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Abstract

A longstanding question in computer vision concerns the
representation of 3D shapes for recognition: should 3D
shapes be represented with descriptors operating on their
native 3D formats, such as voxel grid or polygon mesh, or
can they be effectively represented with view-based descrip-
tors? We address this question in the context of learning
to recognize 3D shapes from a collection of their rendered
views on 2D images. We first present a standard CNN ar-
chitecture trained to recognize the shapes’ rendered views
independently of each other, and show that a 3D shape
can be recognized even from a single view at an accuracy
far higher than using state-of-the-art 3D shape descriptors.
Recognition rates further increase when multiple views of
the shapes are provided. In addition, we present a novel
CNN architecture that combines information from multiple
views of a 3D shape into a single and compact shape de-
scriptor offering even better recognition performance. The
same architecture can be applied to accurately recognize
human hand-drawn sketches of shapes. We conclude that
a collection of 2D views can be highly informative for 3D
shape recognition and is amenable to emerging CNN archi-
tectures and their derivatives.

1. Introduction
One of the fundamental challenges of computer vision is

to draw inferences about the three-dimensional (3D) world
from two-dimensional (2D) images. Since one seldom has
access to 3D object models, one must usually learn to rec-
ognize and reason about 3D objects based upon their 2D ap-
pearances from various viewpoints. Thus, computer vision
researchers have typically developed object recognition al-
gorithms from 2D features of 2D images, and used them to
classify new 2D pictures of those objects.

But what if one does have access to 3D models of each
object of interest? In this case, one can directly train
recognition algorithms on 3D features such as voxel occu-
pancy or surface curvature. The possibility of building such
classifiers of 3D shapes directly from 3D representations

has recently emerged due to the introduction of large 3D
shape repositories, such as 3D Warehouse, TurboSquid, and
Shapeways. For example, when Wu et al. [36] introduced
the ModelNet 3D shape database, they presented a classi-
fier for 3D shapes using a deep belief network architecture
trained on voxel representations.

While intuitively, it seems logical to build 3D shape clas-
sifiers directly from 3D models, in this paper we present
a seemingly counterintuitive result – that by building clas-
sifiers of 3D shapes from 2D image renderings of those
shapes, we can actually dramatically outperform the classi-
fiers built directly on the 3D representations. In particular,
a convolutional neural network (CNN) trained on a fixed set
of rendered views of a 3D shape and only provided with a
single view at test time increases category recognition ac-
curacy by a remarkable 7% (77% → 84%) over the best
models [36] trained on 3D representations.

One reason for this result is the relative efficiency of the
2D versus the 3D representations. In particular, while a full
resolution 3D representation contains all of the information
about an object, in order to use a voxel-based representa-
tion in a deep network architecture that can be trained with
available samples and in a reasonable amount of time, it
would appear that the resolution needs to be significantly
reduced. For example, ModelNet uses a coarse representa-
tion of shape, a 30×30×30 grid of binary voxels. In con-
trast a single projection of the 3D model of the same input
size corresponds to an image of 164×164 pixels, or slightly
smaller if multiple projections are used. Indeed, there is an
inherent trade-off between increasing the amount of explicit
depth information (3D models) and increasing spatial reso-
lution (projected 2D models).

Another advantage of using 2D representations is that
we can leverage (i) advances in image descriptors in the
computer vision community [21, 25] and (ii) massive im-
age databases (such as ImageNet [10]) to pre-train our CNN
architectures. Because images are ubiquitous and large la-
beled datasets are abundant, we can learn a good deal about
generic features for 2D image categorization and then fine-
tune to specifics about 3D model projections. While it is
possible that some day as much 3D training data will be
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Figure 1. Multi-view CNN for 3D shape recognition. At test time a 3D shape is rendered from 12 different views and are passed thorough
CNN1 to extract view based features. These are then pooled across views and passed through CNN2 to obtain a compact shape descriptor.

available, for the time being this is a significant advantage
of our representation.

