Self-Attention, MLP, and Interpretability Haw-Shiuan Chang

Logistics

- TA Nguyen Tran permanently moved his TA office hour
 - from Fri 3pm-4pm
 - to Fri 4pm-5pm (1 hour later)

Deadlines

https://people.cs.umass.edu/~hschang/cs685/schedule.html

• 3/3: Quiz 2 due

- lacksquareattention this Wednesday)
- **3/7**: Project proposals due
 - situation on Piazza privately
 - \bullet feedback.
- 3/14: HW 1 due
 - It's about BERT, but you should start the annotation early

I might extend the deadline on Piazza (if I cannot finish teaching cross-

• If you cannot reach all of your group members this week, please report the

If you have some project ideas, you can go to TA office hours to seek some

Please stop me if you don't understand!

This Lecture will be more advanced, I will explain more slowly

Last Year Note Review

Attention $(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$

Other less common merging includes max, min, product, minus, ...

A Metaphor

Note: This is a cross-domain association (not common knowledge among NLP researchers)

Self-Attention Illustrative Example Why are keys and values different? How do they learn these? Gradient descent John Action != "property" Friend Friend Friend John name Male gender name time k^{3} V^2 k^2 k¹ **q**[†]t ∇V^1 V Similar things tend to pay attention to each other Transformer

Why do we need multiple heads?

Retrieving only partial information

... Please call the friend of your main character John ... Prompt your main character met her friend 6 years ago

... Mary's friend,

Generated Story

However, most heads are not very interpretable in practice.

... Please call the friend of your main character John ... Prompt

... Mary's friend, _____ **Generated Story**

Distributed Representation

10

... Please call the friend of your main character John ... Prompt

... Mary's friend, _____ **Generated Story**

https://transformer-circuits.pub/2021/framework/index.html

Interpretable Head Exists but Rare

COPY SUPPRESSION: COMPREHENSIVELY UNDERSTANDING AN ATTENTION HEAD https://arxiv.org/pdf/2310.04625

 $oldsymbol{h}^{(0)}$

hidden states $h^{(t)} = f(W_h h^{(t-1)} + W_e c_t)$ h⁽⁰⁾ is initial hidden state!

word embeddings c_1, c_2, c_3, c_4

· _ _ ·

Testing time: Autoregressive LM

Inference limitation for self attention

A RNN Language Model $\hat{y}^{(4)} = P(x^{(5)} | \text{the students opened their})$

softmax $\left(\boldsymbol{U}\boldsymbol{h}^{(t)} + \boldsymbol{b}_2 \right) \in \mathbb{R}^{|V|}$

$$\begin{aligned} \mathbf{h}^{(0)} & \stackrel{\mathbf{h}^{(0)}}{\mathbf{h}^{(t)}} = f_{\mathbf{W}_{h}h}^{\mathbf{h}^{(0)}} h^{(t-1)} \stackrel{\mathbf{h}^{(1)}}{\mathbf{+}} \dots \stackrel{\mathbf{h}^{(t)}}{\mathbf{W}_{h}} \in \mathbb{R}^{D_{h} \times D_{h}} \in \mathbb{R}^{D_{h} \times D_{h}} \\ = \sigma \left(\mathbf{W}_{h}h^{(t-1)} + \mathbf{W}_{e}e^{(t)} + \mathbf{b}_{1} \right) \text{ initial } \mathbf{h}^{|\mathbf{W}_{h}|} \in \mathbb{R}^{D_{h} \times D_{h}} \in \mathbb{R}^{D_{e} \mathbf{W}_{h}} \end{aligned}$$

word embeddings $W_e \in \mathbb{R}^{D_h \times d}$, $\in \mathbb{R}^{D_h} W_e \in \mathbb{R}^{D_h} W_e \in \mathbb{R}^{D_h \times d}$ $\mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_3, \mathcal{C}_4$ $e^{(1)}, \dots, e^{(t)} \in \mathbb{R}^{d} \cdot e^{(1)}, e^{(2)}, e^{(3)}, e^{(4)}$ $\mathcal{D} \in \mathbb{R}^{d}$ = $oldsymbol{E}oldsymbol{x}^{(t)}$

