
Neural Language Models

CS 685, Spring 2025

Advanced Natural Language Processing

Haw-Shiuan Chang

College of Information and Computer Sciences

University of Massachusetts Amherst

many slides from Richard Socher and Matt Peters

Deadlines

• 2/17: Quiz 1 due
• 2/14: HW 0 due
• 2/14: Final project group assignments due
• 3/7: Project proposals due
• 5/9: Final project reports due
• 5/9: Last day to submit extra credit

• This Wednesday, we will have another talk
(https://nlp.cs.umass.edu/seminar/)

2

Project Rubric
• Rubric

• Acceptable for main NLP conferences: 100
• Acceptable for NLP workshops: 97
• Having one of the noticeable great attributes among Effort,

Novelty, Usefulness, and Implication: 95
• Is a complete NLP scientific report: 90
• Have some findings but also contain some major weaknesses: 85
• Can see that students spend some effort on the project: 80

• Policy of one project for multiple courses
• The instructor of the other course needs to agree
• All your group members need to agree
• You need to indicate that in the final report for all courses

• Your effort needs to be proportional to the number of credits

3

Details are NOT important

4

Distance between training and testing
Large Small

Akyürek, Ekin, et al. "The surprising effectiveness of test-time
training for abstract reasoning." arXiv preprint

arXiv:2411.07279 (2024).(https://arxiv.org/abs/2411.07279)

SFT

👍

Pretraining
(Small LM)

SFT

👍

Pretraining
(Large LM)

SFT

👍

Test Time
Training

👍

Training on
Testing data

👎

The key is generalization ability

https://arxiv.org/abs/2411.07279

Data is the King for Maximizing Task Performances

5

SFT
Pretraining
(Large LM)

SFT

Training on
Testing data

Error

Unseen
Test

Distance to training

Not generalizable
error

👍 👍 👎

Movie production cost

Review
sentiment

Bitter Lesson (http://www.incompleteideas.net/IncIdeas/BitterLesson.html)
One of the most important concepts in this course, but More Data -> AGI? I personally disagree.

http://www.incompleteideas.net/IncIdeas/BitterLesson.html

Multiple Token Prediction

• DeepSeek V3 (https://arxiv.org/pdf/2412.19437v1)

6

https://arxiv.org/pdf/2412.19437v1

Please Ask Questions if
You don’t Understand

7

8

Probabilistic Language Modeling
•Goal: compute the probability of a sentence or
sequence of words:
 P(W) = P(w1,w2,w3,w4,w5…wn)

•Related task: probability of an upcoming word:
 P(w5|w1,w2,w3,w4)

•A model that computes either of these:
 P(W) or P(wn|w1,w2…wn-1) is called a language model or LM

language model review

9

P(its)

P(water|its)

P(river|its)

P(sky|its)

P(is|its,water)

P(was|its,water)

P(does|its,water)

P(his)

Testing data: its water does

PP(W) = exp(−
1
N

N

∑
i

log p(wi |w<i))

10

p(wj |students opened their) =
count(students opened their wj)

count(students opened their)

n-gram models

11

Problems with	n-gram	Language	Models

Note: Increasing	nmakes	sparsity	problems	worse.
Typically	we	can’t	have	n bigger	than	5.

Problem:What	if	“students	
opened	their” never	occurred	in	
data?	Then	we	can’t	calculate	
probability	for	any !

Sparsity	Problem	2

Problem:What	if	“students	
opened	their						” never	
occurred	in	data?	Then	
has	probability	0!

Sparsity	Problem	1

(Partial)	Solution: Add	small	!
to	count	for	every																.	
This	is	called	smoothing.

(Partial)	Solution: Just	condition	
on	“opened	their” instead.	
This	is	called	backoff.

2/1/1812

p(wj |students opened their) =
count(students opened their wj)

count(students opened their)

12

Problems with	n-gram	Language	Models

Note: Increasing	nmakes	sparsity	problems	worse.
Typically	we	can’t	have	n bigger	than	5.