Although the simple strategy of classifying views inde-
pendently works remarkably well (Sect. 3.2), we present
new ideas for how to “compile” the information in multiple
2D views of an object into a compact descriptor of the ob-
ject using a new architecture called multi-view CNN (Fig. 1
and Sect. 3.3). This descriptor is at least as informative for
classification (and for retrieval is slightly more informative)
than the full collection of view-based descriptors of the ob-
ject. Moreover it facilitates efficient retrieval using either a
similar 3D object or a simple hand-drawn sketch of a similar
object, without resorting to slower methods that are based
on pairwise comparisons of image descriptors. We present
state-of-the-art results on 3D object classification, 3D ob-
ject retrieval using 3D objects, and 3D object retrieval using
sketches (Sect. 4).

Our multi-view CNN is related to “jittering” where trans-
formed copies of the data are added during training to learn
invariances to transformations such as rotation or transla-
tion. In the context of 3D recognition the views can be
seen as jittered copies. The multi-view CNN learns to com-
bine the views instead of averaging, and thus can use the
more informative views of the object for prediction while
ignoring others. Our experiments show that this improves
performance (Sect. 4.1) and also lets us visualize informa-
tive views of the object by back-propagating the gradients
of the network to the views (Fig. 3). Even on traditional
image classification tasks multi-view CNN can be a better
alternative to jittering. For example, on the sketch recogni-
tion benchmark [12] a multi-view CNN trained on jittered
copies performs better than a standard CNN trained with
the same jittered copies (Sect. 4.2). This also advances the
state-of-the-art from 79.0% [29] to 87.2% approaching hu-
man performance on this task.

2. Related Work

Our method is related to prior work on shape descriptors
for 3D objects and image-based CNNs. Next we discuss
some most representative work in these areas.

Shape descriptors. A large corpus of shape descriptors
has been developed for drawing inferences about 3D objects
in both the computer vision and graphics literature. Shape
descriptors can be classified into two broad categories: 3D
shape descriptors that directly work on the native 3D repre-
sentations of objects, such as polygon meshes, voxel-based
discretizations, point clouds, or implicit surfaces, and view-
based descriptors that describe the shape of an 3D object by
“how it looks” in a collection of 2D projections.

With the exception of the recent work of Wu et al. [36]
which learns shape descriptors from the voxel-based repre-
sentation of an object through 3D convolutional nets, pre-
vious 3D shape descriptors were largely “hand-designed”
according to a particular geometric property of the shape
surface or volume. For example, shapes can be represented
with histograms or bag-of-features models constructed out
of surface normals and curvatures [16], distances, angles,
triangle areas or tetrahedra volumes gathered at randomly
sampled surface points [24], properties of spherical func-
tions defined in volumetric grids [17], local shape diameters
measured at densely sampled surface points [5], heat kernel
signatures on polygon meshes [2, 3], or extensions of the
SIFT and SURF feature descriptors to 3D voxel grids [18].
Developing classifiers and other supervised machine learn-
ing algorithms on top of such 3D shape descriptors poses a
number of challenges. First, the size of organized databases
with annotated 3D models is rather limited compared to im-
age datasets, e.g. ModelNet contains about 150K shapes (its
40 category benchmark contains about 4K shapes). In con-
trast, the ImageNet database [10] already includes tens of



millions of annotated images.
On the other hand view-based descriptors have a number

of desirable properties: they are relatively low-dimensional,
efficient to evaluate, and robust to 3D shape representation
artifacts, such as holes, imperfect polygon mesh tessela-
tions, noisy surfaces. The rendered shape views can also
be directly compared with other 2D images, silhouettes or
even hand-drawn sketches. An early example of a view-
based approach is the work by Murase and Nayar [23] that
recognizes objects by matching their appearance in para-
metric eigenspaces formed by large sets of 2D renderings of
3D models under varying poses and illuminations. Another
example, which is particular popular in computer graphics
setups, is the LightField descriptor [6] that extracts a set of
geometric and Fourier descriptors from object silhouettes
rendered from several different viewpoints. Alternatively,
the silhouette of an object can be decomposed into parts
and then be represented by a directed acyclic graph (shock
graph) [22]. Cyr and Kimia [9] defined similarity metrics
based on curve matching and grouped similar views, called
aspect graphs of 3D models [19]. Eitz et al. [13] com-
pared human sketches with line drawings of 3D models pro-
duced from several different views based on local Gabor
filters, while Schneider et al. [29] proposed to use Fisher
Vectors [25] on SIFT features [21] for representing human
sketches. These descriptors are largely “hand-engineered”
and some do not generalize well across different domains,
e.g. the LightField descriptor requires closed silhouettes and
thus cannot be applied to sketches.