· · · · ·

1.1

 $\in \mathbb{R}^{|V|}$

 $m{x}^{(1)},\ldots,$ i $m{x}^{(2)},m{x}^{(3)},m{x}^{(4)},m{x}^{(4)},m{x}^{(4)}$

 $d \times |V|$

$$\hat{\boldsymbol{y}}^{(t)} = \operatorname{softmax} \left(\boldsymbol{U} \boldsymbol{h}^{(t)} + \boldsymbol{b}_2 \right) \in \mathbb{R}^{|V|}$$

$$\begin{aligned} \mathbf{h} &\text{idden states} \\ h^{(t)} = f(W_h h^{(t-1)} \overset{\mathbf{h}^{(0)}}{+} W_e c_{\cdot}) & \overset{\mathbf{h}^{(1)}, \dots, \mathbf{h}^{(t)}}{+} \\ \mathbf{h}^{(t)} = \sigma \left(W_h h^{(t-1)} + W_e e^{(t)} + b_1 \right) \\ \end{bmatrix} \\ &\text{den sta} \\ \begin{aligned} \mathbf{W}_h \in \mathbb{R}^{D_h \times D} \\ \mathbf{h}^{(0)} \end{aligned}$$

word embeddings
$$W_e \in \mathbb{I}$$

 C_1, C_2, C_3, C_4
 $e^{(1)}$ $e^{(t)}$

$$\boldsymbol{e}^{(t)} = \boldsymbol{E} \boldsymbol{x}^{(t)}$$

 $,\ldots,oldsymbol{x}^{(t)}\in\mathbb{R}^{|V|}$

/ . . .

 $h^{(0)}$

 $\hat{y}^{(4)} = P(x^{(5)} | \text{the students opened their})$

$$\hat{\boldsymbol{y}}^{(t)} = ext{softmax} \left(\boldsymbol{U} \boldsymbol{h}^{(t)} + \boldsymbol{b}_2 \right) \in \mathbb{R}^{|V|}$$

word embeddings

$$c_1, c_2, c_3, c_4$$

$$oldsymbol{e}^{(t)} = oldsymbol{E}oldsymbol{x}^{(t)}$$

 $oldsymbol{x}^{(1)},\ldots,oldsymbol{x}^{(t)}\in\mathbb{R}^{|V|}$

 $oldsymbol{h}^{(0)}$

 $\hat{y}^{(4)} = P(x^{(5)} | \text{the students opened their})$

 $m{x}^{(1)},\ldots,$ i $m{x}^{(2)},m{x}^{(3)},m{x}^{(4)},m{x}^{(4)},m{x}^{(4)}$

hidden states $h^{(t)} = f(W_h h^{(t-1)} + W_e c_t)$ h⁽⁰⁾ is initial hidden state!

word embeddings c_1, c_2, c_3, c_4

/ . . / \ · _ _ ·

 $oldsymbol{h}^{(0)}$

output distribution $\hat{y} = \operatorname{softmax}(W_2 h^{(t)})$

 $oldsymbol{h}^{(0)}$

hidden states $h^{(t)} = f(W_h h^{(t-1)} + W_e c_t)$ h⁽⁰⁾ is initial hidden state!

word embeddings C_1, C_2, C_3, C_4

1.1 / \

Multi-Head Latent Attention (MLA)

Figure 3 | Simplified illustration of Multi-Head Attention (MHA), Grouped-Query Attention (GQA), Multi-Query Attention (MQA), and Multi-head Latent Attention (MLA). Through jointly compressing the keys and values into a latent vector, MLA significantly reduces the KV cache during inference.

Deepseek V2 (https://arxiv.org/pdf/2405.04434)

Multi-Head Latent Attention (MLA)

Why not store h?

$q^{T}k = (W_{q}h)^{T}(W_{k}h) = h^{T}W_{q}W_{k}h$

Attention Mechanism	KV Cache per Token (# Element)	Capabilit
Multi-Head Attention (MHA)	$2n_hd_hl$	Strong
Grouped-Query Attention (GQA)	$2n_g d_h l$	Moderate
Multi-Query Attention (MQA)	$2d_hl$	Weak
MLA (Ours)	$(d_c + d_h^R)l \approx \frac{9}{2}d_hl$	Stronger

Table 1 | Comparison of the KV cache per token among different attention mechanisms. n_h denotes the number of attention heads, *d_h* denotes the dimension per attention head, *l* denotes the number of layers, n_g denotes the number of groups in GQA, and d_c and d_h^R denote the KV compression dimension and the per-head dimension of the decoupled queries and key in MLA, respectively. The amount of KV cache is measured by the number of elements, regardless of the storage precision. For DeepSeek-V2, d_c is set to $4d_h$ and d_h^R is set to $\frac{d_h}{2}$. So, its KV cache is equal to GQA with only 2.25 groups, but its performance is stronger than MHA.

