
Performance Prediction for Non-FactoidQuestion Answering
Helia Hashemi, Hamed Zamani, and W. Bruce Croft

Center for Intelligent Information Retrieval
University of Massachusetts Amherst

Amherst, MA 01003
{hhashemi,zamani,croft}@cs.umass.edu

ABSTRACT
Estimating the quality of a result list, often referred to as query
performance prediction (QPP), is a challenging and important task
in information retrieval. It can be used as feedback to users, search
engines, and system administrators. Although predicting the per-
formance of retrieval models has been extensively studied for the
ad-hoc retrieval task, the effectiveness of performance prediction
methods for question answering (QA) systems is relatively unstud-
ied. The short length of answers, the dominance of neural models
in QA, and the re-ranking nature of most QA systems make per-
formance prediction for QA a unique, important, and technically
interesting task. In this paper, we introduce and motivate the task
of performance prediction for non-factoid question answering and
propose a neural performance predictor for this task. Our experi-
ments on two recent datasets demonstrate that the proposed model
outperforms competitive baselines in all settings.
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1 INTRODUCTION
The goal of query performance prediction (QPP) in information
retrieval (IR) is predicting the effectiveness of a retrieval model for a
given query [1]. QPP has been extensively explored in the context of
ad-hoc retrieval [11, 13, 16, 18, 22, 23] andweb search.We argue that
QPP for QA is fundamentally different fromQPP for ad-hoc retrieval.
This is due to the shorter length of answers, the dominance of neural
models in QA, and the re-ranking nature of most QA systems.1
These fundamental differences and the important role of this task in
current information access systems have motivated us to introduce
the task of predicting the performance of retrieval-based question
answering systems,2 which is relatively unstudied. In particular, we
study the task of performance prediction for non-factoid question
1See Section 3.1 for in detail differences of QPP for QA and ad-hoc retrieval.
2Other QA settings, such as machine reading comprehension, that involve selecting a
specific short span within a sentence, selecting answer from predefined choices, or
predicting a blanked-out word of a sentence, are not the focus of this work.
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answering. Non-factoid questions are considered as open-ended
questions and require complex answers, like descriptions, opinions,
or explanations. We believe this type of questions have a pivotal
role in question answering systems, since their technologies are
not as mature as factoid questions, which seek for precise facts.

We further propose a neural network architecture for predicting
the performance of non-factoid QA systems. Our model utilizes
retrieval scores and the contents of the question and the top ranked
answers to estimate the performance of the result list. In addition,
unlike most existing performance predictors, our model consists of
a natural language understanding component by making use of bidi-
rectional encoder representations from Transformers (BERT) [5].

We evaluate the proposed model on two recent non-factoid QA
datasets that contain reasonable numbers of queries for training
neural models: (1) WikiPassageQA [2] that consists of 3332 training
questions with an average of 1.7 relevant passages from Wikipedia.
(2) ANTIQUE [6] which is a non-factoid dataset with 2,426 training
questions collected from a community question answering website.
Our experiments suggest that the proposed model outperforms
competitive baselines in predicting the performance of various
retrieval models, including neural ranking models.

2 RELATEDWORK
Query performance prediction, also known as quality estimation
and query difficulty prediction, has been widely studied for ad-
hoc retrieval and web search [1, 3, 7, 13, 16–18, 23]. The task of
query performance prediction is defined as predicting the retrieval
effectiveness of a search engine given an issued query with no
implicit or explicit relevance information.

Query performance prediction approaches can be partitioned
into two disjoint sets: pre-retrieval and post-retrieval approaches.
Pre-retrieval QPP approaches predict the performance of each query
based on the content and the context of the query in addition to
the corpus statistics. Pre-retrieval predictors are often derived from
linguistic or statistical information. Part-of-speech tags, as well as
syntactic and morphological features of query terms are among the
linguistic features used for query performance prediction. Inverse
document frequency [3] and average query term coherence [8] are
examples of statistical information used for this task. Hauff et. al [7]
provided a through overview of the pre-retrieval QPP approaches.

