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Deadlines

e 2/17: Quiz 1 due

e 2/14: HW O due

e 2/14: Final project group assignments due
e 3/7: Project proposals due

e 5/9: Final project reports due

e 5/9: Last day to submit extra credit

 This Wednesday, we will have another talk
(https://nlp.cs.umass.edu/seminar/)




Project Rubric

e Rubric
e Acceptable for main NLP conferences: 100
* Acceptable for NLP workshops: 97

* Having one of the noticeable great attributes among Effort,
Novelty, Usefulness, and Implication: 95

* [s acomplete NLP scientific report: 90
 Have some findings but also contain some major weaknesses: 85
e (an see that students spend some effort on the project: 80
e Policy of one project for multiple courses
¢ T[he instructor of the other course needs to agree
e All your group members need to agree

e You need to indicate that in the final report for all courses
e Your effort needs to be proportional to the number of credits




Details are NOT important

The key Is generalization abllity
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https://arxiv.org/abs/2411.07279
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http://www.incompleteideas.net/IncIdeas/BitterLesson.html

Multiple Token Prediction
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Figure 3 | Illustration of our Multi-Token Prediction (MTP) implementation. We keep the
complete causal chain for the prediction of each token at each depth.

e DeepSeek V3 (https://arxiv.org/pdf/2412.19437v1)



https://arxiv.org/pdf/2412.19437v1

Please Ask Questions If
You don’t Understand



language model review

* Goal: compute the probability of a sentence or
sequence of words:

P(W) = P(W,,W,,W3,W,Wc..W, )

* Related task: probability of an upcoming word:

P(W5 Wy, Wy, W3,Wy)

* A model that computes either of these:
P(W) or P(w,|w,,w,..w. ) 1S called a language model or LM
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Testing data: its water does



n-gram models

| count(students opened their w;)
p(w;| students opened their) =

count(students opened their)



Problems with n-gram Language Models

Sparsity Problem 1

Problem: What if “students
opened their w;” never
occurred in data? Then w;
has probability O!

count(students opened their w;)

p(w;|students opened their) = ,
count(students opened their)



Problems with n-gram Language Models

Sparsity Problem 1

Problem: What if “students
opened their w;” never
occurred in data? Then w;
has probability O!

(Partial) Solution: Add small 6
»| to count for every w; € V.
This is called smoothing.

count(students opened their w;)

p(w;|students opened their) = ,
count(students opened their)



Problems with n-gram Language Models

Storage: Need to store count
for all possible n-grams. So
model size is O(exp(n)).

count(students opened their w;

P(w;|students opened their) =
(w;] P ) count(students opened their)

Increasing n makes model size huge!




another 1ssue:

e \\Ve treat all words / prefixes independently of
each other!

students opened their ___ Shouldn’t we share

pupils opened their ____ information across these

. semantically-similar prefixes?
scholars opened their / P

undergraduates opened their __
students turned the pages of their ____

students attentively perused their __



one-hot vectors

® n-gram models rely on the “bag-of-words”

assumption

® represent each word/n-gram as a vector of

zeros with a s

iNngle 1 identifying its index In

the vocabulary

vocabulary
|
hate
love
the
movie

film

movie = <0, 0, 0, 0, 1, O>
flm =<0,0,0,0,0, 1>

what are the issues
of representing a
word this way”?



all words are equally (dis)similar!

movie = <0, 0, 0, 0, 1, O>
flm =<0,0,0,0,0, 1>

dot product is zero!
these vectors are orthogonal

What we want is a representation space in which
words, phrases, sentences etc. that are semantically
similar also have similar representations!



Task -> Loss -> Model -> Optimization

o Jask:

* Predict the next token
Prior to 2018, only a few NLP researchers studied LMs

_ooking for ELMo's friends: Sentence-Level Pretraining
Beyond Language Modeling (https://openreview.net/
forum?id=BkI87h09FX)

® [ Oss:
Maximal Likelihood / Cross-entropy

e Model:
« Jables -> Neural Network -> Transformer

e (QOptimization:
e (Counting -> Gradient Descent



https://openreview.net/forum?id=Bkl87h09FX
https://openreview.net/forum?id=Bkl87h09FX

Enter neural networks!