Convolutional neural networks. Our work is also re-
lated to recent advances in image recognition using deep
CNNs [20]. In particular CNNs trained on the large datasets
such as ImageNet have been shown to learn general pur-
pose image descriptors for a number of recognition tasks
such as object detection, scene recognition, texture recog-
nition and fine-grained classification [11, 14, 27, 8]. We
show that these deep architectures can be adapted to spe-
cific domains including shaded illustrations of 3D objects,
line drawings, and human sketches to produce descriptors
that have dramatically superior performance compared to
other view-based descriptors and 3D shape descriptors (in-
cluding 3D ShapeNets [36]) in a variety of setups. Further-
more, they are compact and efficient to compute.

Although there is significant work on 3D and 2D shape
descriptors, and estimating informative views of the objects
(or, aspect graphs), there is relatively little work on learning
to combine the view-based descriptors for 3D shape recog-
nition. Most methods resort to simple strategies such as
performing exhaustive pairwise comparisons of descriptors
extracted from different views of each shape. In contrast our
multi-view CNN architecture learns to recognize 3D shapes
from views of the shapes using image-based CNNs but in

the context of other views via a view-pooling layer. As a
result, information from multiple views is effectively accu-
mulated into a single, compact shape descriptor.

3. Method

As discussed above, our focus in this paper is on devel-
oping view-based descriptors for 3D shapes that are train-
able, produce informative representations for recognition
and retrieval tasks, and are efficient to compute.

Our view-based representations start from multiple
views of a 3D shape, generated by a rendering engine. A
simple way to use multiple views is to generate a 2D image
descriptor per each view, and then use the individual de-
scriptors directly for recognition tasks based on some vot-
ing scheme. For example, a naı̈ve approach would be to
average the individual descriptors, treating all the views as
equally important. Alternatively, if the views are rendered
in a reproducible order, one could also concatenate the 2D
descriptors of all the views. Unfortunately, aligning a 3D
shape to a canonical orientation is hard and sometimes ill-
defined. In contrast to the above simple approaches, an ag-
gregated representation combining features from multiple
views is more desirable since it yields a single, compact de-
scriptor representing the 3D shape.

Our approach is to learn to combine information from
multiple views using a unified CNN architecture that in-
cludes a view-pooling layer (Fig. 1). All the parameters of
our CNN architecture are learned discriminatively to pro-
duce a single compact descriptor for the 3D shape. Com-
pared to exhaustive pairwise comparisons between single-
view representations of 3D shapes, our resulting descriptors
can be directly used to compare 3D shapes leading to sig-
nificantly higher computational efficiency.

3.1. Input: A multi-view representation

3D models in online databases are typically stored as
polygon meshes, which are collections of points connected
with edges forming faces. We assume that the 3D models
are consistently upright oriented. Most models in modern
online repositories, such as the 3D Warehouse, satisfy this
requirement.

For each mesh, we render 12 projected views as follows.
We place 12 virtual cameras (viewpoints) around the mesh
every 30 degrees (see Fig. 1). The cameras are elevated 30
degrees from the ground plane, pointing towards the cen-
troid of the mesh. The centroid is calculated as the weighted
average of the mesh face centers, where the weights are the
face areas. The shapes are illuminated using the Phong re-
flection model [26]. The mesh polygons are rendered under
a perspective projection and the pixel color is determined by
interpolating the reflected intensity of the polygon vertices.
Shapes are uniformly scaled to fit into the viewing volume.



