CS250:

D3: Natural Deduction for PropCalc

Make sure that you understand the Natural Deduction proof rules for PropCalc and how they are used to justify the following correct proof that $\vdash (\sim p \lor \sim q) \rightarrow \sim (p \land q)$. The discussion leader will go over this proof – please ask any questions and make sure that you understand.

	[
	introduction	elimination
^	$\frac{p \ q}{p \land q}$	$rac{p\wedge q}{p} rac{p\wedge q}{q}$
\vee	$\frac{p}{p \lor q} \frac{q}{p \lor q}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
\rightarrow	$\frac{p \vdash q}{p \to q}$	$\begin{array}{ccc} \underline{p \to q \ p} \\ \underline{q} \end{array} \underline{p \to q \ \sim q} \\ \underline{\sim p} \end{array}$
F	$\frac{p \sim p}{\mathbf{F}}$	$ \begin{array}{c c} \underline{p \vdash \mathbf{F}} & \underline{- \sim p \vdash \mathbf{F}} \\ \hline p & p \end{array} $
$\sim \sim$	$\frac{p}{\sim \sim p}$	$\frac{\sim \sim p}{p}$

Natural Deduction Rules for PropCalc

Example: $\vdash (\sim p \lor \sim q) \rightarrow \sim (p \land q)$

Then work together in your group to fill in the correct justifications for the following Natural Deduction proof of $\vdash (p \lor \sim p)$.

As usual, there will be a D3 Quiz on Moodle tonight in which you should use what you learned in the discussion today to fill in answers to some multiple choice questions.

	introduction	elimination
^	$\frac{p \ q}{p \land q}$	$rac{p\wedge q}{p}$ $rac{p\wedge q}{q}$
V	$\frac{p}{p \lor q} \frac{q}{p \lor q}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
\rightarrow	$\frac{p \vdash q}{p \to q}$	$\begin{array}{ccc} \underline{p \to q \ p} \\ \overline{q} \end{array} \underline{p \to q \ \sim q} \\ \overline{\sim p} \end{array}$
F	$\frac{p \sim p}{\mathbf{F}}$	$ \begin{array}{c c} \underline{p \vdash \mathbf{F}} & \underline{- \sim p \vdash \mathbf{F}} \\ \hline p & p \end{array} $
~~	$\frac{p}{\sim \sim p}$	$\frac{\sim \sim p}{p}$

Natural Deduction Rules for PropCalc

$$\vdash \quad \sim (p \lor \sim p)$$

