Ways to verify your code

• The hard way:
 – Make up some inputs for a given system
 – If that system doesn’t crash, ship it
 – When the system fails in the field, attempt to debug

• The easier way:
 – Reason about possible system behavior and desired outcomes
 – Construct simple tests that exercise that behavior

Another way to verify your code (that can be easier)

• Prove that the system does what you want
 – Representation (rep) invariants are preserved
 – Implementation satisfies specification

• Proof can be formal (e.g., theorem prover) or informal (today, will be informal)

• Complementary to testing and model checking

Reasoning about code

• Determine what facts are true during system execution, e.g.,
 – $x > 0$
 – for all nodes n: n.next.previous == n
 – array a is sorted
 – $x + y == z$
 – if x != null, then $x.a > x.b$
Possible uses of such facts

• Ensure code is correct (via reasoning or testing)
• Understand why code is incorrect

Code example

int y = 100;
for (int x = 0; x < 100; x++)
y--;

What is true about the above?

• Before loop: x = 0, y = 100
• During loop: Each iteration x increases by 1 and y decreases by 1
• After loop: x = 100, y = 0

Forward reasoning

• Key idea:
 — You know what is true before running the code. What is true after running the code?
 — Given a precondition, what is the postcondition?
• Possible uses:
 Rep invariant holds before running code
 Does it still hold after running code?
• Example:
 // precondition: x is even
 x = x + 3;
y = 2x;
x = 5;
// postcondition: ??
Forward reasoning example

// precondition: x is even
x = x + 3;
// ??
y = 2x;
// ??
x = 5;
// postcondition: ??

Forward reasoning example

// precondition: x is even
x = x + 3;
// x is odd
y = 2x;
// ??
x = 5;
// postcondition: ??

Forward reasoning example

// precondition: x is even
x = x + 3;
// x is odd
y = 2x;
// ??
x = 5;
// postcondition: ??

Forward reasoning example

// precondition: x is even
x = x + 3;
// x is odd
y = 2x;
// y is even and thus divisible by 2 (but not by 4)
x = 5;
// postcondition: x = 5, y is divisible by 2 (but not by 4)
Another forward reasoning example

```c
assert x >= 0;
i = x;
    // x ≥ 0 & i = x
z = 0;
    // x ≥ 0 & i = x & z = 0
while (i != 0) {
    z = z + 1;
    i = i – 1;
    // x ≥ 0 & i = 0 & z = x
} // x ≥ 0 & i = 0 & z = x
assert x == z;
```

Advantages of forward reasoning

- More intuitive for most people
 - Helps understand what will happen (simulates the code)
 - Introduces facts that may be irrelevant to goal
 - Set of current facts may get large
 - Takes longer to realize that the task is hopeless

Backward reasoning

- **Key idea:**
 - You know what you want to be true after running the code. What must be true beforehand in order to ensure that?
 - Given a postcondition, what is the corresponding precondition?
- **Possible uses:**
 - (Re-)establish rep invariant at method exit: what’s required?
 - Reproduce a bug: what must the input have been?
- **Example:**
  ```c
  // precondition: ??
x = x + 3;
y = 2x;
x = 5;
    // postcondition: y > x
  ```
Backward reasoning example

```java
// precondition: ??
x = x + 3;
// ??
y = 2x;
// ??
x = 5;
// postcondition: y > x
```

Backward reasoning example

```java
// precondition: ??
x = x + 3;
// ??
y = 2x;
// y > 5
x = 5;
// postcondition: y > x
```

Backward reasoning example

```java
// precondition: ??
x = x + 3;
// ??
y = 2x;
// y > 5
x = 5;
// postcondition: y > x
```

Backward reasoning example

```java
// precondition: x >= 0
x = x + 3;
// x >= 3
y = 2x;
// y > 5
x = 5;
// postcondition: y > x
```
Advantages of backward reasoning

- Usually more helpful
 - Helps you understand what should happen
 - Given a specific goal, indicates how to achieve it
 - Given an error, gives a test case that exposes it

Technique for backward reasoning

- Compute the weakest precondition (wp)
- There is a wp rule for each statement in the programming language
- Weakest precondition yields strongest specification for the computation (analogous to function specifications)