We note that using different shading coefficients or illu-
mination models did not affect our output descriptors due to
the invariance of the learned filters to illumination changes,
as also observed in image-based CNNs [20, 11]. Adding
more or different viewpoints is trivial, however, we found
that the above camera setup was already enough to achieve
high performance. Finally, rendering each mesh from all the
viewpoints takes no more than ten milliseconds on modern
graphics hardware.

3.2. Recognition with the multi-view representation

We claim that our multi-view representation contains
rich information about 3D shapes and can be applied to var-
ious types of tasks. In the first setting, we make use of exist-
ing 2D image features directly and produce a descriptor for
each view. This is the most straightforward approach to uti-
lize the multi-view representation, and can benefit from the
fact that building image features has been a very active and
fruitful research area and many powerful image features ex-
ist. This however results in multiple 2D image descriptors
per 3D shape, one per view, which need to be integrated
somehow for recognition tasks.

Image descriptors. We consider two types of image de-
scriptors for each 2D view: a state-of-the-art “hand-crafted”
image descriptor based on Fisher Vectors [28] with multi-
scale SIFT, as well as CNN activation features [11].

The Fisher Vector image descriptor is implemented using
VLFeat [35]. For each image multi-scale SIFT descriptors
are extracted densely. These are then PCA projected to 80
dimensions followed by Fisher Vector pooling with a Gaus-
sian mixture model with 64 components, square-root and `2
normalization.

For our CNN features we use the VGG-M network
from [4] which consists of mainly five convolutional layers
conv1,...,5 followed by three fully connected layers fc6,...,8
and a softmax classification layer. The penultimate layer
fc7 (after ReLU non-linearity, 4096-dimensional) is used
as image descriptor. The network is pre-trained on Ima-
geNet images from 1k categories, and then fine-tuned on all
2D views of the 3D shapes in training set. As we show in
our experiments, fine-tuning improves performance signif-
icantly. Both Fisher Vectors and CNN features yield very
good performance in classification and retrieval compared
with popular 3D shape descriptors (e.g. SPH [17], LFD [6])
as well as 3D ShapeNets [36].

Classification. We train one-vs-all linear SVMs (each
view as separate training samples) to classify shapes with
their image features. At test time, we simply sum up SVM
decision values over all 12 views and return the class with
the highest sum. Alternative approaches, e.g. averaging im-
age descriptors, lead to worse accuracy.

Retrieval. A distance or similarity measure is required for
retrieval tasks. For shape x with nx image descriptors and
shape y with ny image descriptors, distance between them
is defined in Eq. 1. Note that distance between two 2D im-
ages is defined as the L2 distance between their feature vec-
tors, i.e. ‖xi − yj‖2.

Dist(x,y) =
1

2

∑
j mini ‖xi − yj‖2

ny
+

1

2

∑
i minj ‖xi − yj‖2

nx
(1)

To interpret this definition, we can first define the dis-
tance between a 2D image xi and a 3D shape y as
d(xi,y) = minj ‖xi − yj‖2. Then given all nx distances
between x’s 2D projections and y, the distance between
these two shapes can be get by simple averaging. In Eq. 1,
this idea is applied in both directions to ensure symmetry.

We investigated alternative distance measures, such as
minimun distance among all nx · ny image pairs, distance
between average image descriptors, but they all led to infe-
rior performance.

3.3. Multi-view CNN: Learning to aggregate views

Although very successful for classification and retrieval
compared with existing 3D descriptors, having multiple
separate descriptors for each 3D shape can be inconvenient
and inefficient in many cases. For example, in Eq. 1, we
need to compute all nx · ny pairwise distances between im-
ages in order to compute distance between two 3D shapes.
Simply averaging or concatenating the image descriptors
leads to inferior performance. In this section, we focus on
the problem of learning to aggregate multiple views in order
to synthesize the information from all views into a single,
compact 3D shape descriptor.

