Decoding 2 and Rotational Embeddings

CS685 Spring 2025 Advanced Natural Language Processing

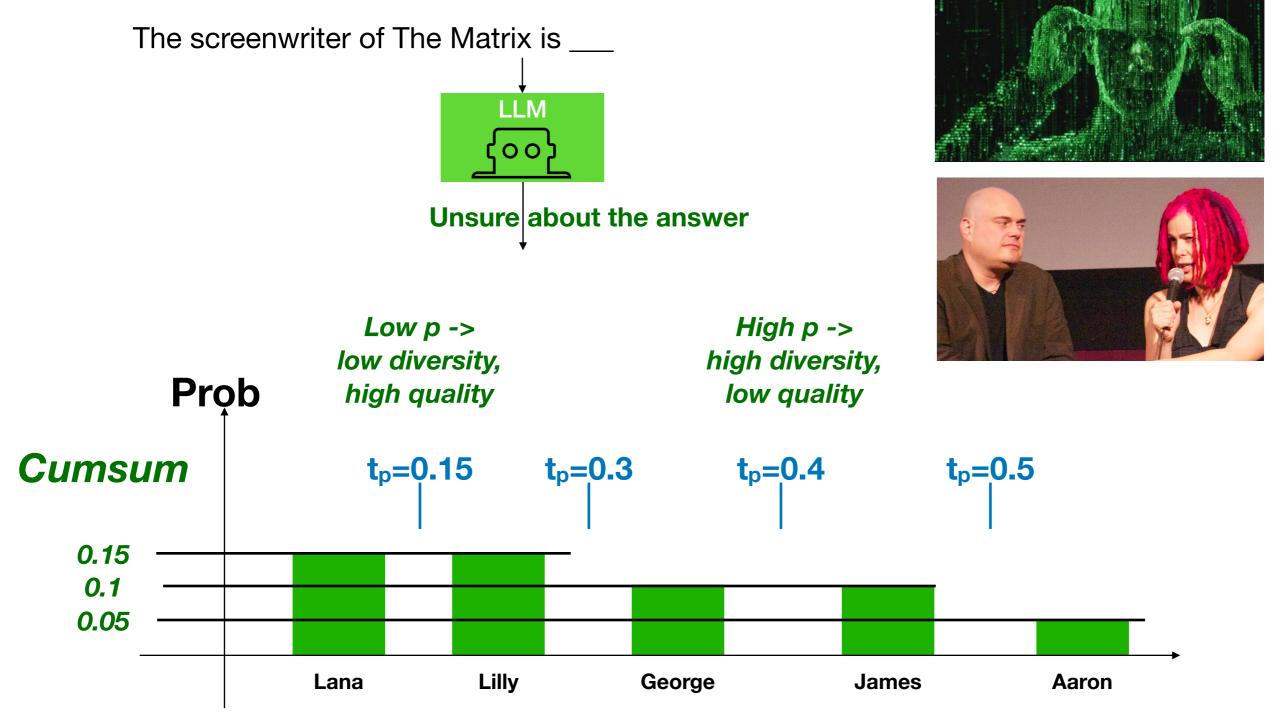
Haw-Shiuan Chang

College of Information and Computer Sciences University of Massachusetts Amherst

Logistics

- <u>https://people.cs.umass.edu/~hschang/cs685/schedule.html</u>
- I need to leave very soon after today's class
 - If you have some complex questions, come to my office hour
- 4/2: Deadline of applying for the first round of API credit
 - <u>https://piazza.com/class/m1kz66st9dn62i/post/146</u>
 - The credits are for API calls or very cheap fine-tuning (e.g., finetuning GPT)
 - We will have two rounds of credit allocations.
- 4/7: Midterm Review 1
- **4/9:** Midterm Review 2
- 4/11: HW 2 due
- 4/18 (Friday but Monday Schedule): Midterm
- 5/9: Final project report due

Top-p Sampling (Nucleus Samling)

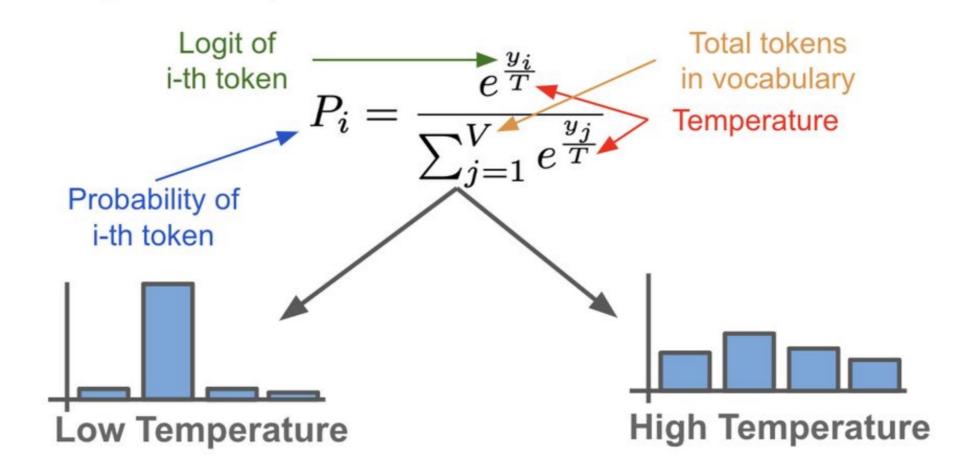


https://commons.wikimedia.org/wiki/File:Andy_and_Lana_Wachowski_%282012%29.JPG

https://www.flickr.com/photos/nunoluciano/5396200604

Temperature Sampling

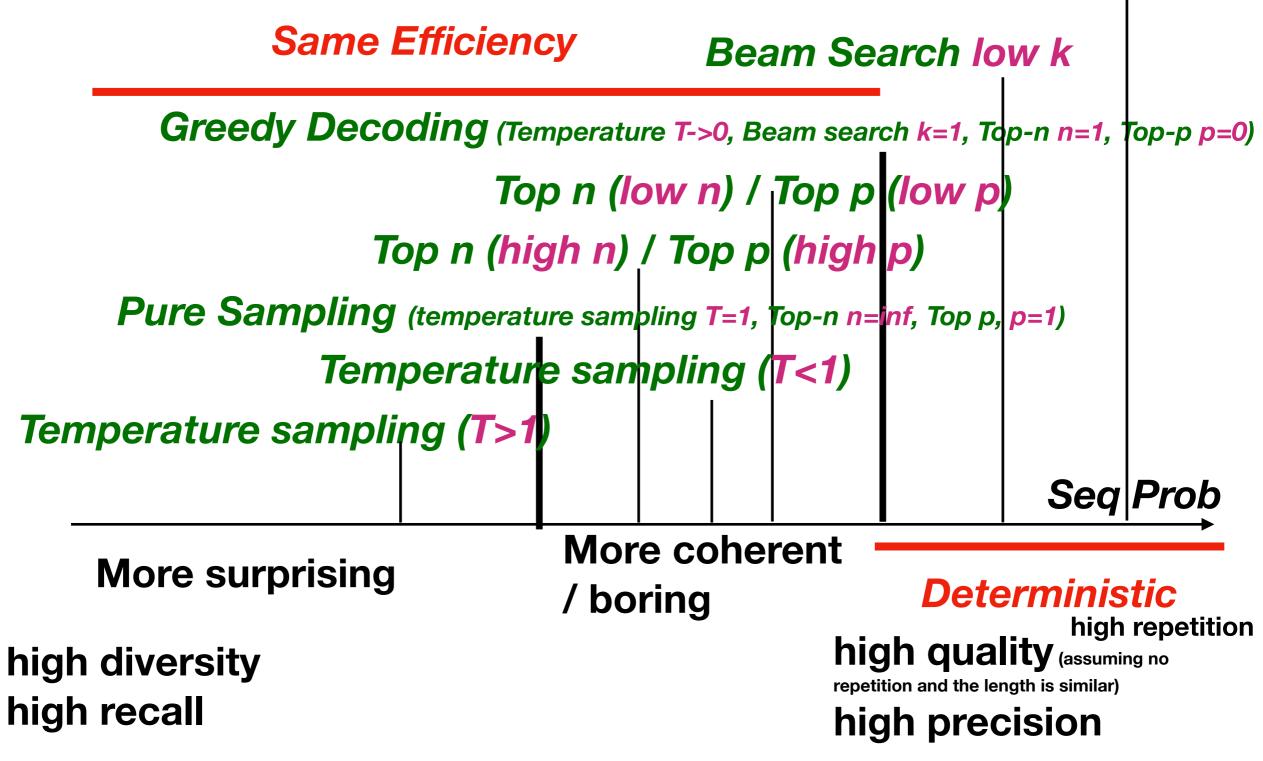
We can adjust the temperature to modulate the uniformity of the token distribution produced by the softmax transformation