Assignment

```plaintext
// precondition: ??
x = e;
// postcondition: Q
Precondition: Q with all (free) occurrences of x replaced by e

• Example:
  // assert: ??
x = x + 1;
  // assert: x > 0
  Precondition = ??
```

Assignment

```plaintext
// precondition: ??
x = e;
// postcondition: Q
Precondition: Q with all (free) occurrences of x replaced by e

• Example:
  // assert: (x+1) > 0
  x = x + 1;
  // assert: x > 0
  Precondition = (x+1) > 0
```
Method calls

// precondition: ??
x = foo();
// postcondition: Q

- If the method has no side effects: just like ordinary assignment
- If it has side effects: an assignment to every variable it modifies

Use the method specification to determine the new value

If statements

// precondition: ??
if (b) S1 else S2
// postcondition: Q

Essentially case analysis:
wp("if (b) S1 else S2", Q) =
(b ⇒ wp("S1", Q)
∧ ¬ b ⇒ wp("S2", Q))

If example

// precondition: ??
if (x == 0) {
 x = x + 1;
} else {
 x = x/x;
}
// postcondition: x ≠ 0

Precondition:
wp("if (x==0) (x = x+1) else (x = x/x), x ≠ 0") =
= [x = 0 ⇒ wp("x = x+1", x ≠ 0)]
& [x = 0 ⇒ wp("x = x/x", x ≠ 0)]
= [x = 0 ⇒ x + 1 ≤ 0] & [x = 0 ⇒ x/x ≥ 0]
= 1 ≤ 0 & 1 ≤ 0
= true

Reasoning About Loops

- A loop represents an unknown number of paths
 — Case analysis is problematic
 — Recursion presents the same issue

- Cannot enumerate all paths
 — That is part of what makes testing and reasoning hard
Loops: values and termination

```
// assert x ≥ 0 & y = 0
while (x != y) {
    y = y + 1;
}
// assert x = y
```

1) Pre-assertion guarantees that x ≥ y
2) Every time through loop
 x ≥ y holds and, if body is entered, x > y
 y is incremented by 1
 x is unchanged
 Therefore, y is closer to x (but x ≥ y still holds)
3) Since there are only a finite number of integers between x and y, y will eventually equal x
4) Execution exits the loop as soon as x = y

Understanding loops by induction (1)

- **We just made an inductive argument**
 Induding over the number of iterations

- **Computation induction**
 Show that conjecture holds if 0 iterations
 Assume it holds after n iterations and show it holds after n+1

Understanding loops by induction (2)

- There are two things to prove:
 1. Some property is preserved (known as “partial correctness”)
 - loop invariant is preserved by each iteration
 2. The loop completes (known as “termination”)
 - The “decrementing function” is reduced by each iteration

Loop invariant for the example

```
// assert x ≥ 0 & y = 0
while (x != y) {
    y = y + 1;
}
// assert x = y
```

- So, what is a suitable invariant?
- What makes the loop work?
 Loop Invariant (LI) = x ≥ y

When you start, LI holds
While in the loop, LI holds
After the loop, postcondition holds
Loop invariant for the example

```
// assert x ≥ 0 & y = 0
while (x != y) {
  y = y + 1;
}
// assert x = y
```

- So, what is a suitable invariant?
- What makes the loop work?
Loop Invariant (LI) = x ≥ y

1) x ≥ 0 & y = 0 ⇒ LI

When you start, LI holds
While in the loop, LI holds
After the loop, postcondition holds

When you start, LI holds
While in the loop, LI holds
After the loop, postcondition holds

Is anything missing?

```
// assert x ≥ 0 & y = 0
while (x != y) {
  y = y + 1;
}
// assert x = y
```

- So, what is a suitable invariant?
- What makes the loop work?
Loop Invariant (LI) = x ≥ y

1) x ≥ 0 & y = 0 ⇒ LI
2) LI & x ≠ y (y = y+1) ⇒ LI

Does the loop terminate?
Decrementing Function

- Decrementing function $D(X)$
 - Maps state (program variables) to some well-ordered set
 - This greatly simplifies reasoning about termination

