CS 520
Theory and Practice of Software Engineering
Spring 2021

Reasoning about programs

April 29, 2021
Updates about assignments

• Homework 2 grades and a possible solution were posted yesterday.
• In-class exercise 4 about Model Inference will be graded over the weekend.
• The final project presentations and demonstrations will be held during next Tuesday’s lecture 5/4.
• The Week 12 questionnaire about Automated Theorem Proving is due Friday night. There will also be a Week 13 questionnaire about the final projects.
What is Software Engineering?

More than just writing code
The complete process of specifying, designing, developing, analyzing, deploying, and maintaining a software system.

Common Software Engineering tasks include:

- Requirements engineering
- Software architecture and design
- Programming
- Verification & Validation
- Debugging
What is Software Engineering?

More than just writing code
The complete process of specifying, designing, developing, analyzing, deploying, and maintaining a software system.

Common Software Engineering tasks include:

- Requirements engineering
- Software architecture and design
- Programming
- Verification & Validation
- Debugging
Ways to verify your code

• The hard way:
 – Make up some inputs for a given system
 – If that system doesn't crash, ship it
 – When the system fails in the field, attempt to debug

• The easier way:
 – Manually reason about possible system behavior and desired outcomes (e.g., code review)
 – Automate that reasoning (e.g., testing, model checking)
Another way to verify your code (that can be easier)

• Prove that the system does what you want
 – Representation (rep) invariants are preserved
 – Implementation satisfies specification

• Proof can be formal (e.g., *theorem prover*) or informal (today, will be informal)

• Complementary to manual and automated reasoning (e.g., *code review, testing, model checking*)
Reasoning about code

- Determine what facts are true during system execution, e.g.,
 - \(x > 0 \)
 - for all nodes \(n \): \(n.next.previous == n \)
 - array \(a \) is sorted
 - \(x + y == z \)
 - if \(x != \text{null} \), then \(x.a > x.b \)
Possible uses of such facts

• Ensure code is correct (via reasoning or testing)
• Understand why code is incorrect
int y = 100;
for (int x = 0; x < 100; x++)
 y--;
int y = 100;
for (int x = 0; x < 100; x++)
 y--;

What is true about the above?
• Before loop: x = 0, y = 100
• During loop: Each iteration x increases by 1 and y decreases by 1
• After loop: x = 100, y = 0
Forward reasoning

- **Key idea:**
 - You know what is true before running the code. **What is true after running the code?**
 - Given a precondition, what is the postcondition?

- **Possible uses:**
 Rep invariant holds before running code
 Does it still hold after running code?

- **Example:**
 // precondition: x is even
 x = x + 3;
 y = 2x;
 x = 5;
 // postcondition: ??
Forward reasoning example

// precondition: x is even
x = x + 3;
// ??

y = 2x;
// ??

x = 5;
// postcondition: ??
Forward reasoning example

// precondition: x is even
x = x + 3;
// x is odd
y = 2x;
// ??

x = 5;
// postcondition: ??
Forward reasoning example

// precondition: x is even
x = x + 3;

// x is odd
y = 2x;

// y is even and thus divisible by 2 (but not by 4)
x = 5;

// postcondition: ??
Forward reasoning example

// precondition: x is even
x = x + 3;

// x is odd
y = 2x;

// y is even and thus divisible by 2 (but not by 4)
x = 5;

// postcondition: x = 5, y is divisible by 2 (but not by 4)
Another forward reasoning example

assert \(x \geq 0; \)
\(i = x; \)
\(// \ x \geq 0 \ & \ i = x \)
\(z = 0; \)
\(// \ x \geq 0 \ & \ i = x \ & \ z = 0 \)
while (i != 0) {
 \(z = z + 1; \)
 \(i = i - 1; \)
}
\(// \ x \geq 0 \ & \ i = 0 \ & \ z = x \)
assert \(x == z; \)
Another forward reasoning example

```c
assert x >= 0;
i = x;
   // x ≥ 0 & i = x
z = 0;
   // x ≥ 0 & i = x & z = 0
while (i != 0) {
    z = z + 1;
    i = i - 1;
}
   // x ≥ 0 & i = 0 & z = x
assert x == z;
```

⇐ What property holds here? $i + z = x$
⇐ What property holds here? $i + z = x$
⇐ What property holds here? $i + z = x$
Advantages of forward reasoning

• More intuitive for most people
 – Helps understand what will happen (simulates the code)
 – Introduces facts that may be irrelevant to goal
 Set of current facts may get large
 – Takes longer to realize that the task is hopeless
Backward reasoning

• **Key idea:**
 – You know what you want to be true after running the code. **What must be true beforehand in order to ensure that?**
 – Given a postcondition, what is the corresponding precondition?

• **Possible uses:**
 (Re-)establish rep invariant at method exit: what’s required?
 Reproduce a bug: what must the input have been?