Alternately, post-retrieval QPP approaches estimate query per-
formance by analyzing the result list returned by the retrieval en-
gine in response to the query. Carmel and Yom-Tov [1] categorized
post-retrieval predictors into the following three categories. (1)
Clarity-based approaches [3] estimate the query performance by
measuring the coherence (clarity) of the result list with respect to
the collection. (2) Robustness-based approaches [23] predict the
query performance by estimating the robustness of the result list.
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(3) A variety of post-retrieval approaches predict the query perfor-
mance by analyzing the retrieval score distribution [11, 18, 23], and
are commonly referred to as score-based approaches.

There is also a line of research that combines multiple predictors
from multiple categories, e.g., the utility estimation framework [16].

Krikon et al. [9] studied QPP in the context of passage retrieval
with a focus on factoid questions. In more detail, they estimated
the performance of passage retrieval as the first retrieval phase in
factoid QA. However, in this paper, we focus on non-factoid QA
which is fundamentally different [21]. We study this method as
a baseline. In addition, Roitman [13] proposed a QPP method for
ad-hoc retrieval by utilizing passage information.

Liu et al.[10] addressed the question difficulty estimation in
community question answering websites based on the skills of
users. Their approach is independent of the question and answer
contents, and is orthogonal to our work. Shah and Pomerantz [15]
predicted the quality of an answer in response to a question in a
CQA system in terms of 13 criteria, and users’ profile data. Unlike
this work which focused on measuring the correlation between
user satisfaction and an answer’s quality criteria like politeness,
readability, conciseness, etc., our work focuses on predicting the
performance of a result list in response to a question.

3 MOTIVATION
Similar to ad-hoc retrieval, accurate and real-time performance pre-
dictors could potentially be used in triggering a specific action in
the retrieval system, such as selecting an index traversal algorithm
at query time, or selecting the best variant from multiple query
reformulations [22]. In addition, we believe performance predic-
tion for non-factoid questions can potentially play a vital role in
the current modern information access systems. The emergence
of new generation of search interfaces including conversational
search systems and intelligent assistant services (e.g., Siri, Cortana,
and Google assistant) intensifies the importance of an effective
and efficient performance prediction method. To elaborate more
on these examples, consider a conversational search scenario in
which the system must decide whether it can address the user’s
information need, or go through follow up and clarifying questions
to get a better understanding of the information need. This is even
more important for the systems with a voice-only interface, such
as Amazon’s Alexa. Lack of features such as auto correction, auto
completion, and different levels of English fluency among users,
all in all, introduce new obstacles for query understanding. On the
other hand, since the output of QA systems, given their voice or
text interface, is mostly a single answer that should address the
user’s information need leaves almost no room for error. This is
where an accurate QPP method could have a significant impact.

3.1 QPP for Ad-hoc Retrieval vs. QA
We claim that the task of performance prediction in question an-
swering is fundamentally different from performance prediction in
ad-hoc retrieval and web search, because:

• QPP methods in ad-hoc have been mostly designed to predict
recall-oriented metrics. However, in QA systems the main metrics
are precision-oriented, e.g., mean reciprocal rank.
• A number of state-of-the-art QPP methods for ad-hoc retrieval
are based on term distribution in the top retrieved documents, e.g.,

[3, 23]. Unlike ad-hoc document retrieval, in QA, candidate answers
are often short, e.g., sentence-level or passage-level, and they often
have a little term overlap with each other as well as the question.
• The notion of relevance in QA is different from ad-hoc retrieval.
In QA systems a relevant passage or sentence must directly answer
the question, however in ad-hoc retrieval, annotations are done
based on topical relevance. Many existing QPP methods for ad-hoc
retrieval, e.g., [3, 23], distinguish topically similar documents from
off-topic documents, which cannot perform effectively for QA.
• Many existing QPPmethods predict query performance using the
retrieval scores assigned to the top retrieved documents. However,
given the dominance of neural network approaches in QA systems,
the scale and distribution of retrieval scores returned by different
neural models are significantly different. This may have a major
impact on the effectiveness and robustness of score-based methods.

