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Abstract—Active districts are districts that have a system in
place to coordinate distributed energy generation and external
grid to meet the local energy demand. They are now widely
recognized as a clear opportunity towards distributed renewable
integration. Despite apparent benefits of incorporating renewable
sources in an active district, uncertainty in renewable generation
can impose unprecedented challenges in efficient operation of the
existing deregulated electricity supply chain, which is designed
to operate with no or little uncertainty in both supply and
demand. While most previous studies focused on the impact of
renewables on the supply side of the supply chain, we investigate
the impact of distributed renewable generation on the demand
side. In particular, we study how the uncertainty from distributed
renewable generation in an active district affects the average
buying cost of utilities and the cost-saving of the active district.
Our analysis shows that the renewable uncertainty in an active
district can (i) increase the average buying cost of the utility
serving the active district, termed as local impact, and (ii)
somewhat surprisingly, reduce the average buying cost of other
utilities participating in the same electricity market, termed as
global impact. Moreover, the local impact will lead to an increase
in the electricity retail price of active district, resulting in a
cost-saving less than the case without renewable uncertainty.
These observations reveal an inherent economic incentive for
utilities to improve their load forecasting accuracy, in order to
avoid economy loss and even extract economic benefit in the
electricity market. We verify our theoretical results by extensive
experiments using real-world traces. Our experimental results
show that a 9% increase in load forecasting error (modeled
by the standard deviation of the mismatch between real-time
actual demand and day-ahead purchased supply) will increase
the average buying cost of the utility by 10%.

Index Terms—Active District, Electricity Market, Distributed
Renewable Generation, Electricity Price.

I. INTRODUCTION

Renewable energy sources, including solar PVs and wind
turbines, are effective means to de-carbonize the power system
and support sustainable economic and social development.
In 2014, renewables represented approximately 58.5% of net
additions to global power capacity, enough to supply around
7.6% of global electricity if operated at 1/3 of the installation
capacity [20].
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A popular platform for incorporating renewable energy
sources is active district. An active district is a local electric
power system typically resided in low-voltage distribution
network, consisting of various distributed generation, storage
systems, and responsive load. In an active district, all the
distributed generation resources are owned by the same entity,
and it can coordinate local generation and the external grid to
meet the energy demand of a local community, such as a uni-
versity campus or a hospital. Active districts can be regarded
as microgrids operating in grid-connected mode, which are
more robust and cost-effective than conventional approach of
centralized grids and represent a promising paradigm of future
power system [15].

Our study focuses on active districts with non-dispatchable,
intermittent, and unpredictable renewables energy, such as
wind and solar. The intermittent renewable generation not
only introduces unprecedented challenges to active district
operation, for example energy generation scheduling [11],
[14], [25], but also may lead to nontrivial impact on electricity
procurement of utilities on a regional market, as we show
in this paper. In the deregulated electricity supply chain
illustrated in Fig. 1, an active district (or a microgrid) obtains
electricity from a local utility to serve its residual demand after
deducting its actual demand by renewable generation. The lo-
cal utility, serving as a retailer, obtains electricity supply from
the regional electricity market to serve a group of customers.
The regional market operator (governed by an independent
system operator) provides a trading place, determines a market
clearing price based on the supply offers and demand bids
using a double-sided auction mechanism, and matches the
supply and demand at the price. The market operates in a
two-settlement manner and settles transactions at two different
timescales and prices, i.e., one day ahead with day-ahead price
and real-time with spot price. In day-ahead market operation,
the generation companies (respectively utilities) submit their
offers (respectively bids) for selling (respectively buying)
electricity for the next day, based on generation (respectively
load) forecasting. Then, the imbalance between day-ahead
procurement and actual load is settled in real-time market
operation. We refer to Sec. II-B for more details about the
two-settlement market.

