frac{\forall x \ \varphi}{\varphi[t/x]}$
E	$\frac{\varphi[t/\mathbf{x}]}{\exists \mathbf{x} \ \varphi}$	

1
$$\forall x (x + 0 = x)$$

2 $\exists y \forall x (x + y = x)$ $\exists -i, 1$

	introduction	elimination
=	$\overline{t} = \overline{t}$	$\frac{t_1 = t_2 \varphi[t_1/x]}{\varphi[t_2/x]}$
A		$\frac{\forall x \ \varphi}{\varphi[t/x]}$
Э	$\frac{\varphi[t/x]}{\exists x \varphi}$	

1
$$\forall x (x + 0 = x)$$

2 $\exists y \forall x (x + y = x)$ $\exists -i, 1$

	introduction	elimination
=	$\overline{t} = \overline{t}$	$\frac{t_1 = t_2 \varphi[t_1/x]}{\varphi[t_2/x]}$
A		$\frac{\forall x \ \varphi}{\varphi[t/x]}$
Ξ	$\frac{\varphi[t/\mathbf{x}]}{\exists \mathbf{x} \ \varphi}$	

Proof. Assume $G \models \varphi[t/x]$.

1
$$\forall x (x + 0 = x)$$

2 $\exists y \forall x (x + y = x)$ $\exists -i, 1$

	introduction	elimination
=	$\overline{t} = \overline{t}$	$\frac{t_1 = t_2 \varphi[t_1/x]}{\varphi[t_2/x]}$
A		$\frac{\forall x \ \varphi}{\varphi[t/x]}$
Э	$\frac{\varphi[t/\mathbf{x}]}{\exists \mathbf{x} \ \varphi}$	

Proof. Assume $G \models \varphi[t/x]$. $a \stackrel{\text{def}}{=} t^G$

1
$$\forall x (x + 0 = x)$$

2 $\exists y \forall x (x + y = x)$ $\exists -i, 1$

	introduction	elimination
=	$\overline{t} = \overline{t}$	$\frac{t_1 = t_2 \varphi[t_1/x]}{\varphi[t_2/x]}$
A		$\frac{\forall x \ \varphi}{\varphi[t/x]}$
Э	$\frac{\varphi[t/\mathbf{x}]}{\exists \mathbf{x} \ \varphi}$	

Proof.

Assume $G \models \varphi[t/x]$. $a \stackrel{\text{def}}{=} t^G$ Thus, $G[a/x] \models \varphi$

1
$$\forall x (x + 0 = x)$$

2 $\exists y \forall x (x + y = x)$ $\exists -i, 1$

	introduction	elimination
=	$\overline{t} = \overline{t}$	$\frac{t_1 = t_2 \varphi[t_1/x]}{\varphi[t_2/x]}$
A		$\frac{\forall x \ \varphi}{\varphi[t/x]}$
Ξ	$\frac{\varphi[t/x]}{\exists x \varphi}$	

Proof.

Assume $G \models \varphi[t/x]$. $a \stackrel{\text{def}}{=} t^G$ Thus, $G[a|x] \models \varphi$

Thus, by Tarski's Def of Truth, $G \models \exists x \varphi$

1
$$\forall x (x + 0 = x)$$

2 $\exists y \forall x (x + y = x)$ \exists -i, 1

	introduction	elimination
=	$\overline{t} = t$	$\frac{t_1 = t_2 \varphi[t_1/x]}{\varphi[t_2/x]}$
A		$\frac{\forall x \ \varphi}{\varphi[t/x]}$
Ξ	$\frac{\varphi[t/x]}{\exists x \varphi}$	

$$\vdash \forall x \varphi \rightarrow \exists x \varphi$$

	introduction	elimination
=	$\overline{t} = \overline{t}$	$\frac{t_1 = t_2 \varphi[t_1/x]}{\varphi[t_2/x]}$
A		$\frac{\forall x \ \varphi}{\varphi[t/x]}$
Ξ	$\frac{\varphi[t/x]}{\exists x \varphi}$	

$$\vdash \forall x \varphi \rightarrow \exists x \varphi$$

$$\varphi \to \exists \mathbf{X} \varphi$$

1
$$\forall x \varphi$$
2 $\varphi \varphi$ \forall -e, 13 $\exists x \varphi$ \exists -i, 24 $\forall x \varphi \rightarrow \exists x \varphi$ \rightarrow -i, 1–3

	introduction	elimination
=	$\overline{t} = \overline{t}$	$\frac{t_1 = t_2 \varphi[t_1/x]}{\varphi[t_2/x]}$
A		$\frac{\forall x \varphi}{\varphi[t/x]}$
Е	$\frac{\varphi[t/x]}{\exists x \varphi}$	

$$\vdash \exists y \ f(x) = y$$

	introduction	elimination
=	$\overline{t} = t$	$\frac{t_1 = t_2 \varphi[t_1/x]}{\varphi[t_2/x]}$
A		$\frac{\forall x \varphi}{\varphi[t/x]}$
Ξ	$\frac{\varphi[t/x]}{\exists x \varphi}$	

$$\vdash \exists y \ f(x) = y$$

1
$$f(x) = f(x)$$
 =-i
2 $\exists y f(x) = y$ \exists -i, 2

Solution to Disc. 3

 $\vdash \sim (p \lor \sim p)$

1
$$\sim (p \lor \sim p)$$
2 p 3 p 4 $p \lor \sim p$ 5 $\sim p$ 6 $p \lor \sim p$ $p \lor \sim p$ 7 F F $F-i, 1, 3$ 7 F F $F-i, 1, 6$ 8 $(p \lor \sim p)$ $F-e, 1-7$

1a.	\sim d \equiv	"The election is not decided."
1b.	$d\wedge\sim\!c$	"The election is decided but the votes have not been counted."
1c.	$m{c} ightarrow m{d}$	"The election is decided if the votes have been counted."
1d.	\sim d \rightarrow \sim c	"If the election is not decided then the votes have not been counted."