4 METHODOLOGY
In this section, we introduce NQA-QPP, our neural model for pre-
dicting the performance of non-factoid question answering. The
model utilizes both retrieval scores and question/answer text to
estimate the performance of a question answering system. Similar
to [22], we design a component-based neural model as follows:
Component I: score-based component. The first component
learns a representation from the scores produced by the QA system
for each candidate answer. Let R be the retrieval scores for the top k
retrieved answers in descending order. Inspired by the score-based
QPP approaches that successfully utilizes the standard deviation of
retrieval scores, such as [11, 18], we create a vector S with the size
of k − 1 such that S[i] = stdev(R[1 : i + 1]), where stdev denotes the
standard deviation. In other words, the ith element of S represents
the standard deviation of the retrieval scores from the beginning
to the rank i + 1. We finally obtain a d-dimensional representation
from the retrieval scores asϕI (R̂ |S), where R̂ is the retrieval scores R
normalized using z-score normalization, and | means concatenation.
The function ϕI : R2k−1 → d is a fully-connected feed-forward
network with two hidden layers. Details of the network architecture
are mentioned later in this section.
Component II: question-only component. The second com-
ponent learns a representation suitable for query performance
prediction from the question content, without having access to
the retrieval list. This is motivated by pre-retrieval QPP methods,
e.g., [7, 8]. To model this component, we use Bidirectional En-
coder Representations from Transformers (BERT) [5] that recently
achieved state-of-the-art performance in a wide range of natural
language understanding tasks. BERT provides token-level represen-
tation for each sentence or a pair of sentences. The representation
learned for the first token by BERT (i.e., [CLS]) can be seen as a
representation for the whole sentence. We feed this representa-
tion to a fully-connected network as follows: ϕI I (ϕBERT[CLS](q)), where

ϕI I : Rl → d is a fully-connected network and l denote the rep-
resentation dimensionality of BERT. We use the pre-trained base
model in which l = 768.3

Component III: question-answer component. The third com-
ponent takes the content of the top k retrieved answers and learns

3Pre-trained BERT models: https://github.com/google-research/bert.
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Table 1: Data statistics.

WikiPassageQA ANTIQUE

# training/validation/test queries 3332/417/416 2183/243/200
Average qrel per query 1.7 8.5

a d-dimensional representation. To maintain our consistency, we
again use BERT for representing each question-answer pair. In more
detail, our third component is as follows:

ϕI I I

(
ϕ ′(ϕBERT[CLS](q |a1)) | ϕ

′(ϕBERT[CLS](q |a2)) | · · · | ϕ
′(ϕBERT[CLS](q |ak ))

)
where ϕ ′ and ϕI I I are two fully-connected networks. In fact, ϕI I I
takes the representation for all top k answers.
Aggregation. We aggregate the representations learned by each
of the above components as follows:

ψ (ϕI |R̂ |S |ϕI I |ϕ
BERT
[CLS](q)|ϕI I I |ϕI · ϕI I · ϕI I I )

whereψ is a fully-connected network that produces a single real
value. In addition to the output of individual components,ψ also
takes their inputs (except for the question-answer component), and
the dot product of the component outputs.

In all of the mentioned feed-forward networks, we use ReLU as
the hidden layer activation. We employ dropout in all hidden layers
to avoid overfitting. We train NQA-QPP using maximum likelihood
maximization, which is equivalent to a cross-entropy loss.

5 EXPERIMENTS
Data. We evaluate our models on the following non-factoid QA
datasets. (1) The WikiPassageQA dataset [2] was created using
the Amazon’s Mechanical Turk platform. Crowd workers were
asked to create non-factoid questions based on a Wikipedia article,
and indicate the location of their respective answer passages within
the document. (2) ANTIQUE [6] is a dataset that have recently
created through crowdsourcing. ANTIQUE is a sample of non-
factoid questions from Yahoo! Webscope L6, which is a community
question answering data.4 Table 1 shows statistics of datasets.
Experimental Setup. We implemented our model using Tensor-
Flow. In all experiments, the network parameters were optimized us-
ing the Adam optimizer. For hyper-parameter optimization, we per-
formed grid search, and chose the hyper-parameters based on the
Pearson’s correlation on the validation set. The learning rate was se-
lected from {1 × 10−5, 5 × 10−4, 1 × 10−4, 5 × 10−4, 1 × 10−3}. The
batch size was selected from {32, 64, 128}. The dropout keep proba-
bility was selected from {0.5, 0.8, 0.9, 1.0}. The number of hidden
layers in the dense network and their output sizes were selected
from {1, 2} and {10, 20, 50, 100}, respectively.
Evaluation Metrics. To evaluate the models, we compute the
correlation between the predicted performances and the actual
query performance in terms of reciprocal rank (RR). Following
prior work on QPP [3, 16, 18, 22, 23], we use Pearson’s correlation
(P-ρ), Spearman’s correlation (S-ρ), and Kendall’s correlation (K-τ )
coefficients. P-ρ is a linear correlation metric that is sensitive to the
actual predicted performance values; while, S-ρ and K-τ are rank-
based correlation metrics that only take the order of the questions
into account. The correlations with a p-value of less than 0.01 and
0.001 are marked with † and ‡, respectively.

