LLM Optimization 1

Haw-Shiuan Chang



Deadlines

e https://people.cs.umass.edu/~hschang/cs685/
schedule.html

o 2/17: Quiz 1 due
o 2/14: HW O due

e 2/14: Final project group assignments due

e https://forms.gle/PKvJRBRXZKUMgFrkVGE

e |fyourteam is less than 4 people, you can fill NA.
However, we might need to split some teams that are less
than 4 people.

* eg,3 3,72

e T[he link of the NLP seminar will be posted at Piazza



https://people.cs.umass.edu/~hschang/cs685/schedule.html
https://people.cs.umass.edu/~hschang/cs685/schedule.html
https://forms.gle/PKvJRxZkUMgFrkVG8

Logistics

e Office Hour Correction

e Erica: Tues 4-5pm, CS207 Cube 2

e Ankita: Wed 4-5pm, CS207 Cube 2
 Haw-Shiuan: Thu 11AM-12pm, CS207 Cube 2
 Nguyen: Fri 3pm-4pm, CS207 Cube 2

 The deadline for asking for the SAT/Fail score will be one week after
the midterm scores are released.
e The students who want to have the SAT/Fail score will need to
send an email to cics.685.instructors@gmail.com.

» After the deadline, you cannot switch to SAT/Fail score or switch
back to the normal letter score.



mailto:cics.685.instructors@gmail.com

Task -> Loss -> Model -> Optimization

e Jask:
 Predict the next token

e | OSS:
Maximal Likelihood / Cross-entropy

e Model:
e Jables -> Neural Network -> Transformer

e (ptimization:
 (Counting -> Gradient Descent



PyTorch Optimizer

° |mp|ement|n9 # Clear the previously calculated gradient
forward paSS and model.zero_grad()

aUtOmatica”y # Perform a forward pass (evaluate the model on this training batch).
outputs = model(b_input ids,
generate the P —HPE -

token_type_ids=None,

baCkward paSS attention_mask=b_input_mask,
labels=b_labels)

loss = outputs. loss

. TenSOrﬂOW Usua”y logits = outputs. logits

Cann()'t dynamica”y total_train_loss += loss.item()
adeSt the # Perform a backward pass to calculate the gradients.
- 1 . back
architecture of NN, 0ss-backward()
but |'t iS easier tO # Update parameters and take a step using the computed gradient.

optimizer.step()

deploy.



What is Differentiable?

 Gradient descent is the easiest and most stable way
* |f you change a little, the output cannot change a little.

 That is not differentiable
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Gradient Descent is Not the Only Way

* Reinforcement learning
 Combinatorial optimization and integer programming
* Genetic algorithm

e Best-of-N

For small scale problems with constraints or not differentiable, consider to use

https://docs.scipy.org/doc/scipy/reterence/optimize.html



https://docs.scipy.org/doc/scipy/reference/optimize.html

Loss Surface and Momentum

Wolfram Global Problem
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Stochastic Gradient Stochastic Gradient
Descent withhout Descent with
Momentum Momentum

https://mlda.github.io/ml4a/how_neural_networks_are_trained/ https://dev.to/nareshnishad/day-25-optimizer-algorithms-for-large-language-models-lims-1p4



Batch Size and Learning Rate
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. . . . 1) Less confident gradient direction -> smaller optimal
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Scaling Law for Language Models Training Considering Batch Size (https://arxiv.org/pdf/2412.01505v1)



https://arxiv.org/pdf/2412.01505v1

Batch Size and Training Instability

1 o beaw sans Same number of training tokens -> Smaller batch size is better
30 — Loowt o sertn Same number of optimization steps -> Larger batch size is better
Lo - | — Lompesamsqns
0 2.6 - . . _
2 331 Larger batch size -> larger learning rate -> training unstable
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Some bad batches could wash out everything it learns  Could be caused by a very unlikely sequence (example comes from a talk from Kyle Lo)

Scaling Law for Language Models Training Considering Batch Size (https://arxiv.org/pdf/2412.01505v1)



https://arxiv.org/pdf/2412.01505v1

Less likely Sequence = Higher Learning Rate

9—=0—n=
T 10

N

 Large losses tend to cause large gradients

exp(-100) -10 10—9
| T 1 exp(hth)
L=—— E | = — — E | ~— —

Bad initialization could also cause large gradient at the beginning



Learning Rate and Warmup

N = 2.4e+06

’ Larger Ieaming rate 4.2 : w::mg z :go : N = 9.4e+06
w \Narmup = 5000 —— N = 1.9e+07
* Faster (and sometimes better) 20 Warmup = 10000 —¥— N=4.2e+07
' Warmup = 25000 —&— N = 8.5e+07
: ~—®— N =1.5e+08
* More unstable 381 N\ — (&= N =jp.0e+08
\ R
* The larger model is more sensitive to the learning rate — 36
q>) 4 \
. © 3.4
e Probably because the unlikely sequences c
Learning 3.2
rate #
©.00001 - : 3.0
Warm up : Linear decay
: | | N 2.8 7
0.5 1 2 3 Epochs
e e M e e T A
the learning rate go to © a1;t<.er 3 epochs. | | Lea rnlng rate

Small-scale proxies for large-scale Transformer training instabilities (https://arxiv.org/pdf/2309.14322)



https://arxiv.org/pdf/2309.14322

How many Epochs?

 One epoch means training the whole

Return on compute when repeating

dataset once 3.4 ®
3.21 y &
* In the language modeling task 2 30 e
2
L . o 28 N
* Around 4 epochs is similar to 4 times the = ™|
data < Roa!
2.4 - i
. 2.21 Up to =4 epochs i Rapidly diminishing
* If you have a smaller dataset, consider repeating is almost 1 returns for
o as good as new data 1 more repetitions
tralnlng for more epOChS 2.0 128 48B  120B 480B  1.2T
(1) (4)  (10) (40)  (100)
Tokens
(Epochs)
Scaling Data-Constrained Language Models e %+ Models trained

(https://arxiv.org/pdf/2305.16264)

Loss assuming repeated data is worth the same as new data
Loss predicted by our data-constrained scaling laws


https://arxiv.org/pdf/2305.16264