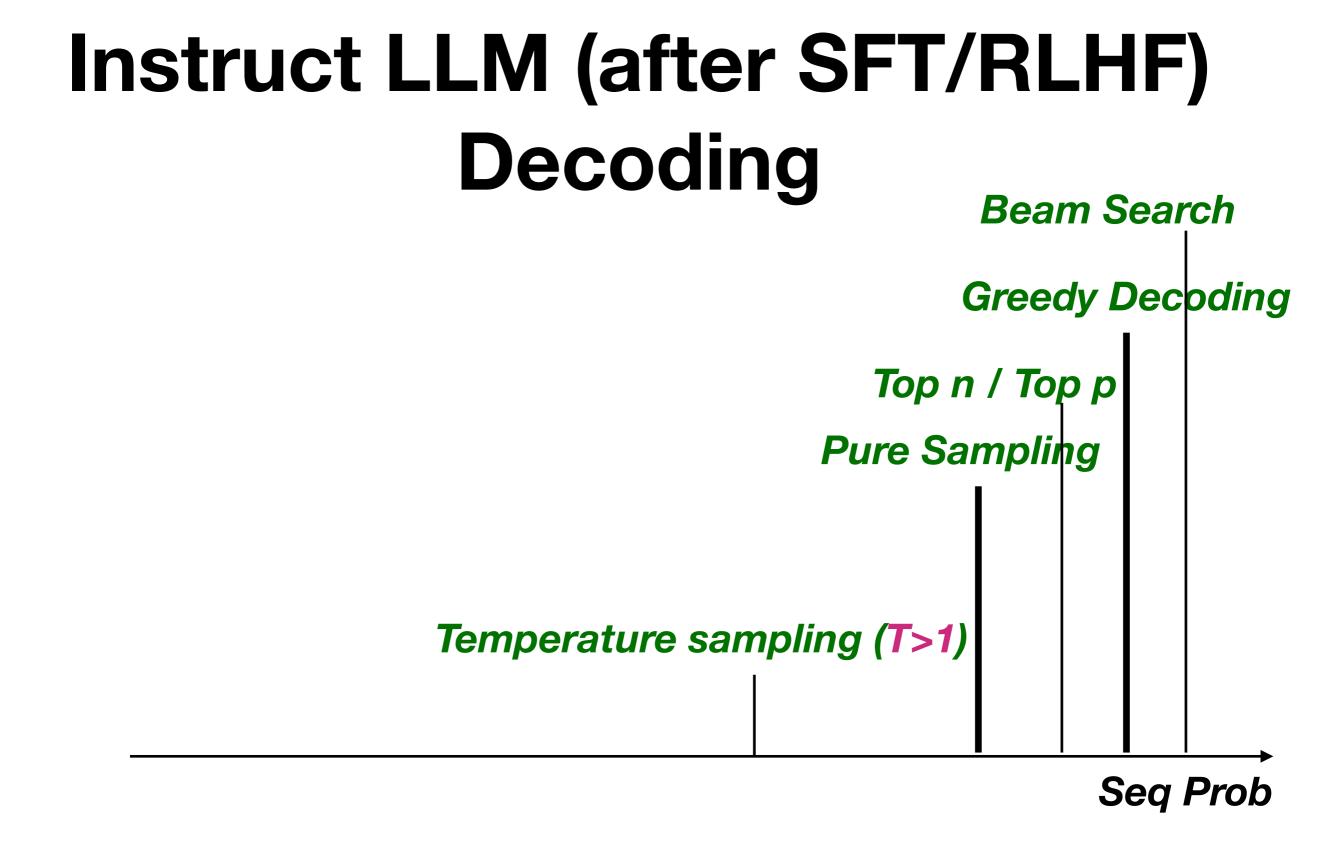


https://aman.ai/primers/ai/token-sampling/

Base LLM Decoding

Beam Search large k

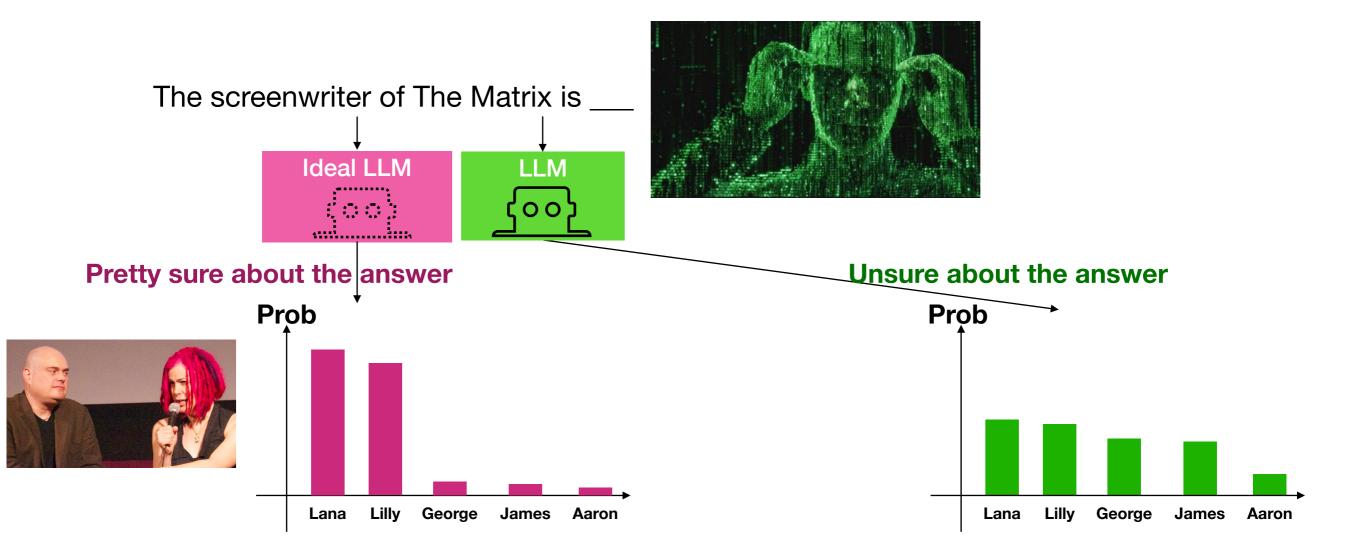




high quality high precision

high diversity high recall

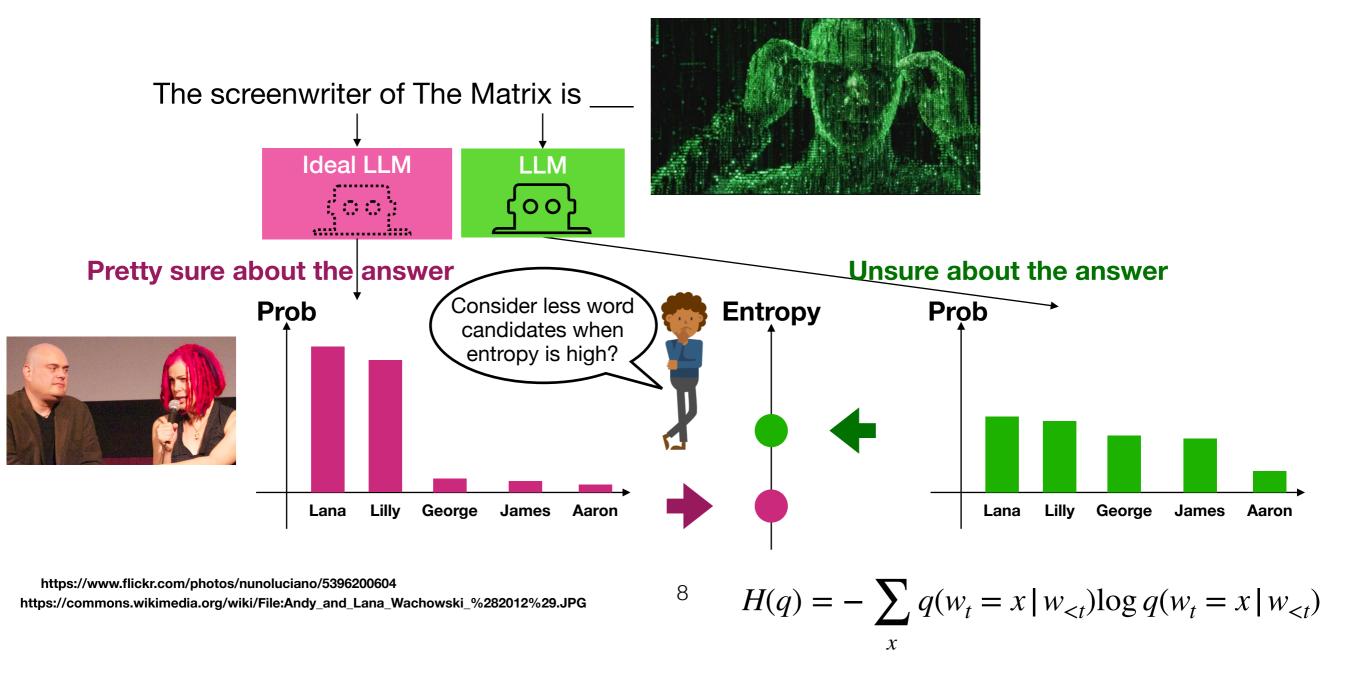