4The data is publicly available at https://ciir.cs.umass.edu/downloads/Antique.
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Figure 1: Learning curve for NQA-QPP on WikiPassageQA.

Results andDiscussion. Asmentioned earlier in Section 1, we are
not aware of any performance prediction method for non-factoid
question answering. Therefore, we compare our method against sev-
eral query performance prediction methods that produce competi-
tive results for ad-hoc and passage retrieval. Our baselines ranges
from score-based models, i.e., σk [11], NQC [18], NQC.NEQT [9],
WIG [23], SMV [19], and RSD [14], to clarity-based models, i.e.,
Clarity [3], to robustness-based models, i.e., QF [23], to combining
models, i.e., UEF [16], LTRoq [12], and NeuralQPP [22]. The last
baseline is a state-of-the-art QPP method for ad-hoc retrieval based
on neural network. Please note that we tune the hyper-parameters
of all the baselines using the same procedure taken for our model.
We use WIG and Pearson’s correlation to implement UEF.
Note that NQC, SMV, and WIG require a normalization factor. Pre-
vious work on QPP for ad-hoc retrieval concatenated all the doc-
uments in the collection and computed its score by the retrieval
model, which is not possible for most neural retrieval models. There-
fore, we compute this normalization factor for the neural models as
the average retrieval score of all candidate answers for the question.
The traditional approach is used for BM25.

In our first set of experiments, we consider three retrieval model:
BM25 and two neural rankingmodels including aNMM (an attention-
based QA models) [20] and Conv-KNRM [4]. Table 2 reports the
QPP performance for the proposed method and the baselines. The
neural models re-rank 100 answers retrieved by BM25. According
to the results, NQA-QPP outperforms all the baselines in all set-
tings. Interestingly, the score-based baselines perform poorly in
predicting the performance of Conv-KNRM. This happens because
the scale and distribution of the scores produced by neural models
are different. Predicting the performance of BM25 is still easier
for NQA-QPP, compared to the other retrieval models. Note that
NeuralQPP is developed for ad-hoc retrieval and is based on the
bag-of-words assumption, however, NQA-QPP takes advantage of
a more sophisticated language model representation.

Table 3 shows the performance of NQA-QPP for predicting dif-
ferent ranking metrics. For the sake of space, we only focus on QPP
for BM25 on WikiPassageQA. As shown in the table, NQA-QPP is
robust in predicting different ranking metrics. The only metric with
significant drop is P@10 and the reason is that there is on average
only 1.7 relevant passages per query in the dataset.

Figure 1 plots the learning curve for NQA-QPP on predicting the
performance of BM25 on WikiPassageQA. According to the plot,
the performance of NQA-QPP is not yet saturated. This suggests
that our model can perform better given more training data.

https://ciir.cs.umass.edu/downloads/Antique


Table 2: The results for predicting the performance of different retrieval models, in terms of reciprocal rank (RR).