Students opened their

v

neural language
model
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Enter neural networks!

Students opened their

This lecture: the
forward pass, or how
we compute a

prediction of the next
word given an existing ”e“ri‘n ':ggluage
neural language

model




Enter neural networks!

Students opened their

Next lecture: the
forward pass, or how backward pass, or
we compute a how we train a neural
prediction of the next language model on a
word given an existing training dataset using
neural language moese the backpropagation
model algorithm

This lecture:; the




Wwords as basic building blocks

e represent words with low-dimensional vectors called

embeddings ikolov et al., NIPS 2013)

man

o
.. “a woman
king X ‘
‘e
queen
S
Male-Female

walking

King =
[0.23, 1.3, -0.3, 0.43]
;ued
Verb tense

ussia

ada Ottawa
Japa
P Tokyo
Vietnam Hano
Chi Beij

Country-Capital



model [ "nuclear']

array([ 0.58108 , 0.ee825 , 1.0771 , 0.34879 , -0.34613 , 0.2
0.7843¢ , 0.11287 , 0.775%4 , 0.43579 , 0.18566 , -0.2
-0.53369 , 0.553578 , -0.0S8%e09, 1.1739 , 0.83277 , 1.2
-0.19772 , 0.41573 , 1.1255 , -0.31e34 , 0.22493 , -1.0
0.284e2 , -2.77089 , 0.80654 , 0.24704 , 0.64272 , 0.4
2.4058 , -1.155%2 , -1.3758 , -0.907%9% , 0.20109 , -0.2
0.107e9 , 0.29975 , -0.94256 , 0.26281 , -0.17048 , -1.1
0.99454 , -0.50074 , 1.0424 , 0.8123 , -0.20e06 , 1.9

-1.2817 -0.49774 1])

e Fach dimension Is not an attribute

e |f you force non-negative embeddings during
training, it will have meaning

- Linear combination of dimensions could
reveal attributes
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composing embeddings

* neural networks compose word embeddings into
vectors for phrases, sentences, and documents

neural students opened their
network (| 1 Bl )= § — Hidden State

l

Encoder



Predict the next word from
comMposed prefix representation

predict “books”

neural students opened their T

network ( § T B =0



How does this happen? Let’s work our
way backwards, starting with the
orediction of the next word

poredict “books”

|

25



How does this happen? Let’s work our
way backwards, starting with the
orediction of the next word

poredict “books”

|

Softmax layer:
convert a vector representation
INto a probability distribution
over the entire vocabulary

26



books

Probability distribution l laptops
over the entire l
vocabulary
I_ ]
< >
d 700
I L ow-dimensional

representation of
“students opened their”

27



P(w;| vector for "students opened their")

books
Probability distribution l laptops
over the entire l
vocabulary
I_ ]
< >
d Z00

I Low-dimensional
representation of
“students opened their”
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Let’s say our output vocabulary
consists of just four words: “books”,
*houses”, “lamps”, and “stamps”.

Low-dimensional
representation of
“students opened their”

29



Let’s say our output vocabulary
consists of just four words: “books”,
*houses”, “lamps”, and “stamps”.