Hallucination from High-Entropy Distribution



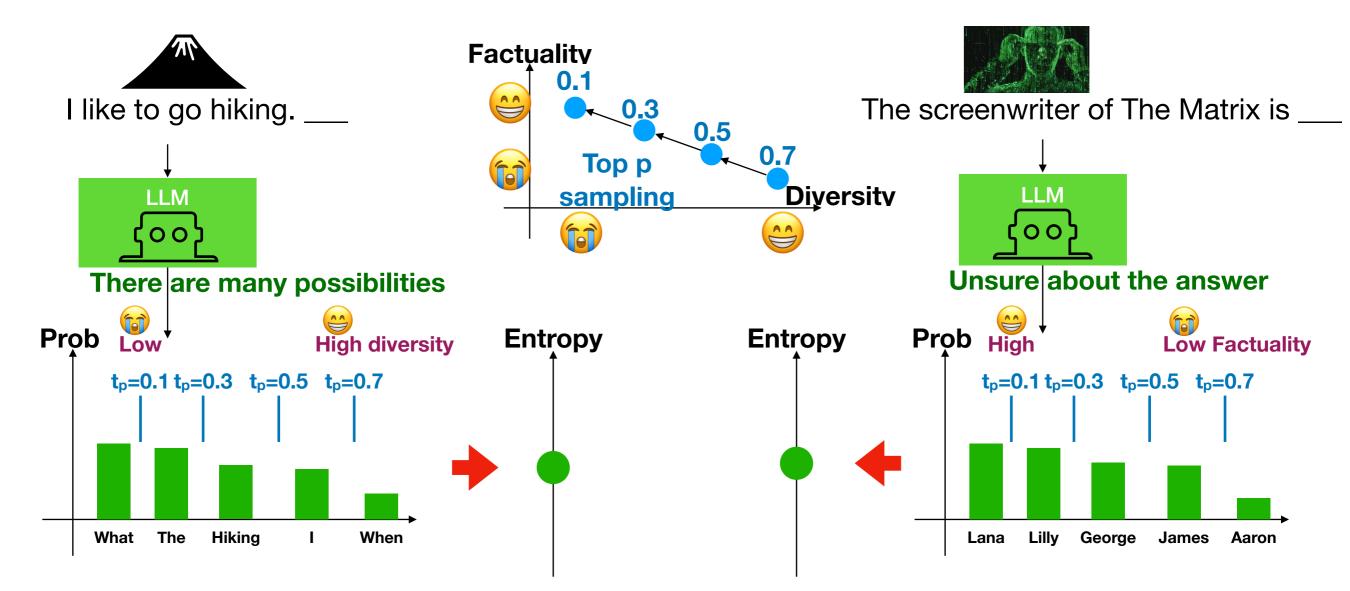
https://www.flickr.com/photos/nunoluciano/5396200604 https://commons.wikimedia.org/wiki/File:Andy_and_Lana_Wachowski_%282012%29.JPG

7

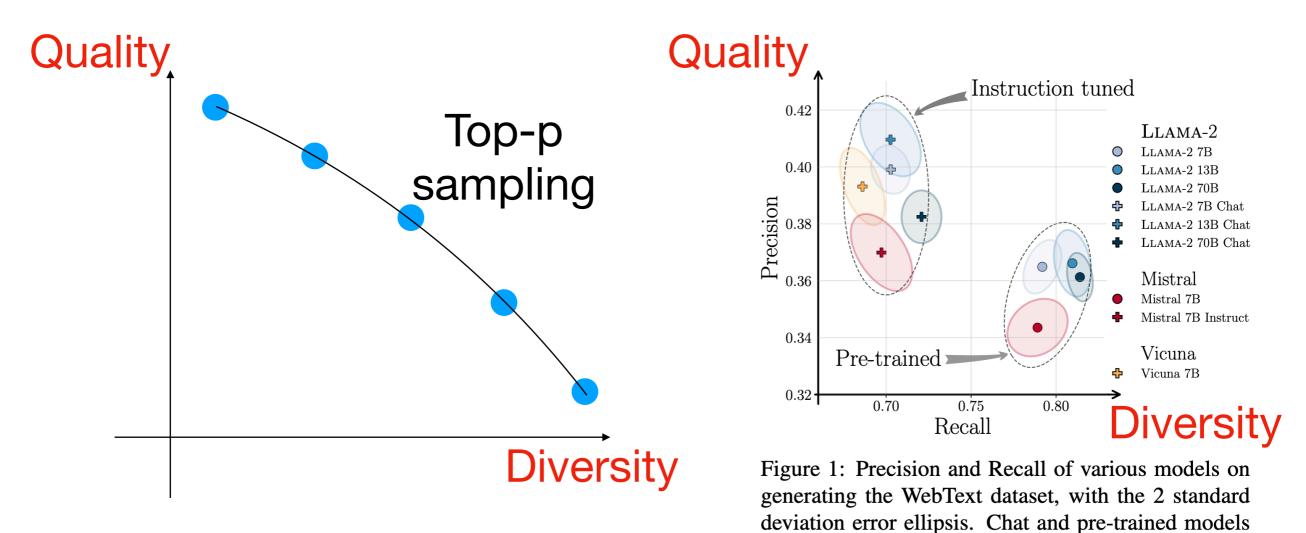
Hallucination from High-Entropy Distribution



