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Deadlines

• 2/17: Quiz 1 due 
• 2/14: HW 0 due 
• 2/14: Final project group assignments due 
• 3/7: Project proposals due 
• 5/9: Final project reports due 
• 5/9: Last day to submit extra credit 

• This Wednesday, we will have another talk 
(https://nlp.cs.umass.edu/seminar/)
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Project Rubric
• Rubric 

• Acceptable for main NLP conferences: 100 
• Acceptable for NLP workshops: 97 
• Having one of the noticeable great attributes among Effort, 

Novelty, Usefulness, and Implication: 95 
• Is a complete NLP scientific report: 90 
• Have some findings but also contain some major weaknesses: 85 
• Can see that students spend some effort on the project: 80 

• Policy of one project for multiple courses 
• The instructor of the other course needs to agree 
• All your group members need to agree 
• You need to indicate that in the final report for all courses 

• Your effort needs to be proportional to the number of credits
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Details are NOT important 
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Distance between training and testing
Large Small

Akyürek, Ekin, et al. "The surprising effectiveness of test-time 
training for abstract reasoning." arXiv preprint 

arXiv:2411.07279 (2024).(https://arxiv.org/abs/2411.07279)

SFT

👍

Pretraining  
(Small LM) 

SFT

👍

Pretraining  
(Large LM) 

SFT

👍

Test Time 
Training

👍

Training on 
Testing data

👎

The key is generalization ability

https://arxiv.org/abs/2411.07279


Data is the King for Maximizing Task Performances
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SFT
Pretraining  
(Large LM) 

SFT

Training on 
Testing data

Error

Unseen 
Test

Distance to training

Not generalizable 
error

👍 👍 👎

Movie production cost

Review 
sentiment

Bitter Lesson (http://www.incompleteideas.net/IncIdeas/BitterLesson.html) 
One of the most important concepts in this course, but More Data -> AGI? I personally disagree.

http://www.incompleteideas.net/IncIdeas/BitterLesson.html


Multiple Token Prediction

• DeepSeek V3 (https://arxiv.org/pdf/2412.19437v1)
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https://arxiv.org/pdf/2412.19437v1


Please Ask Questions if 
You don’t Understand
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Probabilistic Language Modeling
•Goal: compute the probability of a sentence or 
sequence of words: 
     P(W) = P(w1,w2,w3,w4,w5…wn) 

•Related task: probability of an upcoming word: 
      P(w5|w1,w2,w3,w4) 

•A model that computes either of these: 
      P(W)  or P(wn|w1,w2…wn-1)   is called a language model or LM

language model review
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P(its)

P(water|its)

P(river|its)

P(sky|its)

P(is|its,water)

P(was|its,water)

P(does|its,water)

P(his)

Testing data: its water does

PP(W) = exp( −
1
N

N

∑
i

log p(wi |w<i) )
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p(wj |students opened their) =
count(students opened their wj)

count(students opened their)

n-gram models
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Problems with	n-gram	Language	Models

Note: Increasing	nmakes	sparsity	problems	worse.
Typically	we	can’t	have	n bigger	than	5.

Problem:What	if	“students	
opened	their” never	occurred	in	
data?	Then	we	can’t	calculate	
probability	for	any !

Sparsity	Problem	2

Problem:What	if	“students	
opened	their						” never	
occurred	in	data?	Then	
has	probability	0!

Sparsity	Problem	1

(Partial)	Solution: Add	small	!
to	count	for	every																.	
This	is	called	smoothing.

(Partial)	Solution: Just	condition	
on	“opened	their” instead.	
This	is	called	backoff.

2/1/1812

p(wj |students opened their) =
count(students opened their wj)

count(students opened their)
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Problems with	n-gram	Language	Models

2/1/1813

Storage:	Need	to	store	count	
for	all	possible	n-grams.	So	
model	size	is	O(exp(n)).