2 S 2
voo\(\% 0¥ e\’&(&
<0.6,0.2,0.1, 0.1> \We want to get a
probability
distribution over

these four words

Low-dimensional
representation of
“students opened their”

30



X=<-2.3,09 04> Here's an example 3-d
i prefix vector

31



W is a weight matrix. It contains
parameters that we can update
to control the final probability
distribution of the next word

1.2, -0.3, 0.9
0.2, 0.4, -2.2
3.9, -1.9, 6.5
4.5, 2.2, -0.1

X =<-2.3 O 9, 0.4> Here’s an example 3-d
prefix vector

32



W is a weight matrix. It contains
parameters that we can update
to control the final probability
distribution of the next word

1.2, -0.3, 0.9 first, we'll project our
0.2, 0.4, -2.2 3-d prefix

3.9, -1.9, 6.5 representation to 4-d
45 22 -0.1 with a matrix-vector

product

X =<-2.3 O 9, 0.4> Here’s an example 3-d
| prefix vector

33



1.2, -0.3, 0.9

0.2, 0.4, -2.2
3.9, -1.9, 6.5
4.5, 2.2, -0.1

X =<-2.3,0.9, 54>

34

Intuition: each
dimension of x
corresponds to a
feature of the prefix



intuition: each row
of W contains
feature weights for a
corresponding word
INn the vocabulary

1.2, -0.3, 0.9
0.2, 0.4, -2.2
8.9, -1.9, 6.5
4.5, 2.2, -0.1

X =<-2.3 09, 54>

35

Intuition: each
dimension of x
corresponds to a
feature of the prefix



intuition: each row
of W contains
feature weights for a
corresponding word
INn the vocabulary

oF
12, -03, 09 Y
0.2, 0.4, -2.2 Lo

8.9, -1.9, 65 [
45, 22, -0.1 & 5

X =<-2.3 09, 54>

36

Intuition: each
dimension of x
corresponds to a
feature of the prefix



eSe

CAUTION: we can’t
intuition: each row easily interpret t
of W contains features! For exa

feature weights for a
corresponding word
INn the vocabulary

o

the second dime
of x likely does not
correspond to any

mple,

NSIoN

12 .03, 0.9 \© o linguistic property

S
0.2, 0.4, 2.2 (&>
8.9, -1.9, 6.5 \@@Q&
45, 22, -0.1 &

Intuition; each

dimension of x
X =<-2.3,09,04> | corresponds to a

feature of the prefix
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Wx =<1.8,-11.9, 12.9, -8.9>

1.2, -0.3, 0.9
0.2, 0.4, -2.2
3.9, -1.9, 6.5
4.5, 2.2, -0.1

How did we compute

this”? It’s just the dot

product of each row
of W with x!

X=<2.3 09, 54>

38



Wx =<1.8,-11.9, 12.9, -8.9>

1.2, -03, 0.9
W — 0.2,N\0.4\-2.2

3.9, -N9, 650
4.5, 2.2,\-0.1 J

How did we compute

this”? It’s just the dot

product of each row
of W with x!

X=<2.3 09, 54>
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How did we compute
Wx = <1.8,-11.9, 12.9, -8.9>  this? Just the dot product

of each row of W with x!

1.2, -03, 0.9 1.27-2.3

w_d 02704 -2.2.‘ + 6093**5049
8.9, -19, B5 oo
4.5, 2.2\:0.1 J

X=<2.3 09, 54>

40



Some LMs uses Wx + b,
but it doesn’t matter. Why?

Okay, so how do we go
from this 4-d vector to a
probabillity distribution?

Wx =<1.8,-11.9, 12.9, -8.9>

4]



We'll use the softmax function!

eWx

Y el \
j

PyTorch softmax function is
e WX is a vector more numerically stable

e [Wx]is dimension  of Wx
e each dimension j of the softmaxed

output represents the probability of
class

softmax(Wx) =

Wx =<1.8,-1.9, 2.9, -0.9> >|_ogit
softmax(Wx) = <0.24, 0.006, 0.73, 0.02>

42



We'll use the softmax function!

e Wx
softmax(Wx) =

.e[Wx]j
J

e \WXx s a vector
e [Wx]is dimension  of Wx
e each dimension j of the softmaxed

output represents the probability of
class

Wx =<1.8,-1.9, 2.9, -0.9>
softmax(Wx) = <0.24, 0.006, 0.73, 0.02>



We'll use the softmax function!

e Wx
softmax(Wx) =

e
J

e \WXx s a vector
e [Wx]is dimension  of Wx
e each dimension j of the softmaxed

output represents the probability of
class

Wx =<1.8, -1.9, 2.9, -0.9>

softmax(Wx) = <0.24, 0.006, 0.73, 0.02>

We'll see the softmax function over and over again this

semester, so be sure to understand it!
44



SO TO Sum up...