Tradeoff between Factuality and Diversity



Trade-off between Quality and Diversity



Lee, Nayeon, et al. "Factuality enhanced language models for openended text generation." *Advances in Neural Information Processing Systems* 35 (2022): 34586-34599. different behaviors are clearly captured by oevidenced. Le Bronnec, Florian, et al. "Exploring Precision and Recall to assess the

Le Bronnec, Florian, et al. "Exploring Precision and Recall to assess the quality and diversity of LLMs." 62nd Annual Meeting of the Association for Computational Linguistics. 2024.

Midterm Example Question

 Changing the temperature in the sampling and RLHF could both reduce the entropy/diversity of generation.
 What are their differences?

Midterm Example Question

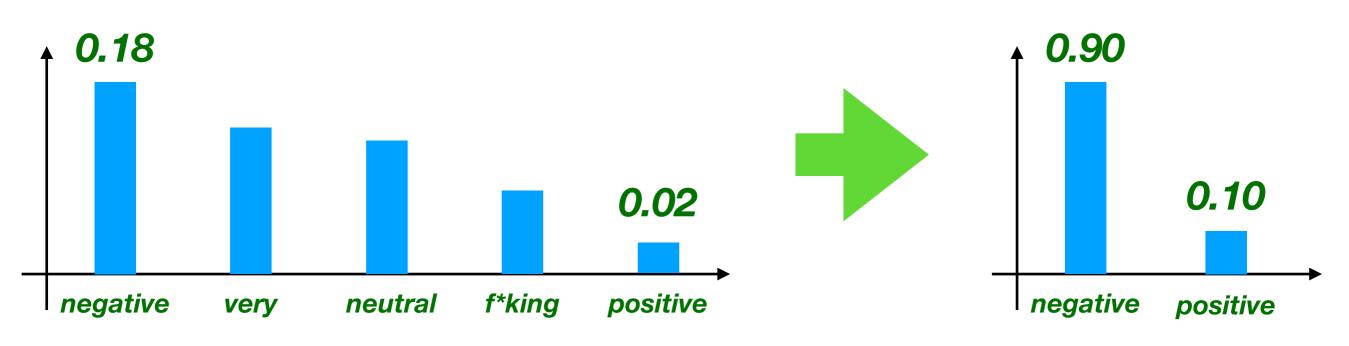
• How do you remove the randomness in the generation?

PLAYGROUND	Prompts			Code	→ Compare	🕄 History	E Responses API ≎
Prompts	염 Your prompts ≎	Save					
 •I+• Realtime Assistants ↓ TTS 	Model gpt-4o \$ text.format: text temp: 1.00 tokens: 2048 top_p: 1 Tools Create System message Describe desired model behavior (tone, tool usage, respon	Text format Temperature Max tokens	text \$ 1.00 2048 1.00	Your conve	rsation will ap	pear here	
 Cookbook Forum Help 			Chat with your prom	pt			
	Add messages to describe task or add context	0 S Aut				C Auto-clear	

https://platform.openai.com/playground/prompts?mode=chat&models=gpt-4o

Constrained Decoding

- Context
 - {input sentence}
 - e.g., This movie is far from being great
 - The sentiment of the movie is _____