• **Example:**
  ```java
  // precondition: ??
  x = x + 3;
  y = 2x;
  x = 5;
  // postcondition: y > x
  ```
Backward reasoning example

// precondition: ??
x = x + 3;
// ??
y = 2x;
// ??
x = 5;
// postcondition: y > x
Backward reasoning example

// precondition: ??
x = x + 3;

// ??
y = 2x;

// y > 5
x = 5;

// postcondition: y > x
Backward reasoning example

// precondition: ??
x = x + 3;
// x >= 3
y = 2x;
// y > 5
x = 5;
// postcondition: y > x
Backward reasoning example

// precondition: x >= 0
x = x + 3;
// x >= 3
y = 2x;
// y > 5
x = 5;
// postcondition: y > x
Advantages of backward reasoning

- Usually more helpful
 - Helps you understand what should happen
 - Given a specific goal, indicates how to achieve it
 - Given an error, gives a test case that exposes it
Technique for backward reasoning

- Compute the weakest precondition (wp)
- There is a wp rule for each statement in the programming language
- Weakest precondition yields strongest specification for the computation (analogous to function specifications)
// precondition: ??
x = e;
// postcondition: Q
Precondition: Q with all (free) occurrences of x replaced by e

• Example:
 // assert: ??
x = x + 1;
 // assert: x > 0

Precondition = ??
Assignment

// precondition: ??
x = e;
// postcondition: Q

Precondition: Q with all (free) occurrences of x replaced by e

• Example:
 // assert: (x+1) > 0
 x = x + 1;
 // assert: x > 0

 Precondition = (x+1) > 0
Method calls

// precondition: ??
x = foo();
// postcondition: Q

• If the method has no side effects: just like ordinary assignment
• If it has side effects: an assignment to every variable it modifies

Use the method specification to determine the new value
If statements

// precondition: ??
if (b) S1 else S2
// postcondition: Q

Essentially case analysis:

\[
wp("if (b) S1 else S2", Q) =
\]
\[
(b \Rightarrow wp("S1", Q) \\
\land \neg b \Rightarrow wp("S2", Q))
\]
// precondition: ??
if (x == 0) {
 x = x + 1;
} else {
 x = (x/x);
}
// postcondition: x ≥ 0

Precondition:

\[
wp\left(\text{"if } (x==0) \{x = x+1\} \text{ else } \{x = x/x\}\" , \ x \geq 0 \right) =
\]
\[
= (x = 0 \Rightarrow wp\left(\text{"x = x+1" , } x \geq 0 \right) \\
\quad \& \ x \neq 0 \Rightarrow wp\left(\text{"x = x/x" , } x \geq 0 \right))
\]
\[
= (x = 0 \Rightarrow x + 1 \geq 0) \ & \ (x \neq 0 \Rightarrow x/x \geq 0)
\]
\[
= 1 \geq 0 \ & \ 1 \geq 0
\]
\[
= true
\]
Reasoning About Loops

• **A loop represents an unknown number of paths**
 – Case analysis is problematic
 – Recursion presents the same issue

• **Cannot enumerate all paths**
 – That is part of what makes testing and reasoning hard
Loops: values and termination

1) **Pre-assertion guarantees that** \(x \geq y \)
2) **Every time through loop**
 - \(x \geq y \) holds and, if body is entered, \(x > y \)
 - \(y \) is incremented by 1
 - \(x \) is unchanged
 - Therefore, \(y \) is closer to \(x \) (but \(x \geq y \) still holds)
3) **Since there are only a finite number of integers between** \(x \) and \(y \), \(y \) will eventually equal \(x \)
4) **Execution exits the loop as soon as** \(x = y \)
Understanding loops by induction (1)

• We just made an inductive argument
 Inducting over the number of iterations

• Computation induction
 Show that conjecture holds if 0 iterations
 Assume it holds after n iterations and show it holds after n+1
Understanding loops by induction (2)

• There are two things to prove:
 1. Some property is preserved (known as “partial correctness”)
 • loop invariant is preserved by each iteration
 2. The loop completes (known as “termination”)
 • The “decrementing function” is reduced by each iteration
Loop invariant for the example

```c
// assert x ≥ 0 & y = 0
while (x != y) {
    y = y + 1;
}
// assert x = y
```

- So, what is a suitable invariant?
- What makes the loop work?

Loop Invariant (LI) = \(x \geq y \)

- When you start, LI holds
- While in the loop, LI holds
- After the loop, postcondition holds
Loop invariant for the example

Loop Invariant (LI) = \(x \geq y \)

1) \(x \geq 0 \) & \(y = 0 \) \(\implies \) LI

- So, what is a suitable invariant?
- What makes the loop work?

When you start, LI holds
While in the loop, LI holds
After the loop, postcondition holds
Loop invariant for the example

So, what is a suitable invariant?
What makes the loop work?