® (Given a d-dimensional vector
representation x of a prefix, we do the
following to predict the next word:

1. Project it to a V-dimensional vector using a
matrix-vector product (a.k.a. a “linear layer”, or a
“feedforward layer”), where V is the size of the
vocabulary

2. Apply the softmax function to transform the
resulting vector into a probability distribution

45



Matrix Factorization

n &
X O
C =
QO
e Sparse o O
observation Word2vec .
e Dense 4
prediction WT ______
e Similarity-based Ifonly 1 word 3
gengrglzaﬂon The good students
e Similar tokens/
context -> People turns on their
Similar He opens his .

embeddings —

: . . Students open their ? |2
e \Wide application L P
of linear operation ~ 'he students open .
e GPUs are so T
important e

4-gram stats
Neural Word Embedding as Implicit Matrix Factorization

(https://proceedings.neurips.cc/paper files/paper/2014/file/feab05aa91085b7a8012516bc3533958-Paper.pdf)

46
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Now that we know how to predict “books”,
let’s focus on how to compute the prefix
representation x in the first place!

neural students opened their

network ( § T B =0

47



Composition functions

Input: sequence of word emlbeddings corresponding to
the tokens of a given prefix

output: single vector

e [Element-wise functions
* e.g., Just sum up all of the word embeddings!
e (Concatenation
e [eed-forward neural networks
e (Convolutional neural networks
e Recurrent neural networks
e Transformers (our focus this semester)

48



Let’s look first at concatenation +
feedforward NN, an easy to understand but
imited composition function

49



A fixed-window neural Language Model

SO procior —Siarica—are——croen  the students  opened their
\ y,

Y

discard fixed window

50



A fixed-window neural Language Model

concatenated word embeddings

X = [cy; ;035 4]

words / one-hot vectors
C1, €5 €3, Cy

(0000 0000 0000 0000 |

T

the students  opened their
C1 Cr C3 Cy

51



A fixed-window neural Language Model

hidden layer
h = f(Wx)

concatenated word embeddings

X = [cy; ;035 4]

words / one-hot vectors
C1, €5 €3, Cy

(ec00e0000000)

N\

W,

(0000 0000 0000 0000 |

T

the students  opened their
C1 Cr C3 Cy
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A fixed-window neural Language Model

f1s a nonlinearity, or an element-wise nonlinear function.
The most commonly-used choice today Is the rectified
linear unit (RelLu), which is just ReLu(x) = max(O, X).
Other choices include tanh and sigmoid.

29



Activation Function Matter

GELU, RelLU, and Swish Activation Functions

1 — GELU

4 —— Swish (beta=0.5)

Activation

RelLU
—  Swish

Training Steps 65,536 524,288
FFNRerLu(baseline) | 1.997 (0.005) 1.677
FFNGELU 1.983 (0.005)  1.679
FFNswish 1.994 (0.003)  1.683
FFNgLu 1.982 (0.006) 1.663
FFNgilinear 1.960 (0.005) 1.648
FFNGEGLU 1.942 (0.004) 1.633
FFNgwiLu 1.944 (0.010) 1.636

- , ' - , FFNRoGLU 1.953 (0.003)  1.645

https://arxiv.org/pdf/2002.05202v1

54



A fixed-window neural Language Model

output distribution

y = softmax(W,h)

hidden layer
h = f(Wx)

concatenated word embeddings

X = [cy; ;035 4]

words / one-hot vectors
C1, €5 €3, Cy

books
i laptops

(e00000000000 |

N\

W,

(0000 0000 0000 0000 |

T

the students  opened their
C1 Cr C3 Cy
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how does this compare to a

This Is also called Feedforward NN
, MLP (multilayer perceptron), or fully connected network

normal n-gram model?

