Ways to verify your code

• The hard way:
 – Make up some inputs for a given system
 – If that system doesn’t crash, ship it
 – When the system fails in the field, attempt to debug

• The easier way:
 – Reason about possible system behavior and desired outcomes
 – Construct simple tests that exercise that behavior

Another way to verify your code (that can be easier)

• Prove that the system does what you want
 – Representation (rep) invariants are preserved
 – Implementation satisfies specification
• Proof can be formal (e.g., theorem prover) or informal (today, will be informal)
• Complementary to testing and model checking

Reasoning about code

• Determine what facts are true during system execution, e.g.,
 – $x < 0$
 – for all nodes n: n.next.previous == n
 – array a is sorted
 – $x + y == z$
 – if $x \neq$ null, then $x.a > x.b$
• Possible uses:
 – Ensure code is correct (via reasoning or testing)
 – Understand why code is incorrect
Code example

```c
int y = 100;
for (int x = 0; x < 100; x++)
    y--;
```

What is true about the above?

- **Before loop:** \(x = 0, y = 100 \)
- **During loop:** Each iteration \(x \) increases by 1 and \(y \) decreases by 1
- **After loop:** \(x = 100, y = 0 \)

Forward reasoning

- **Key idea:**
 - You know what is true before running the code: What is true after running the code?
 - Given a precondition, what is the postcondition?
- **Possible uses**:
 - Rep invariant holds before running code
 - Does it still hold after running code?
- **Example**:
 - // precondition: \(x \) is even
 - \(x = x + 3; \)
 - \(y = 2x; \)
 - \(x = 5; \)
 - // postcondition: ??

Forward reasoning example

```c
// precondition: x is even
x = x + 3;
// ??
y = 2x;
// ??
x = 5;
// postcondition: ??
```
Forward reasoning example

// precondition: x is even
x = x + 3;
// x is odd
y = 2x;
// ??
x = 5;
// postcondition: ??

Forward reasoning example

// precondition: x is even
x = x + 3;
// x is odd
y = 2x;
// y is even and thus divisible by 2 (but not by 4)
x = 5;
// postcondition: ??

Forward reasoning example

// precondition: x is even
x = x + 3;
// x is odd
y = 2x;
// y is even and thus divisible by 2 (but not by 4)
x = 5;
// postcondition: x = 5, y is divisible by 2 (but not by 4)

Backward reasoning

• Key idea:
 — You know what you want to be true after running the code. What must be true beforehand in order to ensure that?
 — Given a postcondition, what is the corresponding precondition?

• Possible uses:
 [Re-]establish rep invariant at method exit: what’s required?
 Reproduce a bug: what must the input have been?

• Example:
 // precondition: ??
x = x + 3;
y = 2x;
x = 5;
// postcondition: y > x
Backward reasoning example

// precondition: ??
x = x + 3;
// ??
y = 2x;
// ??
x = 5;
// postcondition: y > x

Backward reasoning example

// precondition: ??
x = x + 3;
// ??
y = 2x;
// y > 5
x = 5;
// postcondition: y > x

Backward reasoning example

// precondition: ??
x = x + 3;
// x >= 3
y = 2x;
// y > 5
x = 5;
// postcondition: y > x

Backward reasoning example

// precondition: x >= 0
x = x + 3;
// x >= 3
y = 2x;
// y > 5
x = 5;
// postcondition: y > x
Forward vs. backward reasoning

• Forward reasoning is more intuitive for most people
 – Helps understand what will happen (simulates the code)
 – Introduces facts that may be irrelevant to goal
 Set of current facts may get large
 – Takes longer to realize that the task is hopeless
• Backward reasoning is usually more helpful
 – Helps you understand what should happen
 – Given a specific goal, indicates how to achieve it
 – Given an error, gives a test case that exposes it

Another forward reasoning example

```
assert x >= 0;
i = x;
// x ≥ 0 & i = x
z = 0;
// x ≥ 0 & i = x & z = 0
while (i != 0) {
    z = z + 1;
    i = i - 1;
}  // x ≥ 0 & i = 0 & z = x
assert x == z;
```

