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Impending deadlines

• 2/14: HW 0 due 
• 2/14: Final project group assignments due 

• Google Form for project teams to be posted 
tonight 

• https://forms.gle/PKvJRxZkUMgFrkVG8 
• 3/7: Project proposals due
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NLP Model Evoluation
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Let’s say I want to train a model for sentiment analysis



5 4

Let’s say I want to train a model for sentiment analysis

In the past, I would simply train a supervised 
model on labeled sentiment examples (i.e., 

review text / score pairs from IMDB)

Sentiment 
model

Labeled 
reviews from 

IMDB

supervised  
training
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Let’s say I want to train a model for sentiment analysis

Nowadays, however, we use transfer learning:

A 
ton of 

unlabeled text

A huge self-
supervised 

model

step 1: 
unsupervised 

pretraining

step 1: 
self-supervised 

pretraining

Nowadays, however, we take advantage of transfer learning: 



7 6

Let’s say I want to train a model for sentiment analysis

Nowadays, however, we use transfer learning:

A 
ton of 

unlabeled text

A huge self-
supervised 

model

step 1: 
unsupervised 

pretraining

Sentiment-
specialized 

model

Labeled 
reviews from 

IMDB

step 2:  
supervised  
fine-tuning

step 1: 
self-supervised 

pretraining

Nowadays, however, we take advantage of transfer learning: 



8

Or just rely entirely on the self-supervised model via prompting…
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Let’s say I want to train a model for sentiment analysis

Nowadays, however, we use transfer learning:

A 
ton of 

unlabeled text

A huge self-
supervised 

model

step 1: 
unsupervised 

pretraining

step 2: 
prompting
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This lecture: language modeling, which forms the 
core of most self-supervised NLP approaches

A 
ton of 

unlabeled text

A huge self-
supervised 

model

step 1: 
unsupervised 

pretraining

Sentiment-
specialized 

model

Labeled 
reviews from 

IMDB

step 2:  
supervised  
fine-tuning

step 1: 
self-supervised 

pretraining
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Language models assign a 
probability to a piece of text

• why would we ever want to do this? 

• translation: 
• P(i flew to the movies) <<<<< P(i went to the movies) 

• speech recognition: 
• P(i saw a van) >>>>> P(eyes awe of an)
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Probabilistic Language Modeling
•Goal: compute the probability of a sentence or 
sequence of words: 
     P(W) = P(w1,w2,w3,w4,w5…wn) 

•Related task: probability of an upcoming word: 
      P(w5|w1,w2,w3,w4) 

•A model that computes either of these: 
      P(W)  or P(wn|w1,w2…wn-1)   is called a language model or LM
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How to compute P(W)

• How to compute this joint probability: 

•P(its, water, is, so, transparent, that) 

• Intuition: let’s rely on the Chain Rule of Probability



13 13

Reminder: The Chain Rule

•Recall the definition of conditional probabilities 
P(B|A) = P(A,B)/P(A)    Rewriting:   P(A,B) = P(A)P(B|A) 

•More variables: 
 P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C) 

•The Chain Rule in General 
  P(x1,x2,x3,…,xn) = P(x1)P(x2|x1)P(x3|x1,x2)…P(xn|x1,…,xn-1)
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The Chain Rule applied to compute joint 
probability of words in sentence

P(“its water is so transparent”) = 
 P(its) × P(water|its) ×  P(is|its water)  
  ×  P(so|its water is) ×  P(transparent|its water is so)
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The Chain Rule applied to compute joint 
probability of words in sentence

P(“its water is so transparent”) = 
 P(its) × P(water|its) ×  P(is|its water)  
  ×  P(so|its water is) ×  P(transparent|its water is so)

In HW0, we refer to 
this as a “prefix”}
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How to estimate these probabilities
• Could we just count and divide? 