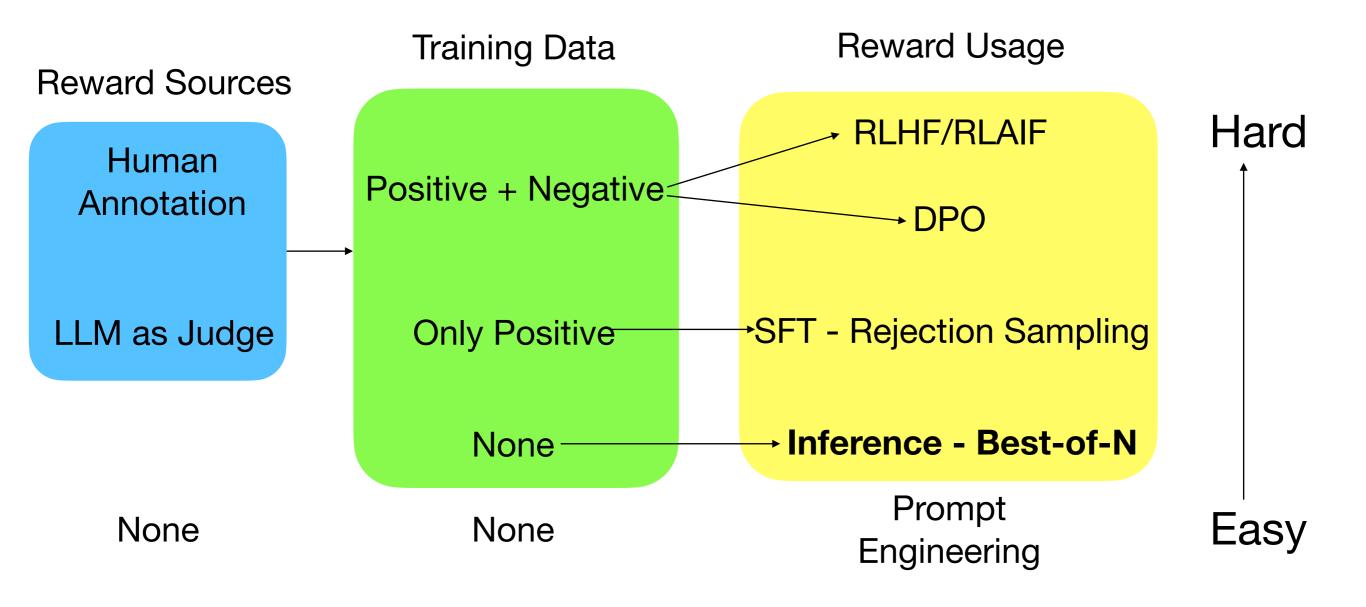


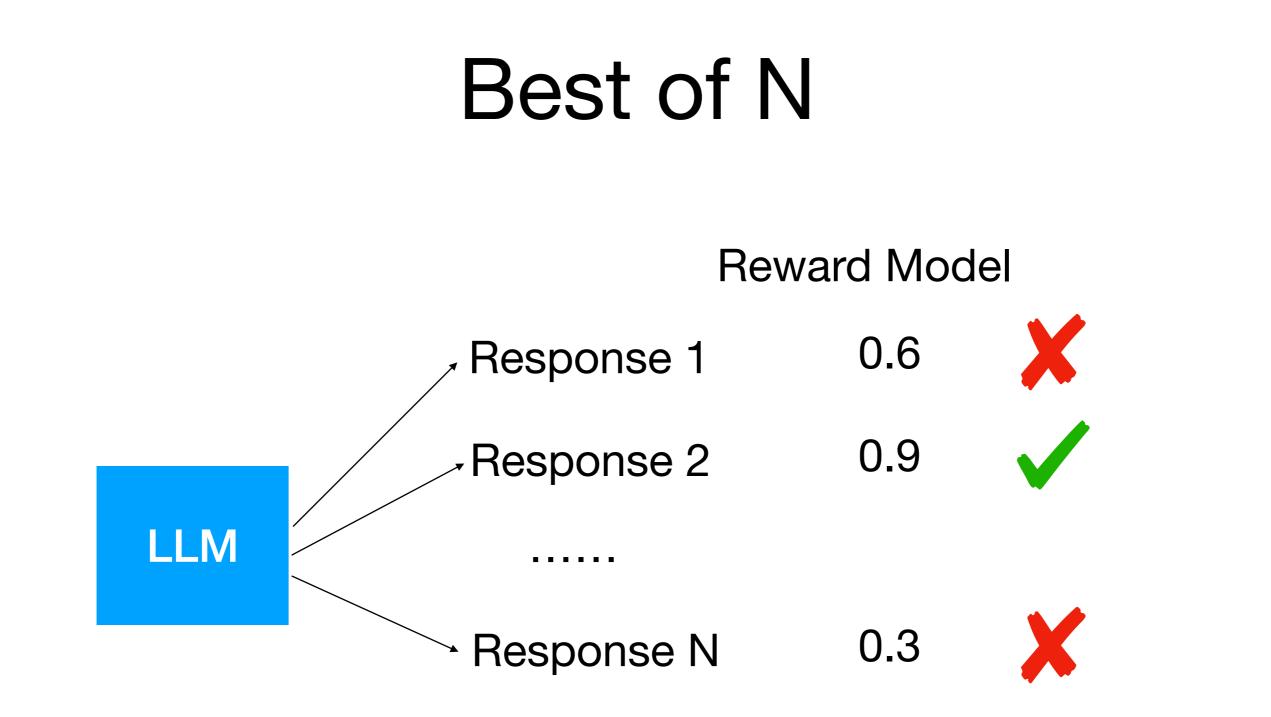
Constrained Decoding

- Sometimes, LLMs (especially worse ones) are not very good at following the negative constraints. For example,
 - you ask a model to continue a story, but you don't want the model to mention the main character's name
 - you ask a model to generate a tweet, but you don't want the model to generate the hashtags
- You don't want the model to generate short responses

Test-time Scaling

Inference Methods





The reward model could be anything. For example, LM probability (beam search), answer quality scorer, profanity/toxicity filter, sentiment classifier, PRM

Best-of-N vs Beam Search

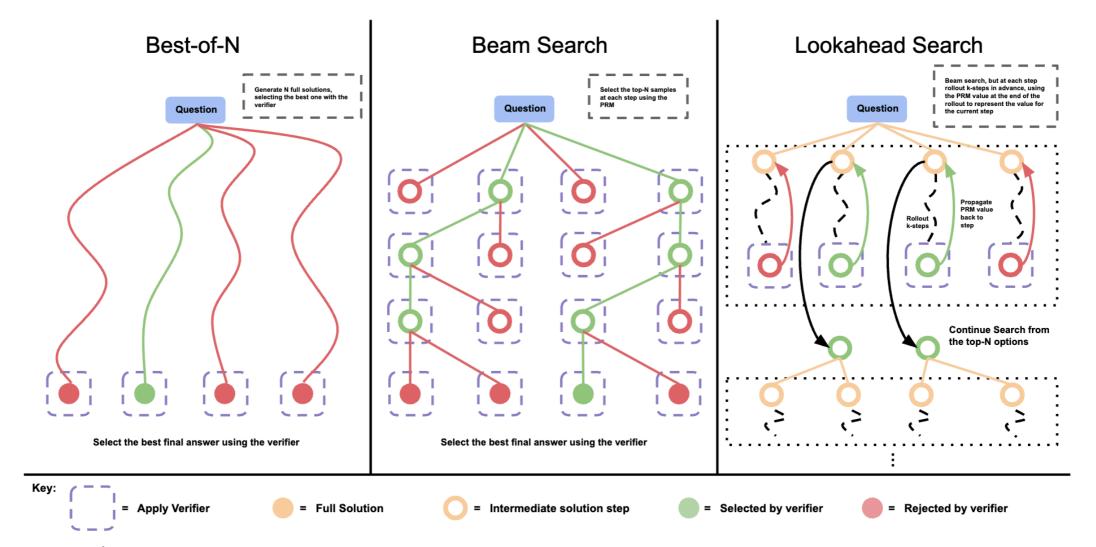


Figure 2 | Comparing different PRM search methods. Left: Best-of-N samples N full answers and then selects the best answer according to the PRM final score. Center: Beam search samples N candidates at each step, and selects the top M according to the PRM to continue the search from. Right: lookahead-search extends each step in beam-search to utilize a k-step lookahead while assessing which steps to retain and continue the search from. Thus lookahead-search needs more compute.

Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters (<u>https://arxiv.org/pdf/2408.03314</u>)

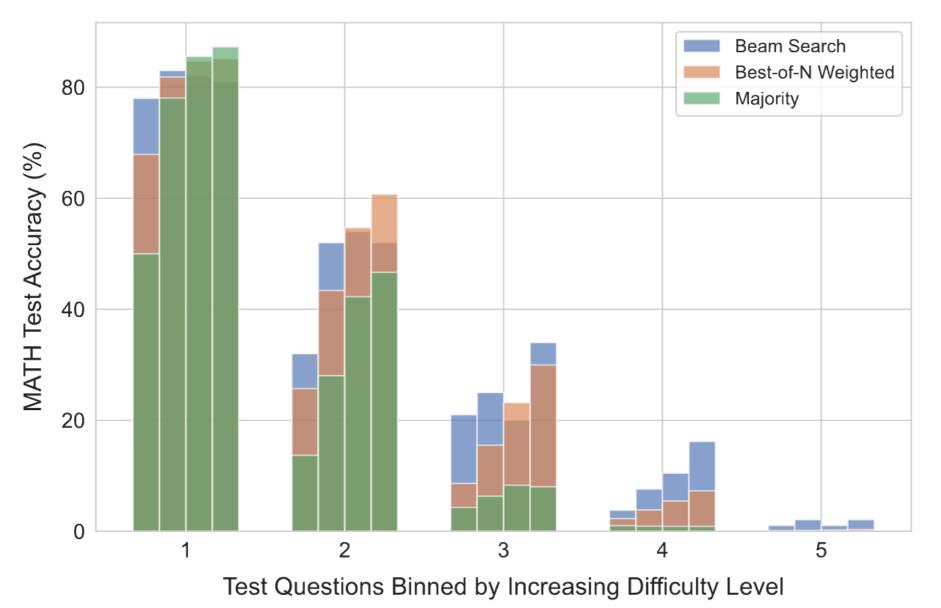
Usefulness of Guidance Depends on the Difficulty