Increasing	nmakes	model	size	huge!



another issue:
• We treat all words / prefixes independently of 

each other!
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students opened their ___
pupils opened their ___
scholars opened their ___
undergraduates opened their ___
students turned the pages of their ___
students attentively perused their ___
…

Shouldn’t we share 
information across these 

semantically-similar prefixes?



one-hot vectors
• n-gram models rely on the “bag-of-words” 

assumption 
• represent each word/n-gram as a vector of 

zeros with a single 1 identifying its index in 
the vocabulary
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movie = <0, 0, 0, 0, 1, 0> 
film     = <0, 0, 0, 0, 0, 1>

vocabulary
i

hate
love
the

movie
film

what are the issues 
of representing a 
word this way?



all words are equally (dis)similar!
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movie = <0, 0, 0, 0, 1, 0> 
film     = <0, 0, 0, 0, 0, 1>

What we want is a representation space in which 
words, phrases, sentences etc. that are semantically 

similar also have similar representations!

dot product is zero! 
these vectors are orthogonal



Task -> Loss -> Model -> Optimization

• Task:  
• Predict the next token  
• Prior to 2018, only a few NLP researchers studied LMs 
• Looking for ELMo's friends: Sentence-Level Pretraining 

Beyond Language Modeling (https://openreview.net/
forum?id=Bkl87h09FX) 

• Loss:  
• Maximal Likelihood / Cross-entropy  

• Model:  
• Tables -> Neural Network -> Transformer 

• Optimization:  
• Counting -> Gradient Descent
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https://openreview.net/forum?id=Bkl87h09FX
https://openreview.net/forum?id=Bkl87h09FX


Students opened their

neural language 
model

books

Enter neural networks!
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Students opened their

neural language 
model

books

Enter neural networks!

This lecture: the 
forward pass, or how 

we compute a 
prediction of the next 
word given an existing 

neural language 
model

Next lecture: the 
backward pass, or 

how we train a neural 
language model on a 
training dataset using 
the backpropagation 

algorithm



words as basic building blocks
• represent words with low-dimensional vectors called 

embeddings (Mikolov et al., NIPS 2013)

king = 
[0.23, 1.3, -0.3, 0.43]



• Each dimension is not an attribute 
• If you force non-negative embeddings during 

training, it will have meaning 
• Linear combination of dimensions could 

reveal attributes
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composing embeddings
• neural networks compose word embeddings into 

vectors for phrases, sentences, and documents

 neural 
network ( ) = 

opened theirstudents

Hidden State

Encoder



Predict the next word from 
composed prefix representation

 neural 
network ( ) = 

opened theirstudents

predict “books”



How does this happen? Let’s work our 
way backwards, starting with the 

prediction of the next word
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 neural 
network ( ) = 

opened theirstudents

predict “books”



How does this happen? Let’s work our 
way backwards, starting with the 

prediction of the next word
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 neural 
network ( ) = 

opened theirstudents

predict “books”

Softmax layer: 

convert a vector representation 

into a probability distribution 
over the entire vocabulary



A	fixed-window	neural	Language	Model

the students opened their

books
laptops

concatenated	word	embeddings

words	/	one-hot	vectors	

hidden	layer

a zoo

output	distribution	

2/1/1822
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Low-dimensional 
representation of 

“students opened their”

Probability distribution 
over the entire  

vocabulary



A	fixed-window	neural	Language	Model

the students opened their

books
laptops

concatenated	word	embeddings

words	/	one-hot	vectors	

hidden	layer

a zoo

output	distribution	

2/1/1822

28

Low-dimensional 
representation of 

“students opened their”

Probability distribution 
over the entire  

vocabulary

P(wi |vector for "students opened their")
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Let’s say our output vocabulary 
consists of just four words: “books”,  

“houses”, “lamps”, and “stamps”.

Low-dimensional 
representation of 

“students opened their”
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<0.6, 0.2, 0.1, 0.1>
books

houses
lamps

stamps

We want to get a 
probability 

distribution over 
these four words

Let’s say our output vocabulary 
consists of just four words: “books”,  

“houses”, “lamps”, and “stamps”.