•No!  Too many possible sentences! 
•We’ll never see enough data for estimating these

€ 

P(the | its water is so transparent that) =
Count(its water is so transparent that the)
Count(its water is so transparent that)
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P(its)

P(water|its)

P(river|its)

P(sky|its)

P(is|its,water)

P(was|its,water)

P(does|its,water)

P(its,water,is)

P(his)

100 20

40

40/100
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Markov Assumption

•Simplifying assumption: 
 
 
 
 

•Or maybe

€ 

P(the | its water is so transparent that) ≈ P(the | that)

€ 

P(the | its water is so transparent that) ≈ P(the | transparent that)

Andrei Markov (1856~1922)
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Markov Assumption

• In other words, we approximate each 
component in the product
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Simplest case: Unigram model

fifth, an, of, futures, the, an, incorporated, a, a, 
the, inflation, most, dollars, quarter, in, is, mass

thrift, did, eighty, said, hard, 'm, july, bullish

that, or, limited, the

Some automatically generated sentences from a unigram model:

How can we generate text 
from a language model?
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Decoding from an LM

22

A	fixed-window	neural	Language	Model

the students opened their

books
laptops

concatenated	word	embeddings

words	/	one-hot	vectors	

hidden	layer

a zoo

output	distribution	

2/1/1822

Prefix: “students opened their”

Probability distribution over 
next word
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Dan*Jurafsky

Approximating'Shakespeare

10 CHAPTER 4 • N-GRAMS

Imagine all the words of English covering the probability space between 0 and 1,
each word covering an interval proportional to its frequency. We choose a random
value between 0 and 1 and print the word whose interval includes this chosen value.
We continue choosing random numbers and generating words until we randomly
generate the sentence-final token </s>. We can use the same technique to generate
bigrams by first generating a random bigram that starts with <s> (according to its
bigram probability), then choosing a random bigram to follow (again, according to
its bigram probability), and so on.

To give an intuition for the increasing power of higher-order N-grams, Fig. 4.3
shows random sentences generated from unigram, bigram, trigram, and 4-gram
models trained on Shakespeare’s works.

1
–To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have

gram –Hill he late speaks; or! a more to leg less first you enter

2
–Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.

gram –What means, sir. I confess she? then all sorts, he is trim, captain.

3
–Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
’tis done.

gram –This shall forbid it should be branded, if renown made it empty.

4
–King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d in;

gram –It cannot be but so.
Figure 4.3 Eight sentences randomly generated from four N-grams computed from Shakespeare’s works. All
characters were mapped to lower-case and punctuation marks were treated as words. Output is hand-corrected
for capitalization to improve readability.

The longer the context on which we train the model, the more coherent the sen-
tences. In the unigram sentences, there is no coherent relation between words or any
sentence-final punctuation. The bigram sentences have some local word-to-word
coherence (especially if we consider that punctuation counts as a word). The tri-
gram and 4-gram sentences are beginning to look a lot like Shakespeare. Indeed, a
careful investigation of the 4-gram sentences shows that they look a little too much
like Shakespeare. The words It cannot be but so are directly from King John. This
is because, not to put the knock on Shakespeare, his oeuvre is not very large as
corpora go (N = 884,647,V = 29,066), and our N-gram probability matrices are
ridiculously sparse. There are V 2 = 844,000,000 possible bigrams alone, and the
number of possible 4-grams is V 4 = 7⇥1017. Thus, once the generator has chosen
the first 4-gram (It cannot be but), there are only five possible continuations (that, I,
he, thou, and so); indeed, for many 4-grams, there is only one continuation.

To get an idea of the dependence of a grammar on its training set, let’s look at an
N-gram grammar trained on a completely different corpus: the Wall Street Journal
(WSJ) newspaper. Shakespeare and the Wall Street Journal are both English, so
we might expect some overlap between our N-grams for the two genres. Fig. 4.4
shows sentences generated by unigram, bigram, and trigram grammars trained on
40 million words from WSJ.