Improvements over n-gram LM.:

No sparsity problem
Model size is O(n) not O(exp(n))

Remaining problems:

Fixed window is too small
Enlarging window enlarges W
Window can never be large
enough!

Each C; uses different rows
of W. We don’t share weights
across the window.

(000000000000

N

W,

(0000 0000 0000 0000 |

T

the students opened their
C 1 C o) C 3 C A
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Recurrent Neural Networks!



A RNN Language Model

word embeddings
C1, €5 €3, Cy

(0000
0000}
(0000

{0000

the students opened their
C 3 C

&

)
S

~
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A RNN Language Model

ho)_
hidden states :
Y = fW,hED 4+ W e) O
O
h©O) is initial hidden statel —

@)

word embeddings 8

€1, Cp, €3, Cy O

——

the

€1

59
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A RNN Language Model

hidden states @ @
(1) (t—1) o W, @
e @ @
h©) is initial hidden state! — .
W,

) — —— )

@ O O O

word embeddings 8 O O O

@, O @,

€1, Cp, €3, Cy O o o o

e — ;J ~—

the students opened their
Cq Cy C3 Cy
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A RNN Language Model

hidden states
Y = fW,hED 4+ W e)
h©O) is initial hidden state!

word embeddings
C1, €2, €3, Cy

h,(0)

A

exxx

000®

h(2)

61
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A RNN Language Model

hidden states
Y = fW,hED 4+ W e)
h©O) is initial hidden state!

word embeddings
C1, €2, €3, Cy

h,(0)

A

Wi,

>

exxx

000®

h(2)

Wi,

>
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A RNN Language Model

hidden states
Y = fW,hED 4+ W e)
h©O) is initial hidden state!

word embeddings
C1, €2, €3, Cy

h,(0)

A

Wi,

>

exxx

000®

h(2)

Wi,

>
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94 = P(z®|the students opened their)

A RNN Language Model books

_L laptops

output distribution

$ = softmax(W,h")

o AN

A 200
W2
h)__ h) h(2) h(3) h(4)
hidden states @ @ O O O
” (1) o W, || W, |l@| Wi |@| Wr |@®
hD = fW,h"D + W) o o |le| e ‘@
e @ @ O @) @)
h©O) is initial hidden statel — .

O
O O ) O
word embeddings 8 O @) O
O @) @)
C15 €, €3,y O o o o
e — - —

the students opened their
C

o
[
%

S
W
~
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why is this good?

RNN Advantages:

Can process any length
input

Model size doesn’t
increase for longer input
Computation for step t
can (in theory) use
information from many
steps back

Weights are shared
across timesteps 2
representations are
shared

RNN Disadvantages:

Recurrent computation
is slow

In practice, difficult to
access information from

_many steps back

h,(0)

exxx

g(4) — P(:c(5) [the students opened their)

books
_L laptops
- aiis
?J A Z(;O
W2
h)__ h(2) h(3) h4)
@ O O O
W, 1@l WhL || Wh |@] Wh |@®
| @ O O O
O O O O
-
v wo e w
O @) @) O
O @) @) O
O ' @) | O - 10
@) O @) O
e — ;J ~—
the students opened their
C1 Cy C Cy
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Sequence Processing

Feedforward RNR

NN Transtormer

CNN

Computation
Cost

Long
Dependency

Position
Information

Mamba: Linear-Time Sequence Modeling with Selective State
Spaces (https://arxiv.org/pdf/2312.00752)
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https://arxiv.org/pdf/2312.00752

Be on the lookout for...

® Next lecture on backpropagation, which
allows us to actually train these networks to
make reasonable predictions

o After that, we'll focus on attention
mechanisms and build our way to the
Transformer architecture, which is the most
popular composition function used today
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