Low-dimensional 
representation of 

“students opened their”
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<-2.3, 0.9, 5.4>x = Here’s an example 3-d 
prefix vector
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<-2.3, 0.9, 5.4>

1.2,  -0.3,  0.9 
0.2,  0.4,  -2.2 
8.9,  -1.9,  6.5 
4.5,  2.2,  -0.1

}{W =

x = Here’s an example 3-d 
prefix vector

W is a weight matrix. It contains 
parameters that we can update 
to control the final probability 
distribution of the next word



33

first, we’ll project our 
3-d prefix 

representation to 4-d 
with a matrix-vector 

product

<-2.3, 0.9, 5.4>

1.2,  -0.3,  0.9 
0.2,  0.4,  -2.2 
8.9,  -1.9,  6.5 
4.5,  2.2,  -0.1

}{W =

x = Here’s an example 3-d 
prefix vector

W is a weight matrix. It contains 
parameters that we can update 
to control the final probability 
distribution of the next word
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<-2.3, 0.9, 5.4>

1.2,  -0.3,  0.9 
0.2,  0.4,  -2.2 
8.9,  -1.9,  6.5 
4.5,  2.2,  -0.1

}{W =

x =

intuition: each 
dimension of x 

corresponds to a 
feature of the prefix
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intuition: each row 
of W contains 

feature weights for a 
corresponding word 

in the vocabulary

<-2.3, 0.9, 5.4>

1.2,  -0.3,  0.9 
0.2,  0.4,  -2.2 
8.9,  -1.9,  6.5 
4.5,  2.2,  -0.1

}{W =

x =

intuition: each 
dimension of x 

corresponds to a 
feature of the prefix
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intuition: each row 
of W contains 

feature weights for a 
corresponding word 

in the vocabulary

<-2.3, 0.9, 5.4>

1.2,  -0.3,  0.9 
0.2,  0.4,  -2.2 
8.9,  -1.9,  6.5 
4.5,  2.2,  -0.1

}{W =

x =

intuition: each 
dimension of x 

corresponds to a 
feature of the prefix

books

houses

lamps

stamps
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intuition: each row 
of W contains  

feature weights for a 
corresponding word 

in the vocabulary

<-2.3, 0.9, 5.4>

1.2,  -0.3,  0.9 
0.2,  0.4,  -2.2 
8.9,  -1.9,  6.5 
4.5,  2.2,  -0.1

}{W =

x =

CAUTION: we can’t 
easily interpret these 

features! For example, 
the second dimension 

of x likely does not 
correspond to any 
linguistic property

intuition: each 
dimension of x 

corresponds to a 
feature of the prefix

books

houses

lamps

stamps



38

<-2.3, 0.9, 5.4>

1.2,  -0.3,  0.9 
0.2,  0.4,  -2.2 
8.9,  -1.9,  6.5 
4.5,  2.2,  -0.1

}{W =

x =

Wx = <1.8, -11.9,  12.9,  -8.9>
How did we compute 
this? It’s just the dot 
product of each row 

of W with x! 
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x =
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<-2.3, 0.9, 5.4>

1.2,  -0.3,  0.9 
0.2,  0.4,  -2.2 
8.9,  -1.9,  6.5 
4.5,  2.2,  -0.1

}{W =

x =

Wx = <1.8, -11.9,  12.9,  -8.9>
How did we compute 

this? Just the dot product 
of each row of W with x! 

1.2 * -2.3  
+ -0.3 * 0.9  
+ 0.9 * 5.4
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Wx = <1.8, -11.9,  12.9,  -8.9>

Okay, so how do we go 
from this 4-d vector to a 
probability distribution?

Some LMs uses Wx + b, 
but it doesn’t matter. Why?
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Wx = <1.8, -1.9,  2.9,  -0.9>

We’ll use the softmax function!

softmax(Wx) = <0.24, 0.006,  0.73,  0.02>

• Wx is a vector 
• [Wx]j is dimension j of Wx 
• each dimension j of the softmaxed 

output represents the probability of 
class j 

softmax(Wx) =
eWx

∑j e[Wx]j

Logit

PyTorch softmax function is 
more numerically stable
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Wx = <1.8, -1.9,  2.9,  -0.9>

We’ll use the softmax function!

softmax(Wx) = <0.24, 0.006,  0.73,  0.02>

books
houses

lamps
stamps

• Wx is a vector 
• [Wx]j is dimension j of Wx 
• each dimension j of the softmaxed 

output represents the probability of 
class j 

softmax(Wx) =
eWx

∑j e[Wx]j
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Wx = <1.8, -1.9,  2.9,  -0.9>

We’ll use the softmax function!

softmax(x) =
ex

∑j exj

• Wx is a vector 
• [Wx]j is dimension j of Wx 
• each dimension j of the softmaxed 

output represents the probability of 
class j 

softmax(Wx) = <0.24, 0.006,  0.73,  0.02>
We’ll see the softmax function over and over again this 

semester, so be sure to understand it!