We design the multi-view CNN (MVCNN) on top of
image-based CNNs (Fig. 1). Each image in a 3D shape’s
multi-view representation is passed through the first part
of the network (CNN1) separately, aggregated at a view-
pooling layer, and then sent through the remaining part
of the network (CNN2). All branches in the first part of
the network share the same parameters in CNN1. We use
element-wise maximum operation across the views in the
view-pooling layer. An alternative is element-wise mean
operation, but it is not as effective in our experiments. The
view-pooling layer can be placed anywhere in the network.
We show in our experiments that it should be placed close
to the last convolutional layer (conv5) for optimal classifi-
cation and retrieval performance. View-pooling layers are
closely related to max-pooling layers and maxout layers
[15], with the only difference in terms of implementation
being the dimension their pooling operations are carried
on. MVCNN are directed acyclic graphs and can be trained



Method Training Config. Test Config. Classification
(Accuracy)

Retrieval
(mAP)Pre-train Fine-tune #Views #Views

(1) SPH [17] - - - - 68.2% 33.3%
(2) LFD [6] - - - - 75.5% 40.9%
(3) 3D ShapeNets [36] ModelNet40 ModelNet40 - - 77.3% 49.2%

(4) FV - ModelNet40 12 1 79.3% 37.6%
(5) FV, 12× - ModelNet40 12 12 85.1% 43.8%
(6) CNN ImageNet1K - - 1 82.4% 43.3%
(7) CNN, f.t. ImageNet1K ModelNet40 12 1 84.1% 61.0%
(8) CNN, 12× ImageNet1K - - 12 86.4% 49.0%
(9) CNN, f.t.,12× ImageNet1K ModelNet40 12 12 87.3% 62.1%

(10) MVCNN, 12× ImageNet1K - - 12 86.4% 49.2%
(11) MVCNN, f.t., 12× ImageNet1K ModelNet40 12 12 88.8% 69.4%
(12) MVCNN, f.t.+metric, 12× ImageNet1K ModelNet40 12 12 88.9% 78.9%

* f.t.=fine-tuning, metric=low-rank Mahalanobis metric learning

Table 1. Classification and retrieval results on the ModelNet40 dataset. On the top are results using state-of-the-art 3D shape descriptors.
Our view-based descriptors including Fisher Vectors (FV) significantly outperform these even when a single view is available at test time
(#Views = 1). When multiple views (#Views=12) are available at test time, the performance of view-based methods improve significantly.
The multi-view CNN (MVCNN) architecture outperforms the view-based methods, especially for retrieval.

or fine-tuned using stochastic gradient descent with back-
propagation.

Using fc7 (after ReLU non-linearity) in MVCNN as
an aggregated shape descriptor, we achieve higher perfor-
mance than using separate image descriptors from image-
based CNN directly (this approach will be referred to as
single-view CNN for clarity), especially in retrieval (62.1%
→ 69.4%). And perhaps more importantly, the aggregated
descriptor is ready for use out of the box for a variety of
tasks, e.g. shape classification and retrieval, and offers sig-
nificant speed-ups against multiple image descriptors.

MVCNN can also be used as a general framework to in-
tegrate perturbed image samples (also known as data jitter-
ing). We illustrate this capability of MVCNN in the context
of sketch recognition in Sect. 4.2.

Low-rank Mahalanobis metric. Our networks are fine-
tuned for classification, thus retrieval performance is not
directly optimized. Although we could train our networks
with a different objective function suitable for retrieval, we
found that a simpler approach can readily yield a significant
retrieval performance boost (see row 12 in Tab. 1). We learn
a Mahalanobis metricW that directly projects MVCNN de-
scriptors φ ∈ Rd to Wφ ∈ Rp, such that the L2 distances
in the projected space are small between shapes of the same
category, and large otherwise. We use the large-margin met-
ric learning algorithm and implementation from [31], and
use p < d to make the final descriptor compact (we set
p = 128 in our experiments). The fact that we can readily
use metric learning for the single shape descriptor demon-

strates another advantage of MVCNN. It is less clear how
to apply metric learning when a different shape descriptor
is produced from each view.