Loop Invariant (LI) = \(x \geq y \)

1) \(x \geq 0 \) & \(y = 0 \) \(\Rightarrow \) LI

2) LI \& \(x \neq y \) \{y = y + 1;\} LI

When you start, LI holds
While in the loop, LI holds
After the loop, postcondition holds

// assert x \geq 0 & y = 0
while (x != y) {
 y = y + 1;
}
// assert x = y
Loop invariant for the example

Loop Invariant (LI) = \(x \geq y \)

1) \(x \geq 0 \) \& \(y = 0 \) \(\Rightarrow \) LI
2) LI \& \(x \neq y \) \(\{ y = y + 1; \} \) LI
3) (LI \& \(\neg(x \neq y) \)) \(\Rightarrow \) x = y

When you start, LI holds
While in the loop, LI holds
After the loop, postcondition holds
Is anything missing?

Does the loop terminate?

// assert x ≥ 0 & y = 0
while (x != y) {
 y = y + 1;
}
// assert x = y
Decrementing Function

- Decrementing function \(D(X) \)
 - Maps state (program variables) to some well-ordered set
 - This greatly simplifies reasoning about termination

- Consider: while (b) S;

- We seek \(D(X) \), where \(X \) is the state, such that
 1. An execution of the loop reduces the function’s value:
 \(\text{LI} \land b \{ S \} D(X_{\text{post}}) < D(X_{\text{pre}}) \)
 2. If the function’s value is minimal, the loop terminates:
 \((\text{LI} \land D(X) = \text{minVal}) \Rightarrow \neg b \)
Proving Termination

Is "x-y" a good decrementing function?

1. Does the loop reduce the decrementing function’s value?
 // assert (y ! = x); let \(d_{\text{pre}} = (x - y) \)

   ```
   y = y + 1;
   // ??
   ```

2. If the function has minimum value, does the loop exit?
 ??

```c
// assert x >= 0 & y = 0
// Loop invariant: x >= y
// Loop decrements: (x-y)
while (x != y) {
    y = y + 1;
}
// assert x = y
```
Proving Termination

- Is “x-y” a good decrementing function?
 1. Does the loop reduce the decrementing function’s value?
 // assert (y != x); let \(d_{\text{pre}} = (x - y)\)
 \(y = y + 1;\)
 // assert \((x_{\text{post}} - y_{\text{post}}) < d_{\text{pre}}\)
 2. If the function has minimum value, does the loop exit?
 ??
Proving Termination

1. **Does the loop reduce the decrementing function’s value?**

   ```
   // assert (y != x); let d_{pre} = (x - y)
   y = y + 1;
   // assert (x_{post} - y_{post}) < d_{pre}
   ```

2. **If the function has minimum value, does the loop exit?**

 `(x >= y & x - y = 0) \rightarrow (x = y)`
Choosing Loop Invariant (1)

- For straight-line code, the \textit{wp} (weakest precondition) function gives us the appropriate property.

- For loops, you have to \textit{guess}:
 - The loop invariant
 - The decrementing function
Choosing Loop Invariant (2)

• Then, use reasoning techniques to prove the goal property

• If the proof doesn't work:
 – Maybe you chose a bad invariant or decrementing function
 • Choose another and try again
 – Maybe the loop is incorrect
 • Fix the code

• Automatically choosing loop invariants is a research topic
In practice

Often don’t routinely write loop invariants

Do write them when unsure about a loop and when have evidence that a loop is not working
 – Add invariant and decrementing function if missing
 – Write code to check them
 – Understand why the code doesn't work
 – Reason to ensure that no similar bugs remain
More on Induction

• Induction is a very powerful tool

$$2^n = 1 + \sum_{k=1}^{n} 2^{k-1}$$

Proof by induction: Base Case

For n=1, \[1 + \sum_{k=1}^{1} 2^{k-1} = 1 + 2^0 = 1 + 1 = 2 = 2^1\]
Inductive Step

Assume $2^m = 1 + \sum_{k=1}^{m} 2^{k-1}$ and show that $2^{m+1} = 1 + \sum_{k=1}^{m+1} 2^{k-1}$

$$2^{m+1} = 1 + \sum_{k=1}^{m+1} 2^{k-1} = 1 + \sum_{k=1}^{m} 2^{k-1} + 2^m = 2^m + 2^m = 2 \times 2^m = 2^{m+1}$$
Final project presentations and demonstrations

• Will be held during next Tuesday’s lecture
• Each final project group will be assigned a Zoom breakout room
• The group will also be randomly assigned a 6 minute timeslot
 – talk for 3-5 minutes
 – Q&A for ~1 minute
Final project deliverables

• **Due:** Tuesday May 11 at 11:59 PM (a little before midnight)

• **Submission:**
 - **Research (MSR and ML development toolkits):** A short paper (at least 5 pages) describing the problem, approach, experimental evaluation, references. Also a presentation.
 - **Development (EleNa systems):** A project folder including the documentation (e.g., README, architecture, design, manual test results, etc.), source code, automated test suites, etc. Also README for how to run your system or a video showing running the system.