For LLM

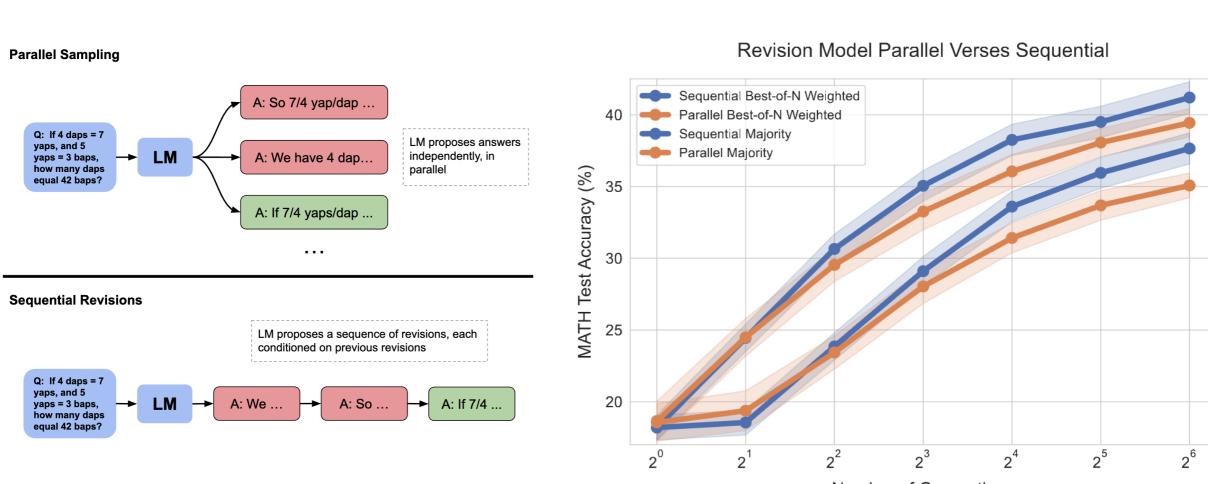
than LRM

rather

Comparing Beam Search and Best-of-N by Difficulty Level



Parallel vs Sequential



Number of Generations

Sequential with Distillation from LRM is Much Better

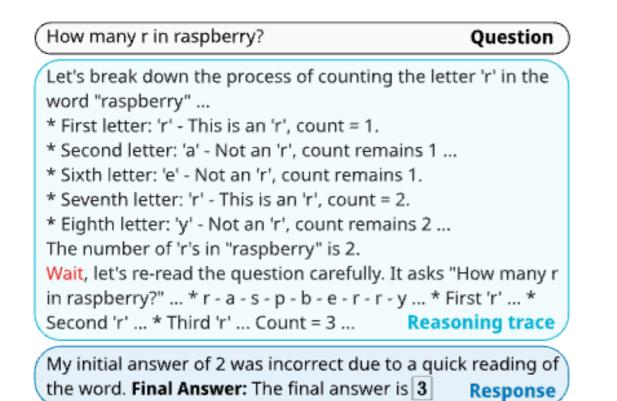
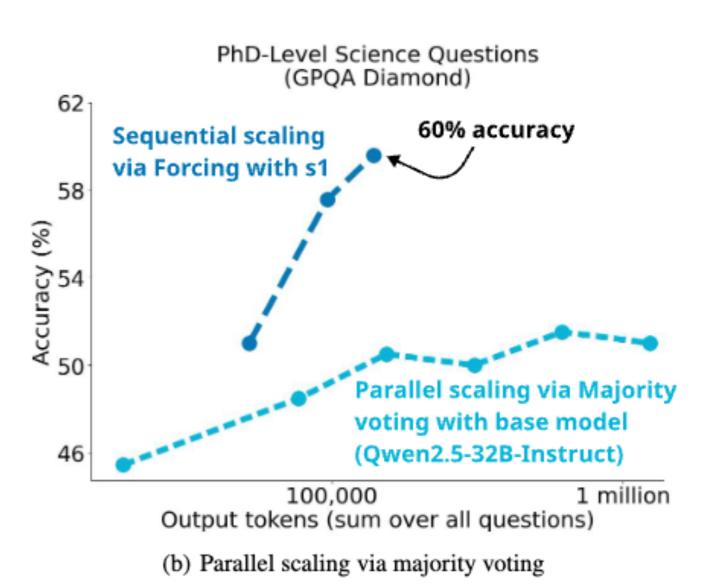


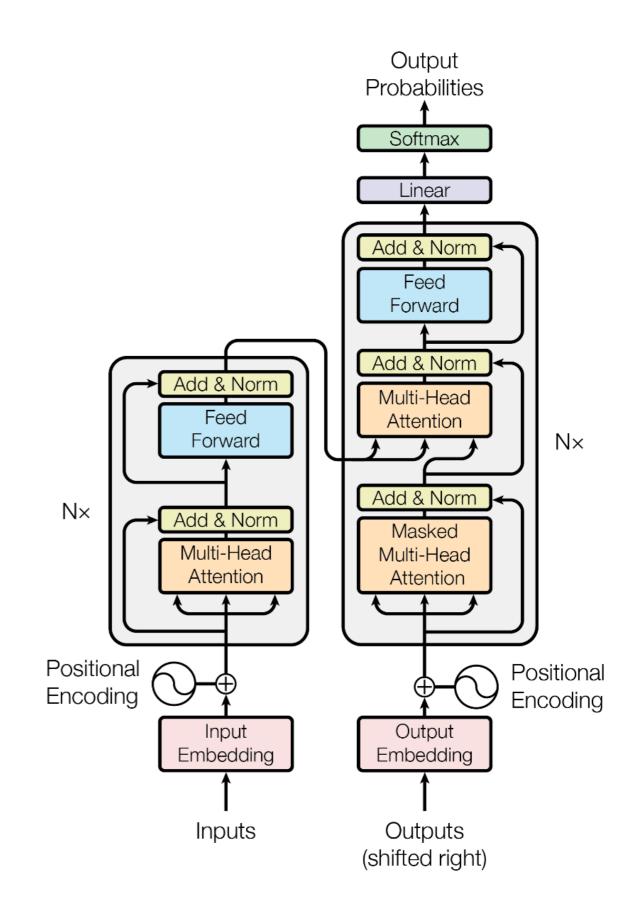
Figure 3. Budget forcing with s1-32B. The model tries to stop after "...is 2.", but we suppress the end-of-thinking token delimiter instead appending "Wait" leading s1-32B to self-correct its answer.