Compare these examples to the pseudo-Shakespeare in Fig. 4.3. While superfi-
cially they both seem to model “English-like sentences”, there is obviously no over-



24
 22

N-gram models

•We can extend to trigrams, 4-grams, 5-grams 
• In general this is an insufficient model of language 
• because language has long-distance dependencies: 

“The computer which I had just put into the machine 
room on the fifth floor crashed.” 

•But we can often get away with N-gram models

In the next video, we will look at some 
models that can theoretically handle 

some of these longer-term dependencies
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• The Maximum Likelihood Estimate (MLE) 

- relative frequency based on the empirical counts on a 
training set

Estimating bigram probabilities

€ 

P(wi |wi−1) =
count(wi−1,wi )
count(wi−1)

€ 

P(wi |wi−1) =
c(wi−1,wi )
c(wi−1)

c — count
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An example

<s> I am Sam </s> 
<s> Sam I am </s> 
<s> I do not like green eggs and ham </s>

€ 

P(wi |wi−1) =
c(wi−1,wi )
c(wi−1)

MLE

???
???
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An example

<s> I am Sam </s> 
<s> Sam I am </s> 
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€ 
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An example

<s> I am Sam </s> 
<s> Sam I am </s> 
<s> I do not like green eggs and ham </s>

€ 

P(wi |wi−1) =
c(wi−1,wi )
c(wi−1)

MLE

Important terminology: a 
word type is a unique word 
in our vocabulary, while a 

token is an occurrence of a 
word type in a dataset.
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A bigger example:  
Berkeley Restaurant Project sentences

• can you tell me about any good cantonese restaurants 
close by 
•mid priced thai food is what i’m looking for 
• tell me about chez panisse 
• can you give me a listing of the kinds of food that are 
available 
• i’m looking for a good place to eat breakfast 
•when is caffe venezia open during the day
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Raw bigram counts

• Out of 9222 sentences

note: this is only a subset of 
the (much bigger) bigram 

count table
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Raw bigram probabilities
• Normalize by unigrams: 

• Result:

€ 

P(wi |wi−1) =
c(wi−1,wi )
c(wi−1)

MLE
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Bigram estimates of sentence probabilities

P(<s> I want english food </s>) = 
 P(I|<s>)    
  ×  P(want|I)   
 ×  P(english|want)    
 ×  P(food|english)    
 ×  P(</s>|food) 
       =  .000031

these probabilities get super tiny when we 
have longer inputs w/ more infrequent 
words… how can we get around this?
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logs to avoid underflow

 31

log∏p(wi |wi−1) = ∑ log p(wi |wi−1)

Example with unigram model on a sentiment dataset:

sentence: I love love love love love the movie
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logs to avoid underflow

 31

log∏p(wi |wi−1) = ∑ log p(wi |wi−1)

p(i) ⋅ p(love)5 ⋅ p(the) ⋅ p(movie) = 5.95374181e-7

log p(i) + 5 log p(love) + log p(the) + log p(movie)
= -14.3340757538

Example with unigram model on a sentiment dataset:

logs to avoid underflow

 31

log∏p(wi |wi−1) = ∑ log p(wi |wi−1)

p(i) ⋅ p(love)5 ⋅ p(the) ⋅ p(movie) = 5.95374181e-7

log p(i) + 5 log p(love) + log p(the) + log p(movie)
= -14.3340757538

Example with unigram model on a sentiment dataset:sentence: I love love love love love the movie
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What kinds of knowledge?

•P(english|want)  = .0011 
•P(chinese|want) =  .0065 
•P(to|want) = .66 
•P(eat | to) = .28 
•P(food | to) = 0 
•P(want | spend) = 0 
•P (i | <s>) = .25

grammar — infinitive verb

grammar

???

about the world



Task -> Loss -> Model -> Optimization

• Task:  
• Predict the next token  
• (even humans do this) 
• (Recommending the next product is the same problem) 

• Loss:  
• Markov + Maximal Likelihood / Cross-entropy  

• Model:  
• Tables -> Neural Network / Transformer 

• Optimization:  
• Counting -> Gradient Descent 

• Loss + Model + Optimization -> Algorithm 
• Why is decomposition useful? Tools 
• Please try to report these in your project 

36
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Evaluation: How good is our model?