4. Experiments
4.1. 3D shape classification and retrieval

We evaluate our shape descriptors on the Princeton Mod-
elNet dataset [1]. ModelNet currently contains 127,915
3D CAD models from 662 categories1. A 40-class well-
annotated subset containing 12,311 shapes from 40 com-
mon categories, ModelNet40, is provided on the ModelNet
website. For our experiments, we use the same training and
test split of ModelNet40 as in [36] 2.

Our shape descriptors are compared against the 3D
ShapeNet descriptor by Wu et al. [36], the Spherical Har-
monics descriptor (SPH) by Kazhdan et al. [17], the Light-
Field descriptor (LFD) by Chen et al. [6], and Fisher Vec-
tors extracted on the same rendered views of the shapes used
as input to our network.

Results on shape classification and retrieval are sum-
marized in Tab. 1. Precision-recall curves are provided in
Fig. 2. Remarkably the Fisher Vector baseline with just
a single view achieves a classification accuracy of 79.3%
outperforming the state-of-the-art learned 3D descriptors
(77.3% [36]). When all 12 views of the shape are available

1As of 04/21/2015.
2The training/test split they used is different from the one on their web-

site, and covers about 100 shapes per category, within which 20 shapes are
used for testing and the rest for training.
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Figure 2. Precision-recall curves for various methods for 3D shape
retrieval on the ModelNet40 dataset. Our method significantly out-
performs the state-of-the-art on this task achieving 78.9% mAP.

at test time, we can also average the predictions over these
views. Averaging increases the performance of Fisher Vec-
tors to 85.1%. The performance of Fisher Vectors further
supports our claim that 3D objects can be effectively repre-
sented using view-based 2D representations. The trends in
performance for shape retrieval are similar.

Using our CNN baseline trained on ImageNet in turn
outperforms Fisher Vectors by a significant margin. Fine-
tuning the CNN on the rendered views of the training shapes
of ModelNet40 further improves the performance. By using
all 12 views of the shape, its classification accuracy reaches
87.3%. The retrieval accuracy is also improved to 62.1%.

Our MVCNN outperforms all the state-of-the-art de-
scriptors as well as the Fisher Vector and CNN baselines.
With fine-tuning on the ModelNet40 training set, our model
achieves 88.8% classification accuracy, and 69.4% mean
average precision (mAP) on retrieval. MVCNN consti-
tutes an absolute gain of 11.5% in classification accuracy
compared to the state-of-the-art learned 3D shape descrip-
tor [36] (77.3% → 88.8%). Similarly, retrieval mAP is
improved by 20.2% (49.2% → 69.4%). Finally, learn-
ing a low-rank Mahalanobis metric improves retrieval mAP
further while classification accuracy remains almost un-
changed, and the resulting shape descriptors become much
more compact (d = 4096, p = 128).

We considered different locations to place the view-
pooling layer in our MVCNN architecture (see Tab. 2). Al-
though performance is not very sensitive to the location, we
find conv5 to be a good choice for balanced performance,
and thus use it for all other experiments.

Layer Classification
(Accuracy)

Retrieval
(mAP)

conv3 85.9% 62.6%
conv4 88.9% 65.8%
conv5 88.8% 69.4%

fc6 87.8% 68.3%
fc7 87.5% 69.7%

Table 2. Comparison of various view-pooling locations in the
MVCNN architecture.

Saliency map among views. For each 3D shape S, our
multi-view representation consists of a set of K 2D views
{I1, I2 . . . IK}. We would like to rank pixels in the 2D
views w.r.t. their influence on the output score Fc of the net-
work (e.g. taken from fc8 layer) for its ground truth class c.
Following [32], saliency maps can be defined as the deriva-
tives of Fc w.r.t. the 2D views of the shape:

[w1, w2 . . . wK ] =

[
∂Fc

∂I1

∣∣∣∣
S

,
∂Fc

∂I2

∣∣∣∣
S

. . .
∂Fc

∂IK

∣∣∣∣
S

]
(2)

For MVCNN, w in Eq. 2 can be computed using back-
propagation with all the network parameters fixed, and can
then be rearranged to form saliency maps for individual
views. Examples of saliency maps are shown in Fig. 3.