Problem:What	if	“students	
opened	their” never	occurred	in	
data?	Then	we	can’t	calculate	
probability	for	any !

Sparsity	Problem	2

Problem:What	if	“students	
opened	their						” never	
occurred	in	data?	Then	
has	probability	0!

Sparsity	Problem	1

(Partial)	Solution: Add	small	!
to	count	for	every																.	
This	is	called	smoothing.

(Partial)	Solution: Just	condition	
on	“opened	their” instead.	
This	is	called	backoff.

2/1/1812

p(wj |students opened their) =
count(students opened their wj)

count(students opened their)

13

Problems with	n-gram	Language	Models

2/1/1813

Storage:	Need	to	store	count	
for	all	possible	n-grams.	So	
model	size	is	O(exp(n)).

Increasing	nmakes	model	size	huge!

another issue:
• We treat all words / prefixes independently of

each other!

14

students opened their ___
pupils opened their ___
scholars opened their ___
undergraduates opened their ___
students turned the pages of their ___
students attentively perused their ___
…

Shouldn’t we share
information across these

semantically-similar prefixes?

one-hot vectors
• n-gram models rely on the “bag-of-words”

assumption
• represent each word/n-gram as a vector of

zeros with a single 1 identifying its index in
the vocabulary

15

movie = <0, 0, 0, 0, 1, 0>
film = <0, 0, 0, 0, 0, 1>

vocabulary
i

hate
love
the

movie
film

what are the issues
of representing a
word this way?

all words are equally (dis)similar!

16

movie = <0, 0, 0, 0, 1, 0>
film = <0, 0, 0, 0, 0, 1>

What we want is a representation space in which
words, phrases, sentences etc. that are semantically

similar also have similar representations!

dot product is zero!
these vectors are orthogonal

Task -> Loss -> Model -> Optimization

• Task:
• Predict the next token
• Prior to 2018, only a few NLP researchers studied LMs
• Looking for ELMo's friends: Sentence-Level Pretraining

Beyond Language Modeling (https://openreview.net/
forum?id=Bkl87h09FX)

• Loss:
• Maximal Likelihood / Cross-entropy

• Model:
• Tables -> Neural Network -> Transformer

• Optimization:
• Counting -> Gradient Descent

17

https://openreview.net/forum?id=Bkl87h09FX
https://openreview.net/forum?id=Bkl87h09FX

Students opened their

neural language
model

books

Enter neural networks!

Students opened their

neural language
model

books

Enter neural networks!

This lecture: the
forward pass, or how

we compute a
prediction of the next
word given an existing

neural language
model

Students opened their

neural language
model

books

Enter neural networks!

This lecture: the
forward pass, or how

we compute a
prediction of the next
word given an existing

neural language
model

Next lecture: the
backward pass, or

how we train a neural
language model on a
training dataset using
the backpropagation

algorithm

words as basic building blocks
• represent words with low-dimensional vectors called

embeddings (Mikolov et al., NIPS 2013)

king =
[0.23, 1.3, -0.3, 0.43]

• Each dimension is not an attribute
• If you force non-negative embeddings during

training, it will have meaning
• Linear combination of dimensions could

reveal attributes

22

composing embeddings
• neural networks compose word embeddings into

vectors for phrases, sentences, and documents

 neural
network () =

opened theirstudents

Hidden State

Encoder

Predict the next word from
composed prefix representation

 neural
network () =

opened theirstudents

predict “books”

How does this happen? Let’s work our
way backwards, starting with the

prediction of the next word

25

 neural
network () =

opened theirstudents

predict “books”

How does this happen? Let’s work our
way backwards, starting with the

prediction of the next word

26

 neural
network () =

opened theirstudents

predict “books”

Softmax layer:

convert a vector representation

into a probability distribution
over the entire vocabulary

A	fixed-window	neural	Language	Model

the students opened their

books
laptops

concatenated	word	embeddings

words	/	one-hot	vectors	

hidden	layer

a zoo

output	distribution	

2/1/1822

27

Low-dimensional
representation of

“students opened their”