Another forward reasoning example

```
assert x >= 0;
i = x;
// x ≥ 0 & i = x
z = 0;
// x ≥ 0 & i = x & z = 0
while (i != 0) {
    z = z + 1;
    i = i - 1;
}  // x ≥ 0 & i = 0 & z = x
assert x == z;
```

Backward reasoning

Technique for backward reasoning:
• Compute the weakest precondition (wp)
• There is a wp rule for each statement in the programming language
• Weakest precondition yields strongest specification for the computation (analogous to function specifications)
Assignment

// precondition: ??
x = e;
// postcondition: Q
Precondition: Q with all (free) occurrences of x replaced by e
• Example:
 // assert: ??
x = x + 1;
 // assert: x > 0
 Precondition = ??

Assignment

// precondition: ??
x = e;
// postcondition: Q
Precondition: Q with all (free) occurrences of x replaced by e
• Example:
 // assert: (x+1) > 0
 x = x + 1;
 // assert: x > 0
 Precondition = (x+1) > 0

Method calls

// precondition: ??
x = foo();
// postcondition: Q
• If the method has no side effects: just like ordinary assignment
• If it has side effects: an assignment to every variable it modifies

Use the method specification to determine the new value

If statements

// precondition: ??
if (b) S1 else S2
// postcondition: Q

Essentially case analysis:
wp("if (b) S1 else S2", Q) =
 (b ⇒ wp("S1", Q)
 ∧ ¬ b ⇒ wp("S2", Q))
If example

```java
// precondition: ???
if (x == 0) {
    x = x + 1;
} else {
    x = x/x;
}
// postcondition: x ≥ 0
```

Precondition:
```
wp("if (x==0) {x = x+1} else {x = x/x}, x ≥ 0") =
= [{ x = 0 ⇒ wp("x = x+1", x ≥ 0) & x ≠ 0 ⇒ wp("x = x/x", x ≥ 0) } 
  = { x = 0 ⇒ x + 1 ≥ 0 } & { x ≠ 0 ⇒ x/x ≥ 0 } 
  = true]
```

Reasoning About Loops

- A loop represents an unknown number of paths
 - Case analysis is problematic
 - Recursion presents the same issue

- Cannot enumerate all paths
 - That is what makes testing and reasoning hard

Loops: values and termination

```java
// assert x ≥ y
while (x != y) {
    y = y + 1;
} // assert x = y
```

1) Pre-assertion guarantees that x ≥ y
2) Every time through loop
 x ≥ y holds and, if body is entered, x > y
 y is incremented by 1
 x is unchanged
 Therefore, y is closer to x (but x ≥ y still holds)
3) Since there are only a finite number of integers between x and y, y will eventually equal x
4) Execution exits the loop as soon as x = y

Understanding loops by induction (1)

- We just made an inductive argument
 Inducting over the number of iterations

- Computation induction
 Show that conjecture holds if zero iterations
 Assume it holds after n iterations and show it holds after n+1
Understanding loops by induction (2)

• There are two things to prove:

1. **Some property is preserved (known as “partial correctness”)**
 - loop invariant is preserved by each iteration

2. **The loop completes (known as “termination”)**
 - The “decrementing function” is reduced by each iteration

Loop invariant for the example

- So, what is a suitable invariant?
- What makes the loop work?

Loop Invariant (LI) = \(x \geq y \)

When you start, LI holds
While in the loop, LI holds
After the loop, postcondition holds

1) \(x \geq 0 \) & \(y = 0 \) \(\Rightarrow \) LI
2) LI & \(x = y \) \(\Rightarrow \) LI
Loop invariant for the example

```
// assert x  0 & y = 0
while (x != y) {
    y = y + 1;
}  // assert x = y
```

- So, what is a suitable invariant?
- What makes the loop work?

Loop Invariant (LI) = \(x \geq y \)

1) \(x \geq 0 \) & \(y = 0 \) \(\Rightarrow \) LI
2) LI & \(x \neq y \) \(\{ y = y + 1; \} \) LI
3) (LI & \(\neg (x = y) \)) \(\Rightarrow \) \(x = y \)

When you start, LI holds
While in the loop, LI holds
After the loop, postcondition holds

Is anything missing?

```
// assert x  0 & y = 0
while (x != y) {
    y = y + 1;
}  // assert x = y
```

Does the loop terminate?