4.2. Sketch recognition: jittering revisited

Given the success of our aggregated descriptors on mul-
tiple views of a 3D object, it is logical to ask whether ag-
gregating multiple views of a 2D image could also improve
performance. Here we show that this is indeed the case by
exploring its connection with data jittering in the context of
sketch recognition.

Data jittering, or data augmentation, is a method to gen-
erate extra samples from a given image. It is the process
of perturbing the image by transformations that change its
appearance while leaving the high-level information (class
label, attributes, etc.) intact. Jittering can be applied at train-
ing time to augment training samples and to reduce overfit-
ting, or at test time to provide more robust predictions. In
particualr, several authors [20, 4, 34] have used data jittering
to improve the performance of deep representations on 2D
image classification tasks. In these applications, jittering at
training time usually includes random images translations
(implemented as random crops), horizontal reflections, and
color perturbations. At test time jittering usually only in-
cludes a few crops (for example, four at the corners, one at
the center and their horizontal reflections). We now exam-
ine whether we can get more benefit out of jittered views of
an image by using the same feature aggregation scheme we
developed for recognizing 3D shapes.
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Figure 3. Top three views with the highest saliency are highlighted in blue and the relative magnitudes of gradient energy for each view is
shown on top. The saliency maps are computed by back-propagating the gradients of the class score onto the image via the view-pooling
layer. Notice that the handles of the dresser and of the desk are the most discriminative features. (Figures are enhanced for visibility).

The human sketch dataset [12] contains 20,000 hand-
drawn sketches of 250 object categories such as airplanes,
apples, bridges, etc. The accuracy of humans in recognizing
these hand-drawings is only 73% because of the low qual-
ity of some sketches. In a subsequent paper [29], Schneider
and Tuytelaars cleaned up the dataset by removing instances
and categories that humans find hard to recognize. This
cleaned dataset (SketchClean) contains 160 categories, on
which human can achieve 93% recognition accuracy. The
current state-of-the-art sketch recognition performance is
67.6% accuracy on the original dataset and 79.0% accuracy
on the SketchClean dataset, achieved by using SIFT Fisher
Vectors with spatial pyramid pooling and linear SVMs [29].
We split the SketchClean dataset randomly into training,
validation and test set3, and report classification accuracy
on the test set in Tab. 3.

With an off-the-shelf CNN (VGG-M from [4]), we are
able to get 77.3% classification accuracy without any net-
work fine-tuning. With fine-tuning on the training set, the
accuracy can be further improved to 84.0%, significantly
surpassing the Fisher Vector approach. These numbers are
achieved by using the penultimate layer (fc7) in the network
as image descriptors and linear SVMs.

Although it is impracticable to get multiple views from
2D images, we can use jittering to mimic the effect of views.
For each hand-drawn sketch, we do in-plane rotation with

3The dataset does not come with a standard training/val/test split.

three angles: −45°, 0°, 45°, and also horizontal reflec-
tions (hence 6 samples per image). We apply the two CNN
variants (regular CNN and MVCNN) discussed earlier for
aggregating multiple views of 3D shapes, and get 85.5%
(CNN w/o view-pooling) and 86.3% (MVCNN w/ view-
pooling on fc7) classification accuracy respectively. The
latter also has the advantage of a single, more compact de-
scriptor for each hand-drawn sketch.

With a deeper network architecture (VGG-VD, a net-
work with 16 weight layers from [33]), we are able to
achieve 87.2% accuracy, advancing the state of the art by a
large margin, and closely approaching human performance.