 $a \wedge \sim f$ 2a.

2b.
$$w \lor f \to a$$

- "To get an A in the course, it is sufficient to do all the assigned work, or, to get a perfect score on the final."

2d. $\sim a \rightarrow \sim W$

- **2c.** $\sim f \rightarrow \sim w \rightarrow \sim a$ "If you don't do all the assigned work" \equiv then you won't get an A in the course $\sim f \wedge \sim w \rightarrow \sim a$ unless you get a perfect score on the final."
 - "If you don't get an A in the course, then you didn't do all the assigned work."

Hw1: Knights or Knaves?

Г

$$T_{1} \stackrel{\text{def}}{=} A : \text{``I'm only Kt or only Kv''} \qquad T_{2} \stackrel{\text{def}}{=} B : \text{``Exactly 1 Kv''}
T_{3} \stackrel{\text{def}}{=} A : \text{``Exactly 1 of A, B is Kt''} \qquad S_{1} \equiv T_{1} \leftrightarrow A \text{ is Kt}
S_{2} \equiv T_{2} \leftrightarrow B \text{ is Kt} \qquad S_{3} \equiv T_{3} \leftrightarrow C \text{ is Kt}
\hline W A B C T_{1} T_{2} T_{3} S_{1} S_{2} S_{3}
\hline W_{7} 1 1 1 1 0 0 0 0 0 0 0 0 0 \\
\hline \end{array}$$

VV	Α	В	C	<i>I</i> ₁	12	13	S_1	S_2	S_3
W_7	1	1	1	0	0	0	0	0	0
W_6	1	1	0	0	1	0	0	1	1
W_5	1	0	1	0	1	1	0	0	1
W_4	1	0	0	1	0	1	1	1	0
W_3	0	1	1	1	1	1	0	1	1
W_2	0	1	0	0	0	1	1	0	0
W_1	0	0	1	0	0	0	1	1	0
W_0	0	0	0	0	0	0	1	1	1

 W_0 is the unique world satisfying $S_1 \wedge S_2 \wedge S_3$. Thus, *A*, *B* and *C* are **all knaves**.

$$\begin{array}{l} \sim ((\sim p \land q \land r) \lor \ \sim (p \to (q \to r))) & \equiv \\ & \equiv \ \sim (\sim p \land q \land r) \land \ (p \to (q \to r))) \\ & \equiv \ (p \lor \ \sim q \lor \ \sim r) \land \ (\sim p \lor \ \sim q \lor \ r) \end{array}$$

R9 Quiz Answers

- 1. $G_1 \models \forall x \exists y (R(x) \rightarrow E(y, x))$ True
- 2. $G_1 \models \exists x \forall y (R(x) \land \sim E(y, x))$ False
- 3. $G_1 \models \forall x \exists y (R(x) \rightarrow E(x, y))$

False counterexample: x = 3

4. $G_1 \models \exists x \forall y (R(x) \land \sim E(x, y))$ True witness: x = 3

Convert each of the following PredCalc formulas to NNF.

5.
$$\sim \forall x \exists y (R(x) \rightarrow E(y, x)) \equiv \exists x \forall y (R(x) \land \sim E(x, y))$$

6.
$$\sim \exists x \forall y (R(x) \land \sim E(y, x)) \equiv \forall x \exists y (\sim R(x) \lor E(y, x))$$

7.
$$\sim \forall x \exists y (R(x) \rightarrow E(x, y)) \equiv \exists x \forall y (R(x) \land \sim E(x, y))$$

8.
$$\sim \exists x \forall y (R(x) \land \sim E(x, y)) \equiv \forall x \exists y (\sim R(x) \lor E(x, y))$$

R9 Quiz Answers

s 1 _a	$G_{3<}$	s G ₃₌	
λ_{2a}		2 _a	→2 _b
3_a)	X 3 _a	→3 _b
9.	T/F: $G_{3<} \models \forall xy(E(x,y) -$	$ o A(x) \wedge R(y))$	True
10.	T/F: $G_{3=} \models \forall xy(E(x,y) -$	$ o A(x) \wedge R(y))$	True
11.	T/F: $G_{3<} \models \forall x \exists y (A(x) \rightarrow$	E(x,y))	False
12.	$T/F: \textit{G}_{3=} \models \forall x \exists y (\textit{A}(x) \rightarrow$	E(x,y))	True
13.	T/F: $G_{3<} \models \forall xyz(E(x, y))$	$\wedge E(x,z) \rightarrow y=z)$	False
14.	$T/F: \ G_{3=} \models \forall xyz(E(x,y))$	$\wedge E(x,z) \rightarrow y=z)$	True