Decrementing Function

- Decrementing function \(D(X) \)
 - Maps state (program variables) to some well-ordered set
 - This greatly simplifies reasoning about termination

- Consider: while (b) S;

- We seek \(D(X) \), where \(X \) is the state, such that
 1. An execution of the loop reduces the function's value:
 \(LI \& b \{ S \} D(X_{post}) < D(X_{pre}) \)
 2. If the function’s value is minimal, the loop terminates:
 \((LI \& D(X) = \minVal) \Rightarrow \neg b \)

Proving Termination

```
// assert x  0 & y = 0
// Loop invariant: x \geq y
// Loop decrements: (x-y)
while (x != y) {
    y = y + 1;
}  // assert x = y
```

- Is "x-y" a good decrementing function?
 1. Does the loop reduce the decrementing function’s value?
 // assert (y != x); let \(d_{pre} = (x - y) \)
 \(y = y + 1; \)
 // ??
 2. If the function has minimum value, does the loop exit?
 ??
Proving Termination

```
// assert x ≥ 0 & y = 0
// Loop invariant: x ≥ y
// Loop decrements: (x-y)
while (x != y) {
    y = y + 1;
} // assert x = y
```

1. Is "x-y" a good decrementing function?
 1. Does the loop reduce the decrementing function's value?
 // assert (y != x); let d_pre = (x - y)
 y = y + 1;
 // assert (x_post - y_post) < d_pre
 2. If the function has minimum value, does the loop exit?
 ??

Choosing Loop Invariant (1)

- For straight-line code, the wp (weakest precondition) function gives us the appropriate property
- For loops, you have to guess:
 - The loop invariant
 - The decrementing function

Choosing Loop Invariant (2)

- Then, use reasoning techniques to prove the goal property
- If the proof doesn't work:
 - Maybe you chose a bad invariant or decrementing function
 - Choose another and try again
 - Maybe the loop is incorrect
 - Fix the code
- Automatically choosing loop invariants is a research topic
In practice

Often don’t routinely write loop invariants

Do write them when unsure about a loop and when have evidence that a loop is not working
 – Add invariant and decrementing function if missing
 – Write code to check them
 – Understand why the code doesn’t work
 – Reason to ensure that no similar bugs remain

More on Induction

• Induction is a very powerful tool
 \[2^n = 1 + \sum_{i=1}^{n} 2^{i-1}\]

Proof by induction: Base Case

For \(n=1\), \[1 + \sum_{i=1}^{1} 2^{i-1} = 1 + 2^0 = 1 + 1 = 2 = 2^1\]

Inductive Step

Assume \(2^n = 1 + \sum_{i=1}^{n} 2^{i-1}\) and show that \(2^{n+1} = 1 + \sum_{i=1}^{n+1} 2^{i-1}\)

\[2^{n+1} = 1 + \sum_{i=1}^{n+1} 2^{i-1} = 1 + \sum_{i=1}^{n} 2^{i-1} + 2^n = 2^n + 2^n = 2 \times 2^n = 2^{n+1}\]

Is Induction Too Powerful?
In-class exercise 4

- Group size can now range from 1 to 5 inclusive
- Z3 theorem prover resources:
 - Source build: https://github.com/Z3Prover/z3/
 - Binary releases: https://github.com/Z3Prover/z3/releases
- Moodle forum talks about how to run Z3 and provides examples (including how to specify the mutation test inputs and expected output)
- Now due: This Thursday April 23, 9 AM EDT

Final project deliverables

- Due: Tuesday April 28 at 11:55 PM EDT
- In-class presentation: Demo, poster, or slides
- Submission:
 - Research (MSR and replication studies): A short paper (at least 5 pages) describing the problem, approach, experimental evaluation, references
 - Development (EleNa systems): A project folder including the documentation (e.g., README, architecture, design, manual test results, etc.), source code, automated test suites, etc. Also README for how to run your system or a video showing running the system.