Tokenization

CS685 Spring 2025

Advanced Natural Language Processing

Haw-Shiuan Chang

College of Information and Computer Sciences
University of Massachusetts Amherst

Most slides come from Mohit lyyer

Tokenization

e How do we represent an input text?

 So far in this class... we chop it up into words

Input text: students opened their books

Tokenization

e How do we represent an input text?

 So far in this class... we chop it up into words

Input text: students opened their books
Input token IDs: 11 298 34 567

This tokenization step requires an external
tokenizer to detect word boundaries!

Word tokenization

* Not as simple as split on whitespace and punctuation...

Mr. O'Neill thinks that the boys' stories about San Francisco aren't amusing.

 Word tokenizers require lots of specialized rules about
how to handle specific inputs

e Check out spaCy’s tokenizers! (https://spacy.io/)

https://spacy.io/

Handling unknown words

e What happens when we encounter a word at test time
that we’ve never seen in our training data?

e With word level tokenization, we have no way of assigning an
index to an unseen word!

 This means we don’t have a word embedding for that word and
thus cannot process the input sequence

Handling unknown words

e What happens when we encounter a word at test time
that we’ve never seen in our training data?

e With word level tokenization, we have no way of assigning an
index to an unseen word!

 This means we don’t have a word embedding for that word and
thus cannot process the input sequence

e Solution: replace low-frequency words in training data
with a special <UNK> token, use this token to handle
unseen words at test time too

e Why use <UNK> tokens during training?

Limitations of <UNK>

e \We lose lots of information about texts with a lot of rare
words / entities

The chapel i1s sometimes referred to
as "Hen Gapel Lligwy" ("hen" being
the Welsh word for "old" and "capel"
meaning 'chapel’).

The chapel 1s sometimes referred to
as " Hen <unk> <unk> " (" hen " being
the Welsh word for " old " and "
<unk> " meaning " chapel ").

Other limitations

e \Word-level tokenization treats different forms of the same

word (e.g., “open”, “opened”, “opens”, “opening”, etc) as
separate types —> separate embeddings for each

This can be problematic especially when
training over smaller datasets, why?

An alternative: character
tokenization

e Small vocabulary, just the
number of unigue characters in

the training data!

e However, you pay for this with
longer input sequences. Why
Is this a problem for the
models we’ve discussed?

Output
Probabilities
|
| Softmax)
t
| Linear |}
(. N\
[Add & Norm J=~
Feed
Forward
r 1 ~\ (L Add & Norm Je~
—>{Add & Norm J Mult-Head
Feed Attention
Forward 7 77 Nx
A ‘ J
Nix | Add & Norm Je=
—>{_Add & Norm } Masked
Multi-Head Multi-Head
Attention Attention
t t
_ J \ —
Positional @—@ ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

2016: subword tokenization

 Developed for machine translation by Sennrich et al., ACL
2016

“The main motivation behind this paper 1s that the translation of some
words 1s transparent in that they are translatable by a competent
translator even if they are novel to him or her, based on a translation of

known subword units such as morphemes or phonemes.”

e [ater used in BERT, T5, RoBERTa, GPT, etc.

* Relies on a simple algorithm called byte pair encoding (Gage,
1994)

Byte pair encoding

* Form base vocabulary (all characters that occur in the
training data)

word frequency
hug 10
pug S
pun 12
bun 4
hugs 5

e Base vocab: b, g, h,n,p,s,u

Example from https://huggingface.co/transformers/tokenizer_summary.html

https://huggingface.co/transformers/tokenizer_summary.html

Byte pair encoding

* Now, count up the frequency of each character pair in the
data, and choose the one that occurs most frequently

word frequency character pair frequency
h+u+g 10 ug 20
p+U+g S pu 17
pP+U+n 12 un 16
b+u+n 4 hu 15
h+u+g+s S gs S

Example from https://huggingface.co/transformers/tokenizer_summary.html

https://huggingface.co/transformers/tokenizer_summary.html

Byte pair encoding

* Now, choose the most common pair (ug) and then merge
the characters together into one symbol. Add this new
symbol to the vocabulary. Then, retokenize the data

word frequency character pair frequency

h+ug 10 un 16

p+ug S h+ug 15
pP+U+n 12 pu 12
b+u+n 4 p+ug S
h+ug+s S ug+s 3

Example from https://huggingface.co/transformers/tokenizer_summary.html

https://huggingface.co/transformers/tokenizer_summary.html

Byte pair encoding

 Keep repeating this process! This time we choose un to
merge, next time we choose h+ug, etc.

word frequency character pair frequency

h+ug 10 un 16

p+ug S h+ug 15
pP+U+n 12 pu 12
b+u+n 4 p+ug S
h+ug+s S ug+s 3

Example from https://huggingface.co/transformers/tokenizer_summary.html

https://huggingface.co/transformers/tokenizer_summary.html

Byte pair encoding

e Eventually, after a fixed number of merge steps, we stop

word frequency
hug 10
p+ug S
p+un 12
b+un 4

hug + s S

* new vocab: b, g, h,n,p,s,u,ug, un, hug

Example from https://huggingface.co/transformers/tokenizer_summary.html

https://huggingface.co/transformers/tokenizer_summary.html

Byte pair encoding

 To avoid <UNK>, all possible characters / symbols need
to be included in the base vocab. This can be a lot if

including all unicode characters (there are ~138K unicode
symbols)!

e GPT-2 uses bytes as the base vocabulary (size 256) and
then applies BPE on top of this sequence (with some
rules to prevent certain types of merges).

e Commonly have vocabulary sizes of 32K to 64K

Tokenization in LM

 White Space Prefix
e “GHello"
e “ Hello”

e Special Tokens

https://tiktokenizer.vercel.app/?
model=gpt-3.5-turbo

<O

gpt-3.5-turbo

Token count

27

Hello World
Hello World
<|im_start|>system
You are a helpful assistant<|im_end|>
<|im_start|>user
Write a joke.
<|im_end|>
<|endoftext|>

9906, 4435, 198, 22691, 4435, 198, 100264, 9125, 198,

2675, 527, 264, 11190, 18328, 100265, 198, 100264, 88

2, 198, 8144, 264, 22380, 627, 100265, 198, 100257, 19
8

Limitations of subwords

One word could have multiple tokenization ways

Hard to apply to languages with agglutinative (e.g., Turkish) or non-
concatenative (e.g., Arabic) morphology

Pretokenization rules don’t work on some languages (Thai, Chinese don’t
use spaces between words; Hawaiian uses punctuation as consonants)

k-t-b “write” (root form)
kataba “he wrote”
g,i(kattaba “he made (someone) write”

oiS| iktataba “he signed up”

Table 1: Non-concatenative morphology in Arabic.*
The root contains only consonants; when conjugat-
ing, vowels, and sometimes consonants, are interleaved
with the root. The root is not separable from its inflec-

tion via any contiguous split.
Clark et al., 2021, “CANINE”