Active district with renewable source can impose challenges
in electricity market operations due to the intermittent and
unpredictable nature of renewable generation. Our goal is to
investigate the impact of the renewable uncertainty on the
average buying cost per unit electricity (ABC) of utilities
(formally defined in Sec. II-C). We note that most of the
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previous studies focus on the impact of renewables on the
supply side of the supply chain where the renewables, such
as large wind farms, participate in deregulated markets as
generation companies [6], [17], [21], [26]. In contrast, our
study, along with a few others [8], [12], [16], investigates
the impact of renewables on the demand side, where the
distributed renewable generation affect the residual demand to
be fulfilled by the supply chain. For instance, McConnell et al.
show that distributed solar generation can reduce the electricity
demand and depress the wholesale price, which also known
as the merit-order effect [16]. However, the reduction in local
demand due to renewable generation may force the utilities to
raise the retail electricity price in order to recover their capital
cost in transmission and distribution infrastructure [8]. As a
result, retail customers with distributed renewable generation
may observe less cost-saving than expected. In this paper,
we investigate the impact of uncertainty from distributed
renewable generation on the electricity supply chain.

In particular, we aim to answer two fundamental questions:
• What is the local impact of distributed renewable uncer-

tainty? Namely, how does renewable uncertainty in an
active district affect the ABC of the utility serving the
active district?

• What is the global impact of distributed renewable un-
certainty? Namely, how does renewable uncertainty in
an active district affect the ABCs of all other utilities
participating in the same regional market?

Answers to the above questions provide a complete under-
standing of the impact of distributed renewable generation
on the economic operation of all the utilities participating in
the regional market. We carry out a comprehensive study and
make the following contributions.
. We show that the utility with larger renewable penetration

will suffer from higher ABC. This answers the first question
on the local impact of distributed renewable uncertainty. The
increase in ABC will lead to an increase in the electricity retail
price of the active district. As a result, an active district with
renewable generation uncertainty observes less cost-saving
than the case without generation uncertainty.
. Somewhat surprisingly, we show that all other utilities

participating in the same regional market will actually observe
a decrease in their ABCs. This answers the second question
on the global impact of distributed renewable uncertainty. The
observations reveal an inherent economic incentive for utilities
to improve their load forecasting accuracy, in order to avoid
losses and even extract economic benefit.
. We characterize a set of sufficient conditions for observing

the above-mentioned local and global impacts. These condi-
tions, on load forecasting errors and the relationship between
day-ahead prices and real-time prices, suggest that the above-
mentioned local and global impacts can be observed under
rather general settings, for example when load forecasting
errors follow arbitrary symmetric distribution with zero mean.
. We verify our theoretical results by extensive real-world

trace-driven experiments with different percentages of renew-
able penetration. In a set of representative experiments, our
results demonstrate that a 9% increase in load forecast error
will increase the ABC of the utility by 10%. Our experiments

Fig. 1. The deregulated electricity supply chain

also validate that the active district with renewable generation
uncertainty observes less cost-saving than the case without
generation uncertainty.

The rest of this paper is organized as follows. Sec. II gives
a brief introduction on deregulated electricity supply chain
and its pricing model. Our theoretical results are presented in
Sec. III. Experimental results are included in Sec. IV. Sec. V
concludes the paper.

Due to space limitation, all the proofs are in our technical
report [24], unless otherwise specified.

II. DEREGULATED ELECTRICITY SUPPLY CHAIN

In what follows we explain the electricity supply chain,
the operation of the electricity market, and the market pricing
model.

A. Electricity Supply Chain

As illustrated in Fig. 1, the deregulated electricity supply
chain consists of the following four components [13]:
• Retail customers (in particular, active districts or micro-

grids), the end-users that consume electricity.
• Utilities, who submit bids to buy electricity supply in the

market in order to serve a group of retail customers.
• Generation companies, i.e., power plant owners who

produce electricity and submit offers to sell electricity
in the market.

• Electricity market, administered by an independent sys-
tem operator (e.g., ISO-NE [1]), that provides a trading
place, matches supply offers from generation companies
and demand bids from utilities.

Utilities transact electricity with generation companies in
the wholesale electricity market, and the active district and
traditional load (residential or commercial load) procure elec-
tricity from the local utility. In addition, distributed renewable
generation is incorporated by some of the retail customers
(active districts or microgrids) to satisfy part of their demand
locally.

B. Electricity Market Model

The electricity market usually operates in a two-settlement
manner and settles transactions at two different timescales and
prices, i.e., day ahead with day-ahead price and real-time with
spot price.