QPP BM25 aNMM Conv-KNRM

Method P-ρ S-ρ K-τ P-ρ S-ρ K-τ P-ρ S-ρ K-τ

W
ik
iP
as
sa
ge

Q
A
D
at
as
et

σk 0.4573‡ 0.5218‡ 0.3822‡ 0.2481‡ 0.1852‡ 0.1286‡ 0.0335 0.0447 0.0299
NQC 0.4711‡ 0.5179‡ 0.3768‡ 0.0466 0.0286 0.0180 0.0158 0.0452 0.0302
WIG 0.1421† 0.2525‡ 0.1784‡ 0.1537 0.1724 0.1201 0.0181 0.0777 0.0535
SMV 0.4601‡ 0.5190‡ 0.3776‡ 0.0351 0.0617 0.0414 0.0060 0.0505 0.0323
RSD 0.4672‡ 0.5337‡ 0.4005‡ 0.2516‡ 0.1946‡ 0.1320‡ 0.0219 0.0381 0.0401
Clarity 0.4129‡ 0.4204‡ 0.3011‡ 0.2764‡ 0.3463‡ 0.2395‡ 0.1264† 0.1333† 0.0892†
QF 0.0194 0.0389 0.0308 0.0876 0.0700 0.0509 0.0588 0.1055 0.0733
NQC.NEQT 0.4811‡ 0.5281‡ 0.3821‡ 0.0921 0.0514 0.0191 0.0321 0.0631 0.0758
UEF 0.2109‡ 0.3356‡ 0.2361‡ 0.2696‡ 0.3698‡ 0.2545‡ 0.1843‡ 0.2286‡ 0.1465‡

LTRoq 0.4921‡ 0.5088‡ 0.3472‡ 0.2749‡ 0.2112‡ 0.1973‡ 0.1621‡ 0.2371‡ 0.1281‡

NeuralQPP 0.5112‡ 0.4980‡ 0.2801‡ 0.2411‡ 0.1819‡ 0.1255‡ 0.1714‡ 0.2104‡ 0.1359‡

NQA-QPP 0.5854‡ 0.5791‡ 0.4402‡ 0.3436‡ 0.3731‡ 0.2640‡ 0.2069‡ 0.2490‡ 0.1671‡

A
N
T
IQ

U
E
D
at
as
et

σk 0.0966 0.2889‡ 0.2120‡ 0.2777‡ 0.2624‡ 0.1852‡ -0.0455 -0.0236 -0.0162
NQC 0.2224† 0.2693‡ 0.1949‡ 0.0450 -0.0007 0.0018 -0.0021 0.0175 0.0143
WIG 0.1456 0.2258† 0.1658† 0.0461 0.1206 0.0822 0.0143 0.1312 0.0899
SMV 0.1557 0.2265† 0.1646† 0.0382 -0.0038 -0.0018 -0.0207 -0.0239 -0.0135
RSD 0.1044 0.3041‡ 0.2517‡ 0.2816‡ 0.2773‡ 0.2146‡ 0.0043 0.0176 0.0081
Clarity 0.1300 0.0780 0.0561 0.2196‡ 0.2559‡ 0.1771‡ 0.0493 0.0807 0.0547
QF 0.0025 0.0570 0.0425 0.1771† 0.0528 0.0426 -0.0178 -0.0866 -0.0658
NQC.NEQT 0.2315‡ 0.2800‡ 0.1891‡ 0.0504 0.0031 0.0116 0.0513 0.0358 0.0423
UEF 0.1649 0.3351 0.2421 0.3230‡ 0.3007‡ 0.2293‡ 0.1304 0.1119 0.0980
LTRoq 0.2810‡ 0.2992‡ 0.2572‡ 0.3346‡ 0.3125‡ 0.2917‡ 0.1915‡ 0.1621‡ 0.1348‡

NeuralQPP 0.2711‡ 0.3111‡ 0.2384‡ 0.3211‡ 0.2968‡ 0.2263‡ 0.1644‡ 0.1512‡ 0.1031‡

NQA-QPP 0.4118‡ 0.4428‡ 0.3291‡ 0.3708‡ 0.4202‡ 0.3013‡ 0.2736‡ 0.2446† 0.1757†

Table 3: Results of NQA-QPP for predicting the performance
in terms of different ranking metrics.

Metric RR AP P@1 P@3 P@10

P-ρ 0.5854‡ 0.5327‡ 0.5508‡ 0.5273‡ 0.4136‡

S-ρ 0.5791‡ 0.5358‡ 0.5295‡ 0.5434‡ 0.4660‡

K-τ 0.4402‡ 0.3920‡ 0.4402‡ 0.4512‡ 0.3738‡

6 CONCLUSIONS
In this paper, we introduced and motivated the task of performance
prediction for non-factoid question answering. Furthermore, we
proposed NQA-QPP, a neural model for predicting the performance
of a retrieval model for non-factoid questions. We conducted our
experiments on two diverse non-factoid QA datasets. Our results
showed that NQA-QPP outperforms all the baselines in different
retrieval settings. The learning curve demonstrated the potential
of the model to perform better given more training data.
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