Probability distribution
over the entire

vocabulary

A	fixed-window	neural	Language	Model

the students opened their

books
laptops

concatenated	word	embeddings

words	/	one-hot	vectors	

hidden	layer

a zoo

output	distribution	

2/1/1822

28

Low-dimensional
representation of

“students opened their”

Probability distribution
over the entire

vocabulary

P(wi |vector for "students opened their")

29

Let’s say our output vocabulary
consists of just four words: “books”,

“houses”, “lamps”, and “stamps”.

Low-dimensional
representation of

“students opened their”

30

<0.6, 0.2, 0.1, 0.1>
books

houses
lamps

stamps

We want to get a
probability

distribution over
these four words

Let’s say our output vocabulary
consists of just four words: “books”,

“houses”, “lamps”, and “stamps”.

Low-dimensional
representation of

“students opened their”

31

<-2.3, 0.9, 5.4>x = Here’s an example 3-d
prefix vector

32

<-2.3, 0.9, 5.4>

1.2, -0.3, 0.9
0.2, 0.4, -2.2
8.9, -1.9, 6.5
4.5, 2.2, -0.1

}{W =

x = Here’s an example 3-d
prefix vector

W is a weight matrix. It contains
parameters that we can update
to control the final probability
distribution of the next word

33

first, we’ll project our
3-d prefix

representation to 4-d
with a matrix-vector

product

<-2.3, 0.9, 5.4>

1.2, -0.3, 0.9
0.2, 0.4, -2.2
8.9, -1.9, 6.5
4.5, 2.2, -0.1

}{W =

x = Here’s an example 3-d
prefix vector

W is a weight matrix. It contains
parameters that we can update
to control the final probability
distribution of the next word

34

<-2.3, 0.9, 5.4>

1.2, -0.3, 0.9
0.2, 0.4, -2.2
8.9, -1.9, 6.5
4.5, 2.2, -0.1

}{W =

x =

intuition: each
dimension of x

corresponds to a
feature of the prefix

35

intuition: each row
of W contains

feature weights for a
corresponding word

in the vocabulary

<-2.3, 0.9, 5.4>

1.2, -0.3, 0.9
0.2, 0.4, -2.2
8.9, -1.9, 6.5
4.5, 2.2, -0.1

}{W =

x =

intuition: each
dimension of x

corresponds to a
feature of the prefix

36

intuition: each row
of W contains

feature weights for a
corresponding word

in the vocabulary

<-2.3, 0.9, 5.4>

1.2, -0.3, 0.9
0.2, 0.4, -2.2
8.9, -1.9, 6.5
4.5, 2.2, -0.1

}{W =

x =

intuition: each
dimension of x

corresponds to a
feature of the prefix

books

houses

lamps

stamps

37

intuition: each row
of W contains

feature weights for a
corresponding word

in the vocabulary

<-2.3, 0.9, 5.4>

1.2, -0.3, 0.9
0.2, 0.4, -2.2
8.9, -1.9, 6.5
4.5, 2.2, -0.1

}{W =

x =

CAUTION: we can’t
easily interpret these

features! For example,
the second dimension

of x likely does not
correspond to any
linguistic property

intuition: each
dimension of x

corresponds to a
feature of the prefix

books

houses

lamps

stamps

38

<-2.3, 0.9, 5.4>

1.2, -0.3, 0.9
0.2, 0.4, -2.2
8.9, -1.9, 6.5
4.5, 2.2, -0.1

}{W =

x =

Wx = <1.8, -11.9, 12.9, -8.9>
How did we compute
this? It’s just the dot
product of each row

of W with x!

39

<-2.3, 0.9, 5.4>

1.2, -0.3, 0.9
0.2, 0.4, -2.2
8.9, -1.9, 6.5
4.5, 2.2, -0.1

}{W =

x =

Wx = <1.8, -11.9, 12.9, -8.9>
How did we compute
this? It’s just the dot
product of each row

of W with x!