Day-Ahead Market Operation. In the day-ahead market
operation, generation companies and utilities submit their
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offers and bids for selling and buying the electricity for each
hour of the next day, based on generation and load forecasting.
The market operator then clears the market and determines the
day-ahead price through a double-sided auction mechanism.
The day-ahead market operation allows generation companies
to schedule their supply one day before actual dispatch, in
order to enhance reliability and improve efficiency of the unit
commitment decision. According to a report from the NYISO
market, about 90% of the electricity supply is scheduled in
the day-ahead market operation [3].

Real-Time Market Operation. The real-time market is
dedicated to balancing the supply and demand in real-time
operation. The transactions for the utilities and generation
companies in real-time market operation are settled on a hourly
basis. In Nord Pool [2], for example, the ISO collects offers
from generation companies and determines the hourly real-
time spot price based on the actual supply and demand. When
the supply is less (respectively higher) than the demand, the
market is up-regulated (respectively down-regulated) and the
real-time spot price is larger (respectively smaller) than the
day-ahead price [10]. Overall, the real-time market opera-
tion settles the imbalance between the day-ahead scheduled
amounts of electricity and the real-time actual demand.

C. Electricity Pricing Model

In our model, we assume that N utilities, indexed by i,
participate in the electricity market. Without loss of generality,
we focus on the settlements of electricity supply of a particular
hour. We denote the corresponding day-ahead price and the
spot price as pd and ps (unit: $/MWh), respectively. In this
paper, we assume that the day-ahead price is given and is
not affected by utility i’s day-ahead purchased amount. This
assumption is reasonable since the majority of the electricity
is traded in the day-ahead market and a single utility does not
have the market power to manipulate the market price. The
spot price is related to both the day-ahead price and aggregate
mismatch to be balanced on the real-time market, which will
be discussed more later in this section.

Average Buying Cost per Unit Electricity Of Utility.
Define Di (unit: MWh) as the real-time actual demand of
utility i at the particular hour. Further, denote ∆i (unit: MWh)
as the mismatch between the real-time actual demand and day-
ahead purchased supply for utility i in the real-time market
operation. Then the day-ahead purchased supply for utility
i in the day-ahead market operation is Di − ∆i. Whenever
there is an imbalance, i.e., ∆i 6= 0, the utility has to settle this
imbalance in the real-time market operation at the spot price
ps, i.e., it either sells the residual electricity back to the market
when ∆i < 0, or buys the deficient electricity from the market
when ∆i > 0. In this way, the total electricity cost of utility
i in the market, denoted as Ci, is defined as follows (unit: $):

Ci , pd(Di −∆i) + ps∆i. (1)

In other words, for utility i, its actual demand Di is settled in
two timescales: (i) an amount of Di − ∆i is settled in day-
ahead operation at price pd, and (ii) the remaining amount ∆i

is settled in real-time operation at the spot price ps. Given

the actual electricity delivery Di, we now define the Average
Buying Cost per unit electricity (ABC) for utility i as

ABCi ,
Ci
Di

=
1

Di
[pd (Di −∆i) + ps∆i] , (2)

whose unit is $/MWh. If utility i has an accurate prediction
for Di in the day-ahead market operation, i.e., ∆i = 0, then
its ABCi is simply the day-ahead price pd. In practice, it is
common that ∆i 6= 0 due to load forecasting error, because
of for example renewable uncertainty. The ABCi in this case
depends on the real-time spot price too.

Real-time Spot Price. The spot price is in general af-
fected by the real-time market imbalance, i.e., the day-ahead
scheduled supply and the real-time actual demand. Any dis-
placement in the market imbalance will cause the spot price
to deviate from the day-ahead price. Specifically, deficient
supply in the market leads to a higher spot price, while
excessive supply results in a lower spot price. To capture their
relationship, we first denote the aggregate imbalance from all
the utilities in real-time market operation as ∆ ,

∑N
i=1 ∆i,

and consider first the following model for real-time spot
price [18]1:

ps =


pd, ∆ = 0,

(b1 + a1∆)pd, ∆ > 0,

(b2 + a2∆)pd, ∆ < 0.

(3)
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Fig. 2. The model of real-time spot price ps as a function of day-ahead price
pd and aggregate real-time imbalance ∆.