https://github.com/Zefan-Cai/Awesome-LLM-KV-Cache

Hierarchical Attention

Speed on Stages

Similar to RAG

Native Sparse Attention: Hardware-Aligned and Natively Trainable Sparse Attention (<u>https://arxiv.org/pdf/2502.11089</u>)

(From deepseek AI)

$Layernorm(x) = \gamma \frac{x - \mu}{\sqrt{\sigma^2 + \epsilon}} + \beta$

MLP / Feed forward NN

Transformer Feed-Forward Layers Are Key-Value Memories (https://arxiv.org/pdf/2012.14913)

Figure 1: An illustration of how a feed-forward layer emulates a key-value memory. Input vectors (here, x_5) are multiplied by keys to produce memory coefficients (e.g., the memory coefficient for v_1 is 0.2), which then weigh distributions over the output vocabulary, stored in the *values*. The feed-forward layer's output is thus the weighted sum of its values.

No	n-n	eg	at	ivit	LY -		Nea	anir	ngf		Dim	ens
					1	-1	0	0	0	0		
			V		0	0	2	-2	0	0		
	Hidd	len s	state		0	0	0	0	3	-3		
	0	0	1		0	0	0	0	3	-3		
	0	1	0		0	0	2	-2	0	0		
	1	0	0		1	-1	0	0	0	0		
	0	1	1		0	0	2	-2	3	-3	-	
	1	0	1		1	-1	0	0	3	-3		
	1	1	0		1	-1	2	-2	0	0		
	1	1	1		1	-1	2	-2	3	-3		

sions

Distributed Representation

A good exa	-3	3	-2	-2	
interpretabi	-3	3	-2	2	
architecture	-3	3	0	0	
		:	:	:	
	-3	3	0	0	-
	0	0	-2	2	
	0	0	0	0	-
	-3	3	-2	2	-
	-3	3	0	0	-
	0	0	-2	2	-
	-3	3	-2	2	-

good example showing at the mechanism terpretability highly epends on the small chitecture change

Transformer LM Haw-Shiuan Chang

... Please call the friend of your main character John ... Prompt

... Mary's friend, _____ **Generated Story**

Transformer Architecture

- Self-attention needs ~ 1/3 parameters (GPT-3)
 - Most context processing happens here
 - You can replace this with RNN
- MLP needs ~ 2/3 parameters
 - Most memorization happens here
- Optionally sharing word embeddings
- The architectures are designed for GPU

Example for Attention & MLP

Top deep-learning scientists such as Ilya could probably see these after reading the Transformer paper

https://www.lesswrong.com/posts/iGuwZTHWb6DFY3sKB/fact-finding-attempting-to-reverse-engineer-factual-recall

Interpreting Context Look-ups in Transformers: Investigating Attention-MLP Interactions (<u>https://arxiv.org/pdf/2402.15055v1</u>)

... Please call the friend of your main character John ...

Prompt

Demystifying Verbatim Memorization in Large Language Models (https://arxiv.org/abs/2407.17817)

... Mary's friend, _____ **Generated Story**

Can Attentions Tell you Token "Importance"?

- Multi-head multi-layer self-attention \bullet
 - Unlikely \bullet
 - But could be used to compress the KV cache
- Multi-head self-attention \bullet
 - Probably not \bullet
- Single self-attention
 - Task Dependent \bullet

Attention Score is not All You Need for Token Importance Indicator in KV Cache Reduction: Value Also Matters (<u>https://aclanthology.org/2024.emnlp-main.1178.pdf</u>)

Attention is not important

Attention is important

(c) Neural Machine Translation Figure 1: Comparison of performance with and without neural attention on text classification (IMDB), Natural Language Inference tasks (SNLI) and Neural Machine Translation (News Commentary). Here, α and c denote attention weights and context vector respectively. The results show that attention does not substantially effect performance on text classification. However, the same does not hold for other tasks.

> ATTENTION INTERPRETABILITY ACROSS NLP TASKS (<u>https://arxiv.org/pdf/1909.11218</u>)

Where are the Facts Stored?