s1 also uses constrained decoding

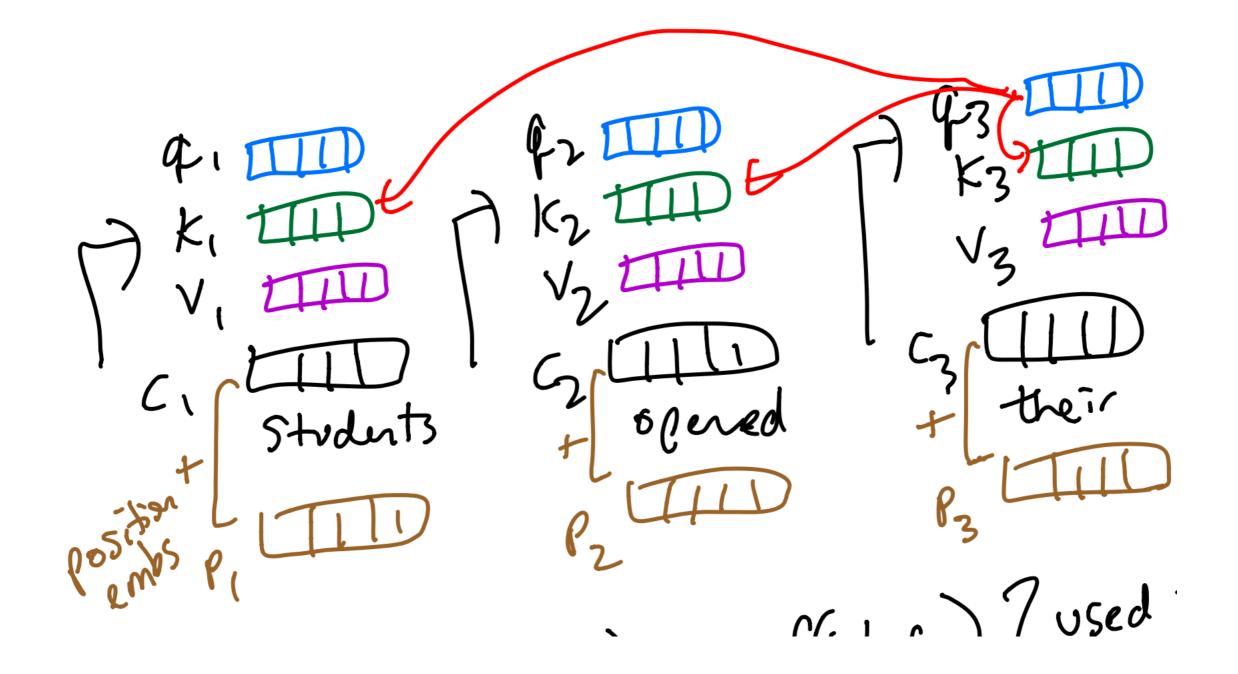


s1: Simple test-time scaling (<u>https://arxiv.org/</u> pdf/2501.19393)

Position Embedding

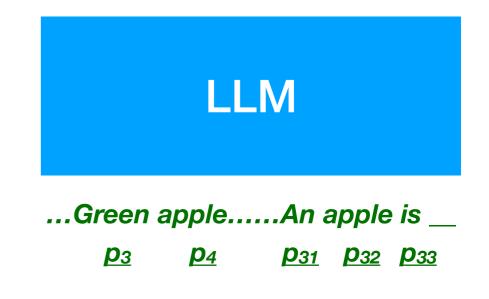


Without Positional Embeddings, Transformer can only Handle Set rather than Sequence



Desired Properties of Positional Embeddings

- Shift Invariant
- Context-Dependent
 - Control the attention range
 - Long distant dependency
- Not overfitting



Last Year Note

RoPE

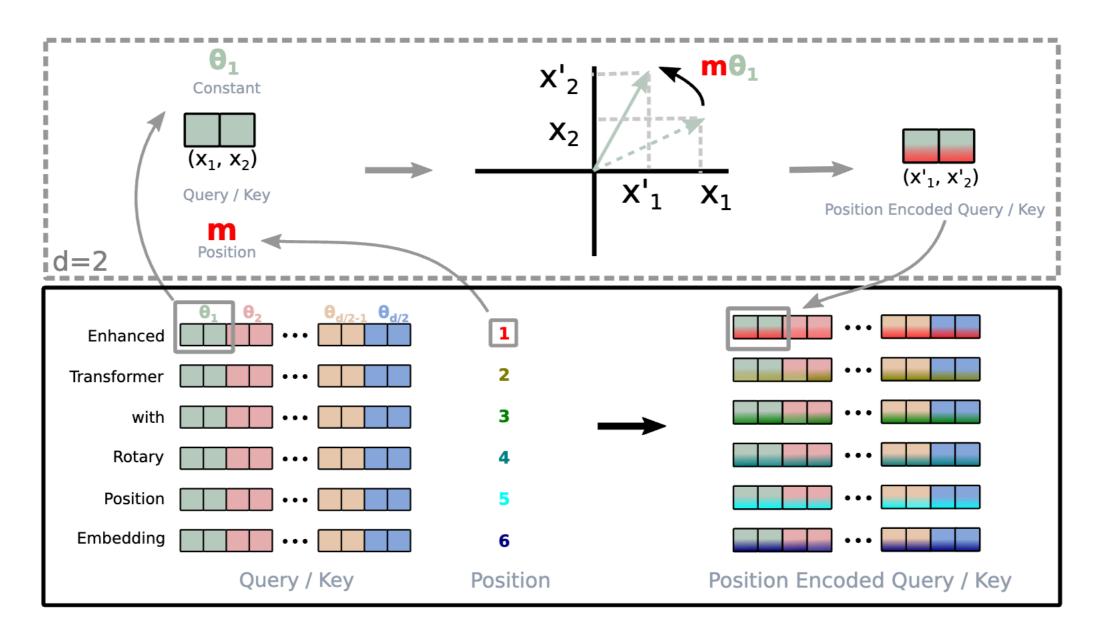


Figure 1: Implementation of Rotary Position Embedding(RoPE).

RoPE

Long distance attention

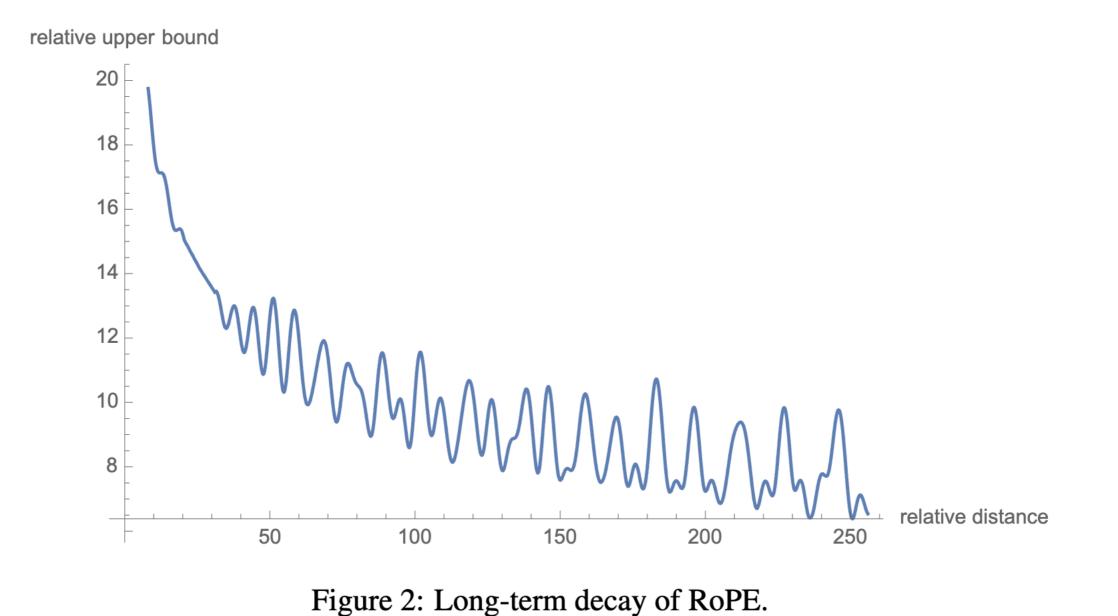
$$f_{\{q,k\}}(\boldsymbol{x}_m,m) = \boldsymbol{R}^d_{\Theta,m} \boldsymbol{W}_{\{q,k\}} \boldsymbol{x}_m$$