Remark: (i) The model2 was proposed in [18] by curve-
fitting historical data. In particular, [18] suggests that a1 =
0.0034, a2 = 0.0005, b1 = 1.2378, and b2 = 0.6638. The
corresponding function is shown in Fig. 2 with pd = 20.
(ii) The spot price function is discontinuous at ∆ = 0,
i.e., b1 > 1 > b2. This discontinuity can be interpreted
as a premium of readiness that utilities need to pay for the
generation companies, since they have to generate urgent
regulating power upon notice [22]. (iii) In this paper, we

1In practice the spot price also depends on generation imbalance, i.e., in the
event of generator trips or as a result of large-scale renewable generation. This
generation imbalance can increase the variability of the market imbalance.
We note that this paper mainly focuses on the demand side of the electricity
supply chain and we do not consider the effect of generation uncertainty on
the market imbalance. This simplification will reduce the variance of market
imbalance.

2In general, a1, a2, b1, b2 should be positive.
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mainly work with the pricing model in (3), to bring out the
insights clearly. However, our insights are not restricted to the
model in (3). In Section III-C, we will show that the local
and global impacts hold for a larger class of pricing models,
which may be non-linear and/or continuous at ∆ = 0.

III. IMPACT OF UNCERTAINTY OF DISTRIBUTED
RENEWABLE GENERATION ON ABCS

Recall that ∆i is the mismatch between the actual load
served by utility i during the real-time market operation and
the electricity purchased by utility i from the day-ahead market
operation. We assume that each ∆i is a Gaussian random
variable with mean zero and variance σ2

i , i.e.,

∆i ∼ N (0, σ2
i ), i = 1, 2, ..., N,

and they are mutually independent. Here, the variance σ2
i

reflects the load forecasting accuracy; a large value of σ2
i

indicates a (statistically) large forecasting error. As an active
district served by utility i incorporates more renewable gen-
eration, utility i observes a residual demand of active district
that is smaller in volume but more difficult to predict accu-
rately. More specifically, uncertainty in renewable generation
is inherited by the residual demand of active district. It is thus
difficult for utility i to accurately predict its load, resulting in
a large load forecasting error and thus a large σ2

i . We remark
that the Gaussian distribution is commonly adopted to model
load forecasting error [7], [17], [19], [23]. Our analysis extends
to any forecasting errors that follow a symmetric distribution
with zero mean, as discussed in Sec. III-C.

Recall that ∆ =
∑N
i=1 ∆i is the total imbalance in the real-

time market operation. For ease of discussion, we define

∆−i , ∆−∆i =

N∑
j:j 6=i

∆j , (4)

as the aggregate mismatch of all other utilities except utility
i. It is straightforward to verify that ∆−i is a random variable
with mean zero and variance

σ2
−i =

N∑
j:j 6=i

σ2
j , (5)

where σ2
−i represents the aggregate forecasting errors of all

utilities except utility i. Here we assume that the load forecast-
ing errors are mutually independent. This assumption allows
us to obtain analytically tractable result and helps us gain
valuable insights. However, in practice the load forecasting
errors may not be independent, as we demonstrated in the
experiment in Sec. IV. We still observe local and global im-
pact, as suggested by the analysis, which depicts the robustness
of our main results w.r.t. the correlations in load forecasting
errors.

Next, we will first characterize the expected ABCs of
utilities as a function of load forecasting error, represented
by σ2

i and σ2
−i. We will then discuss the results and insights.

Theorem 1. Under the model of (3), the expectation of ABCi
is given as:

E [ABCi] =E
[

1

Di
[pd (Di −∆i) + ps∆i]

]
=pd +

(a1 + a2)pd
2Di

σ2
i

+
(b1 − b2)pd

2Di
E
[
∆i · erf

(
∆i√
2σ−i

)]
, (6)

where erf(x) = 1√
π

∫ x
−x e

−t2dt is the standard error function,
and coefficients a1, a2, b1, and b2 are parameters of the pricing
model defined in (3).

Remarks: The expected ABCi in (6) depends on three
terms. The first term is simply the day-ahead market clearing
price. The second and the third terms correspond to utility
i’s cost for balancing its mismatch in the real-time market
operation. Here, the second term is affected by utility i’s load
forecasting accuracy. The third term, interestingly, is affected
by not only the forecasting accuracy of utility i, but also the
aggregate forecasting accuracy of all other utilities. Thus, the
close-form expression of E [ABCi] allows us to investigate how
the change in one utility’s forecasting accuracy affects its own
expected ABC, i.e., local impact, as well as those of all other
utilities participating in the same regional market, i.e., global
impact.