4.3. Sketch-based 3D shape retrieval

Due to the growing number of online 3D repositories,
many approaches have been investigated to perform effi-
cient 3D shape retrieval. Most online repositories (e.g.
3D Warehouse, TurboSquid, Shapeways) provide only text-
based search engines or hierarchical catalogs for 3D shape
retrieval. However, it is hard to convey stylistic and geo-
metric variations using only textual descriptions, so sketch-
based shape retrieval [37, 30, 13] has been proposed as
an alternative for users to retrieve shapes with an approx-
imate sketch of the desired 3D shape in mind. Sketch-
based retrieval is challenging since it involves two heteroge-
neous data domains (hand-drawn sketches and 3D shapes),
and sketches can be highly abstract and visually different



Method Aug. Accuracy

(1) FV [29] - 79.0%

(2) CNN M - 77.3%
(3) CNN M, fine-tuned - 84.0%
(4) CNN M, fine-tuned 6× 85.5%
(5) MVCNN M, fine-tuned 6× 86.3%

(6) CNN VD - 69.3%
(7) CNN VD, fine-tuned - 86.3%
(8) CNN VD, fine-tuned 6× 86.0%
(9) MVCNN VD, fine-tuned 6× 87.2%

(10) Human performance n/a 93.0%

Table 3. Sketch classification results. Fine-tuned CNN models sig-
nificantly outperform the state-of-the-art by a significant margin.
MVCNNs are better than CNN trained with data jittering. The re-
sults are shown with two different CNN architectures – VGG-M
(row 2-5) and VGG-VD (row 6-9).

from target 3D shapes. Here we demonstrate the potential
strength of MVCNN in sketch-based shape retrieval.

For this experiment, we construct a dataset containing
193 sketches and 790 CAD models from 10 categories ex-
isting in both SketchClean and ModelNet40. Following
[13], we produce renderings of 3D shapes with a style simi-
lar to hand-drawn sketches (see Fig. 4). This is achieved by
detecting Canny edges on the depth buffer (also known as
z-buffer) from 12 viewpoints. These edge maps are then
passed through CNNs to obtain image descriptors. De-
scriptors are also extracted from 6 perturbed samples of
each query sketch in the manner described in Sect. 4.2. Fi-
nally we rank 3D shapes w.r.t. “average minimum distance”
(Eq. 1) to the sketch descriptors. Representative retrieval
results are shown in Fig. 5.

We are able to retrieve 3D objects from the same class
with the query sketch, as well as being visually similar,
especially in the top few matches. Our performance is
36.1% mAP on this dataset. Here we use the VGG-M net-
work trained on ImageNet without any fine-tuning on either
sketches or 3D shapes. With a fine-tuning procedure that
optimizes a distance measure between hand-drawn sketches
and 3D shapes, e.g. by using a Siamese Network [7], re-
trieval performance can be further improved.

5. Conclusion
While the world is full of 3D shapes, as humans at least,

we understand that world mostly through 2D images. We
have shown that using images of shapes as inputs to modern
learning architectures, we can achieve performance better
than any previously published results, including those that
operate on direct 3D representations of shapes.

While even a näive usage of these multiple 2D pro-

3D mesh depth bu er
Canny edge 

  detection
human sketch

Figure 4. Line-drawing style rendering from 3D shapes.

query top 10 retrieved 3D shapes

Figure 5. Sketch-based 3D shape retrieval examples. Top matches
are shown for each query, with mistakes highlighted in red.

jections yields impressive discrimination performance, we
have shown that by building descriptors that are aggrega-
tions of information from multiple views, we can achieve
compactness, efficiency, and high accuracy. In addition, by
relating the content of 3D shapes to 2D representations like
sketches, we can retrieve these 3D shapes at high accuracy
with the sketches, and leverage the implicit knowledge of
3D shapes contained in their 2D views.

There are a number of directions to explore in future
work. One is to experiment with different combinations of
2D views. Which views are most informative? How many
views are necessary for a given level of accuracy? Can in-
formative views be selected on the fly?

Another obvious question is whether our view aggregat-
ing techniques can be used for building compact and dis-
criminative descriptors for real-world 3D objects from mul-
tiple views, or automatically from video, rather than merely
for 3D polygon mesh models. Such investigations could be
immediately applicable to widely studied problems such as
object recognition and face recognition.
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