40

<-2.3, 0.9, 5.4>

1.2, -0.3, 0.9
0.2, 0.4, -2.2
8.9, -1.9, 6.5
4.5, 2.2, -0.1

}{W =

x =

Wx = <1.8, -11.9, 12.9, -8.9>
How did we compute

this? Just the dot product
of each row of W with x!

1.2 * -2.3
+ -0.3 * 0.9
+ 0.9 * 5.4

41

Wx = <1.8, -11.9, 12.9, -8.9>

Okay, so how do we go
from this 4-d vector to a
probability distribution?

Some LMs uses Wx + b,
but it doesn’t matter. Why?

42

Wx = <1.8, -1.9, 2.9, -0.9>

We’ll use the softmax function!

softmax(Wx) = <0.24, 0.006, 0.73, 0.02>

• Wx is a vector
• [Wx]j is dimension j of Wx
• each dimension j of the softmaxed

output represents the probability of
class j

softmax(Wx) =
eWx

∑j e[Wx]j

Logit

PyTorch softmax function is
more numerically stable

43

Wx = <1.8, -1.9, 2.9, -0.9>

We’ll use the softmax function!

softmax(Wx) = <0.24, 0.006, 0.73, 0.02>

books
houses

lamps
stamps

• Wx is a vector
• [Wx]j is dimension j of Wx
• each dimension j of the softmaxed

output represents the probability of
class j

softmax(Wx) =
eWx

∑j e[Wx]j

44

Wx = <1.8, -1.9, 2.9, -0.9>

We’ll use the softmax function!

softmax(x) =
ex

∑j exj

• Wx is a vector
• [Wx]j is dimension j of Wx
• each dimension j of the softmaxed

output represents the probability of
class j

softmax(Wx) = <0.24, 0.006, 0.73, 0.02>
We’ll see the softmax function over and over again this

semester, so be sure to understand it!

softmax(Wx) =
eWx

∑j e[Wx]j

so to sum up…

• Given a d-dimensional vector
representation x of a prefix, we do the
following to predict the next word:

1. Project it to a V-dimensional vector using a
matrix-vector product (a.k.a. a “linear layer”, or a
“feedforward layer”), where V is the size of the
vocabulary

2. Apply the softmax function to transform the
resulting vector into a probability distribution

45

Matrix Factorization
• Sparse

observation
• Dense

prediction
• Similarity-based

generalization
• Similar tokens/

context ->
Similar
embeddings

• Wide application
of linear operation
• GPUs are so

important

46
##

##
##

#

##
##

##
#

##
##

##
#

##
##

##
#

bo
ok

s
ho

us
es

la

m
ps

st

am
ps

The good students

He opens his

People turns on their

Students open their~x ? ? ? ?

The students open

……

……

4-gram stats

WT
If only 1 word

Word2vec

Neural Word Embedding as Implicit Matrix Factorization
(https://proceedings.neurips.cc/paper_files/paper/2014/file/feab05aa91085b7a8012516bc3533958-Paper.pdf)

4

3

3

https://proceedings.neurips.cc/paper_files/paper/2014/file/feab05aa91085b7a8012516bc3533958-Paper.pdf

47

Now that we know how to predict “books”,
let’s focus on how to compute the prefix

representation x in the first place!

 neural
network () =

opened theirstudents

predict “books”

47

Composition functions
input: sequence of word embeddings corresponding to
the tokens of a given prefix
output: single vector

• Element-wise functions
• e.g., just sum up all of the word embeddings!