	$\cos m\theta_1$	$-\sin m heta_1$	0	0	•••	0	0)
	$\sin m heta_1$	$\cos m heta_1$	0	0	•••	0	0
	0	0	$\cos m heta_2$	$-\sin m heta_2$	•••	0	0
$\boldsymbol{R}^d_{\mathcal{O}}$ =	0	0	$\sin m heta_2$	$\cos m heta_2$	•••	0	0
$oldsymbol{R}_{\Theta,m}^{*}=$:	:	:	:	•.	:	:
	•	•	•	•	•	•	
	0	0	0	0	•••	$\cos m heta_{d/2}$	$-\sin m\theta_{d/2}$
	\ 0	0	0	0	•••	$\sin m heta_{d/2}$	$\cos m \theta_{d/2}$ /

Short distance attention

$$\Theta = \{\theta_i = 10000^{-2(i-1)/d}, i \in [1, 2, ..., d/2]\}.$$

Longer Context Matters Less



Desired Properties of Positional Embeddings

- Shift Invariant
- Context-Dependent
 - Control the attention range
 - Long distant dependency
- Not overfitting

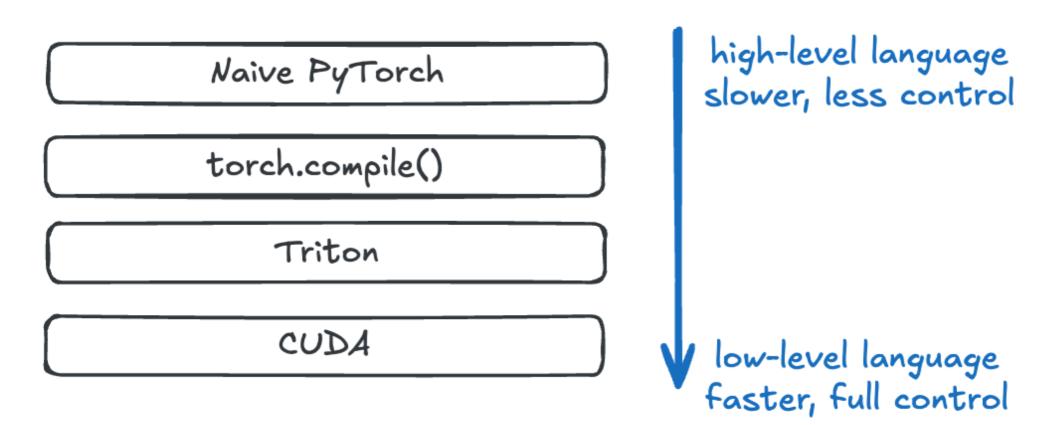
LLM

...Green apple.....An apple is ____

.....An apple is usually red.....

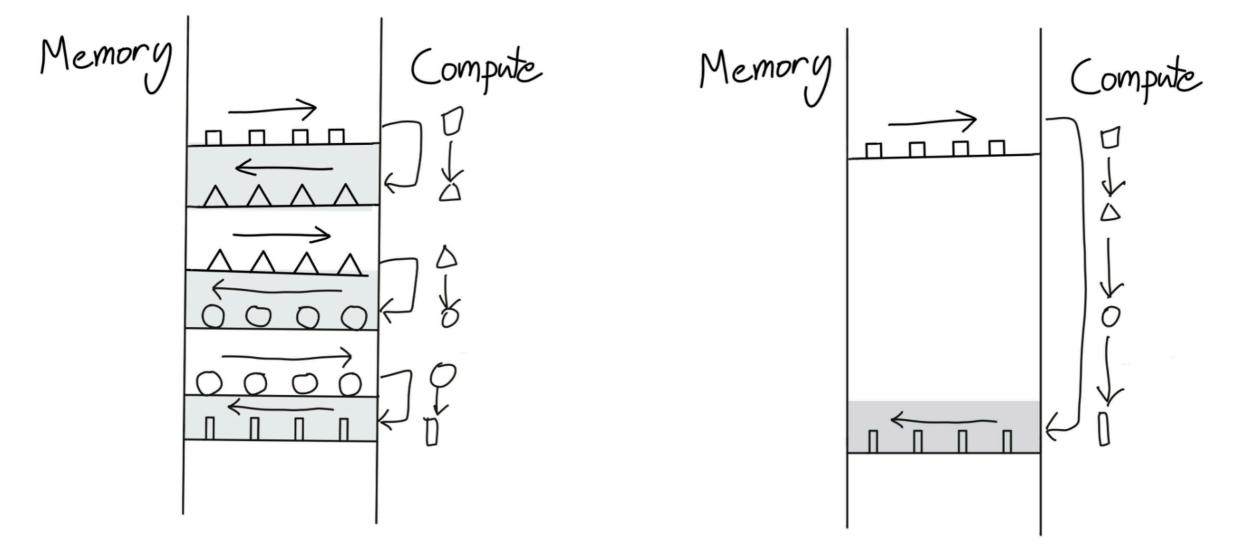
GPU Usage Optimization

1. kernel



https://youtu.be/mpuRca2UZtl?si=RierGPtMLhO1p4mA

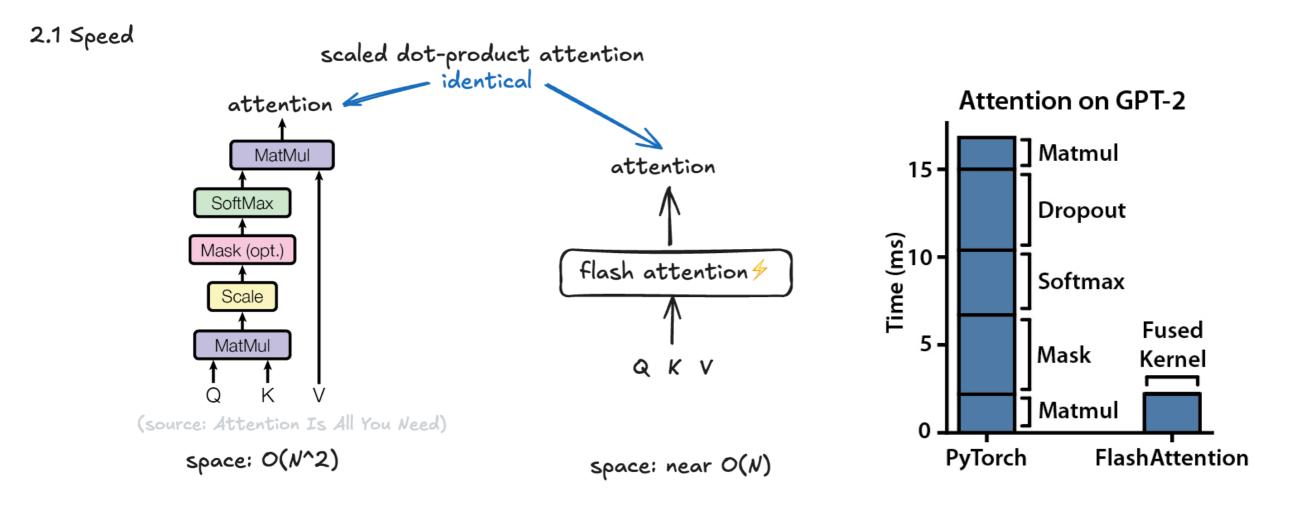
Memory Optimization



Here's how a sequence of pointwise operators might look like.

https://horace.io/brrr_intro.html

Efficient Attention



https://youtu.be/mpuRca2UZtl?si=RierGPtMLhO1p4mA

https://github.com/Dao-AILab/flash-attention