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Deadlines

e https://people.cs.umass.edu/~hschang/cs685/
schedule.html

e 3/3: Quiz 2 due

e [f | cannot finish teaching cross-attention today, | will extend the deadline.
f you don’t see the announcement on Piazza, the deadline is 3/3.
e 3/7: Project proposals due

* [f you have some project ideas, you can go to TA office hours to seek
some feedback.

e [f your group members don’t contribute to the project, please let us know
e 3/14: HW 1 due



https://people.cs.umass.edu/~hschang/cs685/schedule.html
https://people.cs.umass.edu/~hschang/cs685/schedule.html

Thanks for the Feedback

My last lecture is too difficult for a beginner (~60% too hard, too fast, and too unclear. )
* You can focus on the conclusions or intuitive examples
 More likely to appear in the midterm
* Try to understand those interpretation methods and what really happened in practice

* Especially if you want to do related research or know where the conclusions come from or when these
conclusions hold

* |n the future, | will try to
e explain things more slowly
* go through easier materials first and leave difficult ones to the end

e Let’s review the conclusions together



Transformer Architecture

e MLP needs ~ 2/3 parameters (GPT-3)

o Self-attention needs ~ 1/3 parameters (GPT-3)

Most memorization happens here

Most context processing happens here
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Self-Attention lllustrative Example

John
/ ~
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\ / \ / ) %? o Similar things tm

attention to each other N
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Transformer
l Please call the friend of your main character John ... ... Mary’s friend,
your main character met Prompt Generated Story

her friend 6 years ago = However, most heads are not very interpretable in practice.
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Distributed Representation
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Prompt Generated Story

Demystifying Verbatim Memorization in Large Language 6

Models (https://arxiv.org/abs/2407.17817)



https://arxiv.org/abs/2407.17817

Self-attention vs MLP
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Transformer layers
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Stay with you  for a

Rel U ‘ Figure 1: An illustration of how a feed-forward layer

emulates a key-value memory. Input vectors (here, x5)

h are multiplied by keys to produce memory coefficients

(e.g., the memory coefficient for v, 1s 0.2), which then

Transformer Feed-Forward Layers Are Key-Value weigh distributions over the output vocabulary, stored
Memories (https://arxiv.org/pdf/2012.14913) in the values. The feed-forward layer’s output is thus

the weighted sum of its values.


https://arxiv.org/pdf/2012.14913

Example for Attention & MLP
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Top deep-learning scientists such as llya Sutskever could probably see these after reading the Transformer paper

https://www.lesswrong.com/posts/iGuwZTHWb6DFY3sKB/fact-finding-attempting-to-reverse-engineer-factual-recall
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A RNN Language Model

output distribution

$ = softmax(W,h")
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Why is Attention Effective?
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Figure 7. (a) Copy: natural language strings. We compare pretrained models on their ability to copy natural language strings sampled
from C4 of varying lengths and report string-level accuracy. The transformer models substantially outperform the GSSMs. (b) Copy:
shuffled strings. To test whether it mattered that the strings were in natural language, we randomly shuffle the word order of the strings
from the previous experiment. We find that this degrades performance, especially for the Mamba models. (¢) Question answering
(SQUAD). We compare Pythia and Mamba on a standard question answering dataset where we bin the dataset based on the length of the
context paragraph. We find that Mamba performance decays more quickly with the length of the context.

Repeat After Me: Transformers are Better than State Space Models at Copying (https://arxiv.org/abs/2402.01032)
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Questions

Q1: BRNN represents one sequence using one embedding, but
Transformer also represents one sequence using one embedding.
Why does Transformer mitigate the embedding bottleneck problem?

Q2: Which model is more expensive to train? RNN or Self-attention?
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Transformer Architecture

e [he major components in the Transformer are
all some forms of matrix factorization

* All generalizations are based on similarity.
e Similar to the recommendation engine.
* Not designed for inference based on the rules.

o [[M->AGI?
* Matrix factorizations are enough for intelligence?

» Humans are also a kind of parrot?
By the way, llya started to study compression recently
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Last Year Notes
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Architecture Comparison
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Pros and Cons of Encoder

GPT BERT
Pros: Get
Embeddings
Mary’s friend, John helps Mary’s friend, John helps
New
GPT idder BERT hidden
Old hidden states states New hidden states states

cons:
Generation

Mary’s friend, John helps me Mary’s friend, John helps




BERT vs GPT

Dev Set
Tasks MNLI-m QNLI MRPC SST-2 SQuAD
True BERT GPT False (Acc)  (Acc) (Acc) (Ace)  (Fl)
BERTRASE 84.4 88.4 86.7 92.7 88.5
No NSP 83.9 849 865 926 87.9

LTR & NoNSP  82.1 843 775 921 77.8
+ BiLSTM 82.1 84.1 7577 91.6 84.9

Table 5: Ablation over the pre-training tasks using the
DOC Q A DOC Q A BERTgasg architecture. “No NSP” 1s trained without
the next sentence prediction task. “LTR & No NSP” is
trained as a left-to-right LM without the next sentence

prediction, like OpenAl GPT. “+ BiLSTM” adds a ran-
domly initialized BiLSTM on top of the “LTR + No

* But why nowadays, everyone use GPT" NSP” model during fine-tuning.

 The gap decreases as the model size increases

* You can store all possible future possibilities
 NLG > NLU

 The performance of free-form instruction becomes more important
e Data > Structure

e Training faster -> Training more data

« Compress/memorize all data on the Internet

Birth-place of Obama Hawaii Birth-place of Obama Hawaii

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (https://arxiv.org/pdf/1810.04805)

|7
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Data is the King for Maximizing Task Performances
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Bitter Lesson (http://www.incompleteideas.net/Incldeas/BitterLesson.html)

One of the most important concepts in this course, but More Data -> AGI? | personally disagree.

|18


http://www.incompleteideas.net/IncIdeas/BitterLesson.html

Possible Reasons that OpenAl led

e (Google
A goal of scientists: conduct novel research
* Architecture > Data

A goal of managers: increase the profits
e Specialized NLU models were more practical

e Encoder + Decoder > Decoder

e (OpenAl
e T[he goalis AGI

e \We can use NLG to do NLU, but the reverse is not true
e Scaling is more important

e Decoder > Encoder + Decoder
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Encoder Architectures are still Useful

o [fficient applications
e |5

* Fine-tuning a small model for segZseq is sometimes
better than LLMs

e XXBERT

 Bert -> Roberta-> Electra/Deberta-v3 -> Modernbert
« Reward model
 Retriever
« Recommendation
e Small verifier
Wil talk more about this later
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Midterm Example Question

Assuming you want to automatically evaluate the stories based on the
special taste of a very successful editor. You collect a set of
acceptance and rejection jJudgments of 20k from the editor. Assuming
that you have no resources to fine-tune the LLMs. Which options are
the best in this case?

(A) Fine-tuning BERT because bidirectional attention is powerful

(B) Fine-tuning GPT-2 because the training could be better parallelized
(©C) Fine-tuning T5 because it has bidirectional attention and could be
t
(

rained parallelly
D) LLLM few-shot because LLM is powerful
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Language Modeling / Pretraining

e [ask:
e Predict the next token

e | OSS:
Maximal Likelihood / Cross-entropy

e Model:

* [ables -> Neural Network -> Transformer
* Self-attention and Interpretation
* Future: tokenization and positional embedding
e (Optimization:
* (Counting -> Gradient Descent
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