• Does our language model prefer good sentences to bad ones? 
• Assign higher probability to “real” or “frequently 
observed” sentences  
• Than “ungrammatical” or “rarely observed” sentences? 

•We train parameters of our model on a training set. 
•We test the model’s performance on data we haven’t seen. 
• A test set is an unseen dataset that is different from our 
training set, totally unused. 
• An evaluation metric tells us how well our model does on 
the test set.
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Evaluation: How good is our model?

• The goal isn’t to pound out fake sentences! 
• Obviously, generated sentences get “better” as we 
increase the model order 
•More precisely: using maximum likelihood 
estimators, higher order is always better likelihood 
on training set, but not test set
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Example: I use a bunch of 
New York Times articles to 

build a bigram probability table 

 29

Raw bigram probabilities
• Normalize by unigrams: 

• Result:

€ 

P(wi |wi−1) =
c(wi−1,wi )
c(wi−1)

MLE

train
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Example: I use a bunch of 
New York Times articles to 

build a bigram probability table 

 29

Raw bigram probabilities
• Normalize by unigrams: 

• Result:

€ 

P(wi |wi−1) =
c(wi−1,wi )
c(wi−1)

MLE

Now I’m going to evaluate the 
probability of some heldout 
data using our bigram table

train

evaluate
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Example: I use a bunch of 
New York Times articles to 

build a bigram probability table 

 29

Raw bigram probabilities
• Normalize by unigrams: 

• Result:

€ 

P(wi |wi−1) =
c(wi−1,wi )
c(wi−1)

MLE

Now I’m going to evaluate the 
probability of some heldout 
data using our bigram table

train

evaluate

A good language model 
should assign a high 

probability to heldout text!
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Dan*Jurafsky

Training'on'the'test'set

• We*can’t*allow*test*sentences*into*the*training*set
• We*will*assign*it*an*artificially*high*probability*when*we*set*it*in*

the*test*set
• “Training*on*the*test*set”
• Bad*science!
• And*violates*the*honor*code

30

This advice is generally applicable to any 
downstream task! Do NOT do this in your final 

projects unless you want to lose a lot of points :)



Example Midterm Question
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Distance between training and testing
Large Small

Akyürek, Ekin, et al. "The surprising effectiveness of test-time training for abstract 
reasoning." arXiv preprint arXiv:2411.07279 (2024).(https://arxiv.org/abs/2411.07279)

SFT

👍

Pretraining  
(Small LM) 

SFT

👍

Pretraining  
(Large LM) 

SFT

👍

Test Time 
Training

👍

Training on 
Testing data

👎 ?
The key is generalization ability

https://arxiv.org/abs/2411.07279
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Intuition of Perplexity

• The Shannon Game: 
• How well can we predict the next word? 

• Unigrams are terrible at this game.  (Why?) 

• A better model of a text 
•  is one which assigns a higher probability to the word that actually occurs 
•  compute per word log likelihood  

(M words, m test sentence si)

I always order pizza with cheese and ____ 

The 33rd President of the US was ____ 

I saw a ____

mushrooms 0.1 

pepperoni 0.1 

anchovies 0.01 

…. 
fried rice 0.0001 

…. 
and 1e-100

Claude Shannon  
(1916~2001)
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Dan*Jurafsky

Perplexity

Perplexity*is*the*inverse*probability*of*
the*test*set,*normalized*by*the*number*
of*words:

Chain*rule:

For*bigrams:

Minimizing'perplexity'is'the'same'as'maximizing'probability

The*best*language*model*is*one*that*best*predicts*an*unseen*test*set
• Gives*the*highest*P(sentence)

PP(W ) = P(w1w2...wN )
−

1
N

           =
1

P(w1w2...wN )
N
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Dan*Jurafsky