• Concatenation
• Feed-forward neural networks
• Convolutional neural networks
• Recurrent neural networks
• Transformers (our focus this semester)

48

Let’s look first at concatenation +
feedforward NN, an easy to understand but

limited composition function

49

50

A	fixed-window	neural	Language	Model

the students opened theiras	 the	 proctor	 started	 the clock ______

discard fixed	window
2/1/1821

51

A	fixed-window	neural	Language	Model

the students opened their

books
laptops

concatenated	word	embeddings

words	/	one-hot	vectors	

hidden	layer

a zoo

output	distribution	

2/1/1822

c1, c2, c3, c4

̂y = softmax(W2h + b2)

W1

W2

c1 c2 c3 c4

h = f(W1c + b1)

x = [c1; c2; c3; c4]

52

A	fixed-window	neural	Language	Model

the students opened their

books
laptops

concatenated	word	embeddings

words	/	one-hot	vectors	

hidden	layer

a zoo

output	distribution	

2/1/1822

c1, c2, c3, c4

̂y = softmax(W2h + b2)

W1

W2

c1 c2 c3 c4

h = f(W1x)

x = [c1; c2; c3; c4]

53

A	fixed-window	neural	Language	Model

the students opened their

books
laptops

concatenated	word	embeddings

words	/	one-hot	vectors	

hidden	layer

a zoo

output	distribution	

2/1/1822

c1, c2, c3, c4

̂y = softmax(W2h + b2)

W1

W2

c1 c2 c3 c4

h = f(W1x)

x = [c1; c2; c3; c4]

f is a nonlinearity, or an element-wise nonlinear function.
The most commonly-used choice today is the rectified

linear unit (ReLu), which is just ReLu(x) = max(0, x).
Other choices include tanh and sigmoid.

Activation Function Matter

54

https://arxiv.org/pdf/2002.05202v1

55

A	fixed-window	neural	Language	Model

the students opened their

books
laptops

concatenated	word	embeddings

words	/	one-hot	vectors	

hidden	layer

a zoo

output	distribution	

2/1/1822

c1, c2, c3, c4

̂y = softmax(W2h)

W1

W2

c1 c2 c3 c4

h = f(W1x)

x = [c1; c2; c3; c4]

56

A	fixed-window	neural	Language	Model

the students opened their

books
laptops

concatenated	word	embeddings

words	/	one-hot	vectors	

hidden	layer

a zoo

output	distribution	

2/1/1822

W1

W2

c1 c2 c3 c4

how does this compare to a
normal n-gram model?A	fixed-window	neural	Language	Model

the students opened their

books
laptops

a zoo

Improvements over	n-gram	LM:
• No	sparsity	problem
• Model	size	is	O(n)	not	O(exp(n))

Remaining	problems:
• Fixed	window	is	too	small
• Enlarging	window	enlarges	
• Window	can	never	be	large	

enough!
• Each									uses	different	rows	

of						.	We	don’t	share	weights	
across	the	window.

We	need	a	neural	
architecture	that	can	

process	any	length	input

2/1/1823

ci

This is also called Feedforward NN
, MLP (multilayer perceptron), or fully connected network

Recurrent Neural Networks!

58

A	RNN	Language	Model

the students opened theirwords	/	one-hot	vectors	

books
laptops

word	embeddings

a zoo

output	distribution	

Note:	this	input	sequence	could	be	much	
longer,	but	this	slide	doesn’t	have	space!

hidden	states	

is	the	initial	hidden	state

2/1/1825

c1, c2, c3, c4

c1 c2 c3 c4

the students opened their

̂y = softmax(W2h(t))

W2

h(t) = f(Whh(t−1) + Wect)
h(0) is initial hidden state!

59

A	RNN	Language	Model

the students opened theirwords	/	one-hot	vectors	

books
laptops

word	embeddings

a zoo

output	distribution	

Note:	this	input	sequence	could	be	much	
longer,	but	this	slide	doesn’t	have	space!

hidden	states	

is	the	initial	hidden	state

2/1/1825

c1, c2, c3, c4

c1 c2 c3 c4

the students opened their

̂y = softmax(W2h(t))

W2

h(t) = f(Whh(t−1) + Wect)
h(0) is initial hidden state!