- Consider: $\text{while } (b) S$
- We seek $D(X)$, where X is the state, such that
 1. An execution of the loop reduces the function’s value:
 $\text{Li} \& b \{ D(X_{\text{post}}) < D(X_{\text{pre}}) \}$
 2. If the function’s value is minimal, the loop terminates:
 $(\text{Li} \& D(X) = \text{minVal}) \Rightarrow \neg b$

Proving Termination

- Is “$x-y$” a good decrementing function?
 1. Does the loop reduce the decrementing function's value?
 $\text{// assert } (y != x); \text{ let } d_{\text{pre}} = (x - y)$
 $y = y + 1;$
 $\text{// assert } (x_{\text{post}} - y_{\text{post}}) < d_{\text{pre}}$
 2. If the function has minimum value, does the loop exit?
 $??$

// assert $x \geq 0 \& y = 0$
// Loop invariant: $x \neq y$
// Loop decrements: $(x-y)$
while $(x \neq y) \{$
 $y = y + 1;$
// assert $x = y$

// assert $x \geq 0 \& y = 0$
// Loop invariant: $x \neq y$
// Loop decrements: $(x-y)$
while $(x \neq y) \{$
 $y = y + 1;$
// assert $x = y$

- Is “$x-y$” a good decrementing function?
 1. Does the loop reduce the decrementing function’s value?
 $\text{// assert } (y != x); \text{ let } d_{\text{pre}} = (x - y)$
 $y = y + 1;$
 $\text{// assert } (x_{\text{post}} - y_{\text{post}}) < d_{\text{pre}}$
 2. If the function has minimum value, does the loop exit?
 $(x \geq y \& x - y = 0) \Rightarrow (x = y)$

// assert $x \geq 0 \& y = 0$
// Loop invariant: $x \neq y$
// Loop decrements: $(x-y)$
while $(x \neq y) \{$
 $y = y + 1;$
// assert $x = y$
Choosing Loop Invariant (1)

- For straight-line code, the wp (weakest precondition) function gives us the appropriate property
- For loops, you have to guess:
 - The loop invariant
 - The decrementing function

Choosing Loop Invariant (2)

- Then, use reasoning techniques to prove the goal property
- If the proof doesn’t work:
 - Maybe you chose a bad invariant or decrementing function
 - Choose another and try again
 - Maybe the loop is incorrect
 - Fix the code
- Automatically choosing loop invariants is a research topic

In practice

Often don’t routinely write loop invariants

Do write them when unsure about a loop and when have evidence that a loop is not working
- Add invariant and decrementing function if missing
- Write code to check them
- Understand why the code doesn’t work
- Reason to ensure that no similar bugs remain

More on Induction

- Induction is a very powerful tool
 \[2^n = 1 + \sum_{i=1}^{n} 2^{i-1} \]
- Proof by induction: Base Case
 \[\text{For } n=1, \quad 1 + \sum_{i=1}^{1} 2^{i-1} = 1 + 2^0 = 1 + 1 = 2 = 2^1 \]
Inductive Step

Assume $2^n = 1 + \sum_{k=1}^{n} 2^{k-1}$ and show that $2^{n+1} = 1 + \sum_{k=1}^{n+1} 2^{k-1}$

$$2^{n+1} = 1 + \sum_{k=1}^{n+1} 2^{k-1} = 1 + \sum_{k=1}^{n} 2^{k-1} + 2^n = 2^n + 2^n = 2 \times 2^n = 2^{n+1}$$

Is Induction Too Powerful?

What is Software Engineering?

More than just writing code

The complete process of specifying, designing, developing, analyzing, deploying, and maintaining a software system.

Common Software Engineering tasks include:

- Requirements engineering
- Software architecture and design
- Programming
- Verification & Validation
- Debugging

Final project presentations

- **Due:** This Thursday’s class November 19, 2020
- **Presentation:** Slides, poster, demonstration
Final project deliverables

- **Due:** Tuesday November 24 at 11:59 PM EST
- **Submission:**
 - Research (MSR and replication studies): A short paper (at least 5 pages) describing the problem, approach, experimental evaluation, references. Also a poster or slides.
 - Development (EleNa systems): A project folder including the documentation (e.g., README, architecture, design, manual test results, etc.), source code, automated test suites, etc. Also README for how to run your system or a video showing running the system.