Perplexity'as'branching'factor

• Let’s*suppose*a*sentence*consisting*of*random*digits
• What*is*the*perplexity*of*this*sentence*according*to*a*model*

that*assign*P=1/10*to*each*digit?
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P(its)

P(water|its)

P(river|its)

P(sky|its)

P(is|its,water)

P(was|its,water)

P(does|its,water)

P(his)



In practice, we use log probs
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PP(W) = exp( −
1
N

N

∑
i

log p(wi |w<i)



In practice, we use log probs
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PP(W) = exp( −
1
N

N

∑
i

log p(wi |w<i)

Perplexity is the 
exponentiated token-level 

negative log-likelihood
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Lower perplexity = better model

•Training 38 million words, test 1.5 million 
words, Wall Street Journal

N-gram 
Order

Unigram Bigram Trigram

Perplexity 962 170 109
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Dan*Jurafsky

Shakespeare'as'corpus

• N=884,647*tokens,*V=29,066
• Shakespeare*produced*300,000*bigram*types*
out*of*V2=*844*million*possible*bigrams.
• So*99.96%*of*the*possible*bigrams*were*never*seen*
(have*zero*entries*in*the*table)

• Quadrigrams worse:***What's*coming*out*looks*
like*Shakespeare*because*it*is Shakespeare
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Dan*Jurafsky

Zeros
• Training*set:

…*denied*the*allegations
…*denied*the*reports
…*denied*the*claims
…*denied*the*request

P(“offer”*|*denied*the)*=*0

• Test*set
…*denied*the*offer
…*denied*the*loan
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Dan*Jurafsky

The(intuition(of(smoothing((from(Dan(Klein)

• When*we*have*sparse*statistics:

• Steal*probability*mass*to*generalize*better

P(w*|*denied*the)
3*allegations
2*reports
1*claims
1*request
7*total

P(w*|*denied*the)
2.5*allegations
1.5*reports
0.5*claims
0.5*request
2*other
7*total
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Why n-gram LM still matters?

• Compared to neural LMs 
• No hallucination problem 

• Accurate when the n is small 
• Tracible sources 

• Fast and could work under low resources 
• auto-complete

54
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You	use	Language	Models	every	day!

2/1/188



Infini-gram: a state of the art 
n-gram model on 1.4T tokens

https://huggingface.co/spaces/liujch1998/infini-gram

https://arxiv.org/pdf/2401.17377.pdf

Liu et al., 2024. “Infini-gram: Scaling Unbounded n-gram Language Models to a Trillion Tokens”

https://huggingface.co/spaces/liujch1998/infini-gram
https://arxiv.org/pdf/2401.17377.pdf


N-gram LM application

Lu, Ximing, et al. "AI as Humanity's Salieri: Quantifying Linguistic Creativity of Language Models via Systematic Attribution of Machine Text against Web Text." arXiv preprint 
arXiv:2410.04265 (2024).

https://arxiv.org/abs/2410.04265

Great example of  
NLP!=LLM 

Do not assert that  
something is outdated  

too quickly



Why do we predict the next word
• Why from left to right? 

• Will introduce masked language modeling 
• Some works try other orders, but hard to be significantly better 

• Arrows of Time for Large Language Models (https://arxiv.org/abs/
2401.17505) 

• Why not predict multiple tokens? 
• Dependency of words 

• Large Concept Models: Language Modeling in a Sentence 
Representation Space 

• (https://arxiv.org/abs/2412.08821) 
• Better & Faster Large Language Models via Multi-token Prediction 

(https://arxiv.org/pdf/2404.19737) 
• Predicting the next sentence (not word) in large language models: 

What model-brain alignment tells us about discourse comprehension 
(https://www.science.org/doi/10.1126/sciadv.adn7744)
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https://arxiv.org/abs/2412.08821
https://www.science.org/doi/10.1126/sciadv.adn7744