softmax(Wx) =
eWx

∑j e[Wx]j



so to sum up…

• Given a d-dimensional vector 
representation x of a prefix, we do the 
following to predict the next word: 

1. Project it to a V-dimensional vector using a 
matrix-vector product (a.k.a. a “linear layer”, or a 
“feedforward layer”), where V is the size of the 
vocabulary 

2. Apply the softmax function to transform the 
resulting vector into a probability distribution
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Matrix Factorization
• Sparse 

observation 
• Dense 

prediction 
• Similarity-based 

generalization 
• Similar tokens/

context -> 
Similar 
embeddings 

• Wide application 
of linear operation 
• GPUs are so 

important

46
##

##
##

#

##
##

##
#

##
##

##
#
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##
#

bo
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la

m
ps

 
st

am
ps

The good students

He opens his

People turns on their

Students open their~x ? ? ? ?

The students open

……

……

4-gram stats

WT
If only 1 word

Word2vec

Neural Word Embedding as Implicit Matrix Factorization  
(https://proceedings.neurips.cc/paper_files/paper/2014/file/feab05aa91085b7a8012516bc3533958-Paper.pdf)

4

3

3

https://proceedings.neurips.cc/paper_files/paper/2014/file/feab05aa91085b7a8012516bc3533958-Paper.pdf
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Now that we know how to predict “books”, 
let’s focus on how to compute the prefix 

representation x in the first place!

 neural 
network ( ) = 

opened theirstudents

predict “books”

47



Composition functions
input: sequence of word embeddings corresponding to 
the tokens of a given prefix 
output: single vector 

• Element-wise functions  
• e.g., just sum up all of the word embeddings! 

• Concatenation 
• Feed-forward neural networks 
• Convolutional neural networks 
• Recurrent neural networks 
• Transformers (our focus this semester)
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Let’s look first at concatenation + 
feedforward NN, an easy to understand but 

limited composition function

49
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A	fixed-window	neural	Language	Model

the students opened theiras	 the	 proctor	 started	 the clock ______

discard fixed	window
2/1/1821
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A	fixed-window	neural	Language	Model

the students opened their

books
laptops

concatenated	word	embeddings

words	/	one-hot	vectors	

hidden	layer

a zoo

output	distribution	

2/1/1822

c1, c2, c3, c4

̂y = softmax(W2h + b2)

W1

W2

c1 c2 c3 c4

h = f(W1c + b1)

x = [c1; c2; c3; c4]
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A	fixed-window	neural	Language	Model

the students opened their

books
laptops

concatenated	word	embeddings
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output	distribution	

2/1/1822

c1, c2, c3, c4

̂y = softmax(W2h + b2)

W1

W2

c1 c2 c3 c4

h = f(W1x)
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A	fixed-window	neural	Language	Model

the students opened their

books
laptops

concatenated	word	embeddings

words	/	one-hot	vectors	

hidden	layer

a zoo

output	distribution	

2/1/1822

c1, c2, c3, c4

̂y = softmax(W2h + b2)

W1

W2

c1 c2 c3 c4

h = f(W1x)

x = [c1; c2; c3; c4]

f is a nonlinearity, or an element-wise nonlinear function. 
The most commonly-used choice today is the rectified 

linear unit (ReLu), which is just ReLu(x) = max(0, x). 
Other choices include tanh and sigmoid.



Activation Function Matter
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https://arxiv.org/pdf/2002.05202v1
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A	fixed-window	neural	Language	Model

the students opened their

books
laptops

concatenated	word	embeddings

words	/	one-hot	vectors	

hidden	layer

a zoo

output	distribution	

2/1/1822

c1, c2, c3, c4

̂y = softmax(W2h)

W1

W2

c1 c2 c3 c4

h = f(W1x)

x = [c1; c2; c3; c4]
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A	fixed-window	neural	Language	Model

the students opened their

books
laptops

concatenated	word	embeddings

words	/	one-hot	vectors	

hidden	layer

a zoo

output	distribution	

2/1/1822

W1

W2

c1 c2 c3 c4

how does this compare to a  
normal n-gram model?A	fixed-window	neural	Language	Model

the students opened their

books
laptops

a zoo

Improvements over	n-gram	LM:
• No	sparsity	problem
• Model	size	is	O(n)	not	O(exp(n))

Remaining	problems:
• Fixed	window	is	too	small
• Enlarging	window	enlarges	
• Window	can	never	be	large	

enough!
• Each									uses	different	rows	

of						.	We	don’t	share	weights	
across	the	window.