60

A	RNN	Language	Model

the students opened theirwords	/	one-hot	vectors	

books
laptops

word	embeddings

a zoo

output	distribution	

Note:	this	input	sequence	could	be	much	
longer,	but	this	slide	doesn’t	have	space!

hidden	states	

is	the	initial	hidden	state

2/1/1825

c1, c2, c3, c4

c1 c2 c3 c4

the students opened their

̂y = softmax(W2h(t))

W2

h(t) = f(Whh(t−1) + Wect)
h(0) is initial hidden state!

61

A	RNN	Language	Model

the students opened theirwords	/	one-hot	vectors	

books
laptops

word	embeddings

a zoo

output	distribution	

Note:	this	input	sequence	could	be	much	
longer,	but	this	slide	doesn’t	have	space!

hidden	states	

is	the	initial	hidden	state

2/1/1825

c1, c2, c3, c4

c1 c2 c3 c4

the students opened their

̂y = softmax(W2h(t))

W2

h(t) = f(Whh(t−1) + Wect)
h(0) is initial hidden state!

62

A	RNN	Language	Model

the students opened theirwords	/	one-hot	vectors	

books
laptops

word	embeddings

a zoo

output	distribution	

Note:	this	input	sequence	could	be	much	
longer,	but	this	slide	doesn’t	have	space!

hidden	states	

is	the	initial	hidden	state

2/1/1825

c1, c2, c3, c4

c1 c2 c3 c4

the students opened their

̂y = softmax(W2h(t))

W2

h(t) = f(Whh(t−1) + Wect)
h(0) is initial hidden state!

63

A	RNN	Language	Model

the students opened theirwords	/	one-hot	vectors	

books
laptops

word	embeddings

a zoo

output	distribution	

Note:	this	input	sequence	could	be	much	
longer,	but	this	slide	doesn’t	have	space!

hidden	states	

is	the	initial	hidden	state

2/1/1825

c1, c2, c3, c4

c1 c2 c3 c4

the students opened their

̂y = softmax(W2h(t))

W2

h(t) = f(Whh(t−1) + Wect)
h(0) is initial hidden state!

64

A	RNN	Language	Model

the students opened theirwords	/	one-hot	vectors	

books
laptops

word	embeddings

a zoo

output	distribution	

Note:	this	input	sequence	could	be	much	
longer,	but	this	slide	doesn’t	have	space!

hidden	states	

is	the	initial	hidden	state

2/1/1825

c1, c2, c3, c4

c1 c2 c3 c4

the students opened their

̂y = softmax(W2h(t))

W2

h(t) = f(Whh(t−1) + Wect)
h(0) is initial hidden state!

65

A	RNN	Language	Model

the students opened theirwords	/	one-hot	vectors	

books
laptops

word	embeddings

a zoo

output	distribution	

Note:	this	input	sequence	could	be	much	
longer,	but	this	slide	doesn’t	have	space!

hidden	states	

is	the	initial	hidden	state

2/1/1825

c1 c2 c3 c4

the students opened their

W2

A	RNN	Language	Model

the students opened their

books
laptops

a zoo

RNN Advantages:
• Can	process	any	length

input
• Model	size	doesn’t	

increase for	longer	input
• Computation	for	step	t

can	(in	theory)	use	
information	from many	
steps	back

• Weights	are	shared
across	timestepsà
representations	are	
shared

RNN	Disadvantages:
• Recurrent	computation	

is	slow
• In	practice,	difficult	to	

access	information	from	
many	steps	back	

More	on	
these	next	
week

2/1/1826

why is this good?

Sequence Processing

66

Feedforward
NN

RNN

CNN
Transformer

Computation
Cost
Long

Dependency

Position
Information

More

More

Less

Mamba: Linear-Time Sequence Modeling with Selective State
Spaces (https://arxiv.org/pdf/2312.00752)

https://arxiv.org/pdf/2312.00752

Be on the lookout for…

• Next lecture on backpropagation, which
allows us to actually train these networks to
make reasonable predictions

• After that, we’ll focus on attention
mechanisms and build our way to the
Transformer architecture, which is the most
popular composition function used today

67