• Facts "tend to" be stored in earlier layers

Exploring Concept Depth: How Large Language Models Acquire Knowledge and Concepts at Different Layers? (<u>https://arxiv.org/pdf/2404.07066</u>)

(a) A constituency tree

SRL

into-semantic-role-labeling-with-deep-learning-6b7809bfdcbf

Classic NLP Tasks

(**b**) A dependency tree

https://www.mdpi.com/2504-3900/21/1/49

What does each Layer Do?

• Higher layers "tend to" handle more semantic information

		F1 So	cores		Exped	cted I	ayer	& cer	nter-	of-g	jra
		<i>l</i> =0	<i></i> {=24	0	2	4	6	8 1	10	12	
	POS	88.5	96.7		3.39			1′	1.68	3	
	Consts.	73.6	87.0		3.79				13	3.06	
	Deps.	85.6	95.5		į	5.69				13.7	'5
	Entities	90.6	96.1		4.6	4			1:	3.16	
	SRL	81.3	91.4			6.5	4		-	13.6	3
	Coref.	80.5	91.9					9.47			1
	SPR	77.7	83.7					9.93	12.	.72	
F	Relations	60.7	84.2					9.40	12	.83	

BERT Rediscovers the Classical NLP Pipeline (https://arxiv.org/abs/1905.05950)

Figure 1: We investigate the latent multi-hop reasoning of LLMs. For the first hop, we change the input prompt to refer to the bridge entity (Stevie Wonder) and check how often it increases the model's internal recall of the bridge entity. For the second hop, we check if increasing this recall causes the model output to be more consistent with respect to what it knows about the bridge entity's attribute (mother of Stevie Wonder).

Do Large Language Models Latently Perform Multi-Hop Reasoning? (<u>https://</u> arxiv.org/pdf/2402.16837)

Input query: In the year Scarlett Johansson was born, the Summer Olympics were hosted in the country of

Figure 1: Evaluation of latent multi-hop reasoning should exclude cases where LLMs can bypass the process of latently composing the single-hop facts by exploiting shortcuts. LLMs can develop shortcuts when they frequently encounter the head entity ("Scarlett Johansson") or the relation pattern in the query ("the country of") with the answer entity ("United States"). We propose desiderata for shortcut-free evaluation of latent multi-hop reasoning ability to minimize the chance of shortcuts.

Do Large Language Models Perform Latent Multi-Hop Reasoning without Exploiting Shortcuts? (https://arxiv.org/pdf/2411.16679)

Figure 7. (a) Copy: natural language strings. We compare pretrained models on their ability to copy natural language strings sampled from C4 of varying lengths and report string-level accuracy. The transformer models substantially outperform the GSSMs. (b) Copy: shuffled strings. To test whether it mattered that the strings were in natural language, we randomly shuffle the word order of the strings from the previous experiment. We find that this degrades performance, especially for the Mamba models. (c) Question answering (SQUAD). We compare Pythia and Mamba on a standard question answering dataset where we bin the dataset based on the length of the context paragraph. We find that Mamba performance decays more quickly with the length of the context.

Repeat After Me: Transformers are Better than State Space Models at Copying (https://arxiv.org/abs/2402.01032)

Arithmetic Computation Limitation

- Transformer architecture design
 - MLP retrieves the relevant memory from training
 - Self-attention retrieves and merges the memories MLP retrieves
 - Transformers are not designed to handle logic

Limited Reasoning Chain Length

Transformer (12 layers)

Chain of thoughts

Transformer (12 layers)

Still 12 MLPs -> token (gradient stop) -> 12 MLPs ...

Chain of thoughts

Midterm Example Questions

Q1: RNN represents one sequence using one embedding, but Transformer also represents one sequence using one embedding. Why does Transformer mitigate the embedding bottleneck problem?

Q2: Which model is more expensive to train? RNN or Self-attention?

Self-Attention vs RNN vs CNN

- CNN
 - Pros \bullet
 - Super Fast
 - Cons
 - Bad long distance

- RNN
 - Pros
 - Long reasoning chain length Low inference memory

 - Fast Inference
 - Good at positional Information
 - Cons
 - Copy difficulty
 - Simple operation or slow parallel training

- Self-attention
 - Pros \bullet
 - Long Distance Copy
 - Parallel Training
 - Good at handling a set
 - Cons \bullet
 - Limited reasoning chain length
 - High inference memory
 - **Relatively Slow Inference**
 - O(n^2)

Sequence Processing

Feedforward NN

Computation Cost

Long Dependency

> Position Information

Mamba: Linear-Time Sequence Modeling with Selective State Spaces (<u>https://arxiv.org/pdf/2312.00752</u>)