We	need	a	neural	
architecture	that	can	

process	any	length	input

2/1/1823

ci

This is also called Feedforward NN
, MLP (multilayer perceptron), or fully connected network 



Recurrent Neural Networks!
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A	RNN	Language	Model

the students opened theirwords	/	one-hot	vectors	

books
laptops

word	embeddings

a zoo

output	distribution	

Note:	this	input	sequence	could	be	much	
longer,	but	this	slide	doesn’t	have	space!

hidden	states	

is	the	initial	hidden	state

2/1/1825

c1, c2, c3, c4

c1 c2 c3 c4

the students opened their

̂y = softmax(W2h(t))

W2

h(t) = f(Whh(t−1) + Wect)
h(0) is initial hidden state!
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A	RNN	Language	Model
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A	RNN	Language	Model

the students opened theirwords	/	one-hot	vectors	
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A	RNN	Language	Model

the students opened theirwords	/	one-hot	vectors	

books
laptops

word	embeddings

a zoo

output	distribution	
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longer,	but	this	slide	doesn’t	have	space!

hidden	states	

is	the	initial	hidden	state

2/1/1825

c1, c2, c3, c4

c1 c2 c3 c4

the students opened their

̂y = softmax(W2h(t))

W2

h(t) = f(Whh(t−1) + Wect)
h(0) is initial hidden state!
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A	RNN	Language	Model

the students opened theirwords	/	one-hot	vectors	

books
laptops

word	embeddings

a zoo

output	distribution	

Note:	this	input	sequence	could	be	much	
longer,	but	this	slide	doesn’t	have	space!

hidden	states	

is	the	initial	hidden	state

2/1/1825

c1, c2, c3, c4

c1 c2 c3 c4

the students opened their

̂y = softmax(W2h(t))

W2

h(t) = f(Whh(t−1) + Wect)
h(0) is initial hidden state!
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A	RNN	Language	Model

the students opened theirwords	/	one-hot	vectors	

books
laptops

word	embeddings

a zoo

output	distribution	

Note:	this	input	sequence	could	be	much	
longer,	but	this	slide	doesn’t	have	space!

hidden	states	

is	the	initial	hidden	state

2/1/1825

c1, c2, c3, c4

c1 c2 c3 c4

the students opened their

̂y = softmax(W2h(t))

W2

h(t) = f(Whh(t−1) + Wect)
h(0) is initial hidden state!
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A	RNN	Language	Model

the students opened theirwords	/	one-hot	vectors	

books
laptops

word	embeddings

a zoo

output	distribution	

Note:	this	input	sequence	could	be	much	
longer,	but	this	slide	doesn’t	have	space!

hidden	states	

is	the	initial	hidden	state

2/1/1825

c1 c2 c3 c4

the students opened their

W2

A	RNN	Language	Model

the students opened their

books
laptops

a zoo

RNN Advantages:
• Can	process	any	length

input
• Model	size	doesn’t	

increase for	longer	input
• Computation	for	step	t

can	(in	theory)	use	
information	from many	
steps	back

• Weights	are	shared
across	timestepsà
representations	are	
shared

RNN	Disadvantages:
• Recurrent	computation	

is	slow
• In	practice,	difficult	to	

access	information	from	
many	steps	back	

More	on	
these	next	
week

2/1/1826

why is this good?
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Feedforward 
NN

RNN

CNN
Transformer

Computation 
Cost
Long 

Dependency

Position 
Information

More

More

Less

Mamba: Linear-Time Sequence Modeling with Selective State 
Spaces (https://arxiv.org/pdf/2312.00752)

https://arxiv.org/pdf/2312.00752


Be on the lookout for…

• Next lecture on backpropagation, which 
allows us to actually train these networks to 
make reasonable predictions 

• After that, we’ll focus on attention 
mechanisms and build our way to the 
Transformer architecture, which is the most 
popular composition function used today
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