For ease of discussion on local and global impacts, we
present the following understanding. Recall that the distribu-
tion of ∆i is symmetric. By the Total Expectation Theorem,
we have

E [ABCi] =

∫ +∞

0

φ(δi, σ
2
−i)f∆i

(δi)dδi, (7)

where

φ(δi, σ
2
−i) , E∆−i

[ABCi|∆i = δi]+E∆−i
[ABCi|∆i = −δi] ,

represents the average buying cost per unit electricity for utility
i when its mismatch is |δi| in volume, and f∆i

(·) is the PDF
of random variable ∆i. We have the following observation on
φ(δi, σ

2
−i).

Lemma 1. Given fixed σ2
−i, φ(δi, σ

2
−i) is increasing w.r.t. δi.

Essentially, Lemma 1 says that the average buying cost of
utility i increases as it has more mismatch (either positive or
negative) to balance.

Lemma 2. Given fixed δi, φ(δi, σ
2
−i) is decreasing w.r.t. σ2

−i.

Lemma 2 says that the average buying cost of utility i to
balance a fixed amount of mismatch |δi| will decrease if other
utilities in the market have larger load forecasting errors. The
details of why E[ABCi] is decreasing w.r.t. σ2

−i can be found
in Appendix C.

The intuitions and insights are included in the proof sketches
of the two lemmas in Appendixes A and B. The observations
in the lemmas are useful in the discussion on the local and
global impacts in the next two subsections.
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A. Local Impact of Uncertainty of Distributed Renewable
Generation

The local intermittent renewable generation introduces extra
uncertainty in the residual demand of the active district. Con-
sequently, the utility serving the active district (among its other
customers) will observe statistically larger load forecasting
error, and the regional market will need to settle (statistically)
larger supply-and-demand imbalance in the real-time market
operation. A careful analysis shows that the utility with larger
load forecasting error will suffer from an increase in its ABC.
We summarize this observation into the following corollary.

Corollary 1. Consider utility i, given fixed σ2
−i, E [ABCi] is

monotonically increasing w.r.t. σ2
i . Hence, if the uncertainty of

distributed renewable generation deteriorates the forecasting
accuracy and leads to a larger σ2

i , then utility i will suffer
from higher expected ABC.

We explain the intuition behind Corollary 1 as follows.
Recall that expected ABC of utility i can be expressed in
(7), where the integral can be interpreted as weighted sum
of φ(δi, σ

2
−i) with different δi > 0. When σ2

i increases,
∆i ∼ N

(
0, σ2

i

)
is more likely to take values of large

magnitude, resulting in a larger weight for φ(δi, σ
2
−i) with

large δi. Now, under the setting of Corollary 1, φ(δi, σ
2
−i) is

increasing w.r.t. δi from Lemma 1, thus E[ABCi] increases as
σ2
i increases.

B. Global Impact of Uncertainty of Distributed Renewable
Generation

We now show that the uncertainty of distributed renewable
generation in active districts not only increases the expected
ABC of the utility serving the active districts, but also de-
creases the expected ABCs of all other utilities participating
in the same market.

Corollary 2. Consider all utilities except utility i, given fixed
σ2
j , 1 ≤ j ≤ N and j 6= i, E [ABCj ] is monotonically

decreasing w.r.t. σ2
i . The “reverse” direction is also true:

consider utility i, given fixed σ2
i , E [ABCi] is monotonically

decreasing w.r.t. σ2
−i.

Remark: (i) Corollary 2 implies that a utility serving
customers with distributed renewable generation will “benefit”
other utilities on the same market by reducing their expected
ABCs, and conversely a utility serving customers without
renewable uncertainty will enjoy a lower expected ABC when
customers of other utilities install renewable generation. (ii)
Corollaries 1 and 2 are significant in that they reveal an
inherent economic incentive for utilities to improve their load
forecasting accuracy, in order to avoid economy loss and
even extract economic benefit when the electricity market is
operating under a volatile condition.

We present the intuition for Corollary 2 as follows. It suf-
fices to focus on the “reverse” direction, i.e., we fix σ2

i while
increase σ2

−i to evaluate the changes in E[ABCi]. According
to (7), when σ2

i is fixed, the distribution of ∆i, i.e., f∆i
(δi), is

fixed. From Lemma 2, we know that φ(δi, σ
2
−i) is decreasing

w.r.t. σ2
−i given fixed δi. Since each term in the integral in (7)

decreases as σ2
−i increases, E[ABCi] decreases as well.

C. Sufficient Conditions for Observing the Local and Global
Impacts

The local and global impacts reported earlier are obtained
under the linear pricing model in (3). An important question to
be addressed is under what condition on the pricing model and
what distribution on the imbalance ∆i, that we can observe
similar types of local and global impacts? In the following,
we answer the question and generalize the previous results.

Theorem 2. Assume that for any 1 ≤ i ≤ N , the imbalance
∆i follows a symmetric distribution with mean zero and
variance σ2

i , and they are mutually independent. Denote the
price function as ps = p(x). The following statements are
true:

(1) If p(x) is increasing w.r.t. x, then for any 1 ≤ i ≤ N ,
given a fixed σ2

−i, E[ABCi] monotonically increases as σ2
i

increases. In other words, Corollary 1 holds for any price
function that is increasing w.r.t. x.

(2) If p(x) is differentiable for all x except the origin, i.e.,
p′(x) exists for all x ∈ R\ {0}, and either

p(0+) = p(0−),

p′(ξ1) + p′(−ξ1) < p′(ξ2) + p′(−ξ2), ∀ξ1 > ξ2 > 0,
(8)

or
p(0+) > p(0−),

p′(ξ1) + p′(−ξ1) ≤ p′(ξ2) + p′(−ξ2), ∀ξ1 > ξ2 > 0,
(9)

then for any 1 ≤ i ≤ N , given a fixed σ2
i , E[ABCi]

monotonically decreases as σ2
−i increases. In other words,

Corollary 2 holds for any price function satisfying (8) or (9).

Remark: (i) Results in Corollary 1 and 2 are special cases
of Theorem 2 under assumptions of Gaussian distribution
for ∆i and the pricing model in (3). In particular, the price
function in (3) satisfies the condition in (9). (ii) Theorem 2
generalizes previous results to a larger class of pricing models.
For example, we can observe local and global impacts under
the two price functions given in Fig. 3. We note that the price
function on the left is continuous at ∆ = 0 while the right
one is discontinuous at ∆ = 0. (iii) This theorem applies to
any ∆i following symmetric distribution with zero mean.
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(a) b1 = b2 = 1

−1  −0.6 −0.2 0.2 0.6 1   

20

25

30

∆ (MWh)

p
s
 ($/MWh)

p
d

× 104

(b) b1 = 1.2378, b2 = 0.6638

Fig. 3. Nonlinear pricing function p(x) = pd × (1{x>0}(a1x
k + b1) +

1{x<0}(−a2(−x)k + b2) + 1{x=0}) with a1 = 0.0034, a2 = 0.0005,
pd = 20, and k = 1

2
, where 1{·} is the indicator function. Note that to show

the nonlinear relationship more clearly, we vary ∆ from -10GWh to 10GWh.

IV. EXPERIMENTAL RESULTS

A. Experiment Settings
Scenarios and Experiment Procedure. We simulate an

electricity market with 10 utilities. In the electricity market,
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each utility participates in both day-ahead and real-time market
operations. The spot price is obtained from the pricing model
in (3) and the parameters in [18]. For each hour, the ABC is
computed according to (2) and the retail price for the active
district is set as the same as the ABC, following real-time
pricing scheme for the retail customers. As in our experiments
we aim to measure the cost-saving of the active district, we
have used the total electricity cost of the active district as the
metric, which is defined as the product of the retail price and
residual demand.

Experimental Data. We use the hourly day-ahead price
data from the PJM market to conduct the experiments [5].
The mean of the day-ahead price is 35$/MWh. The hourly
electricity demands are obtained from 10 utilities in the PJM
market and the electricity consumptions from these 10 utilities
are scaled to have the same mean (2GWh). We incorporate
renewable energy supply sources by the wind power trace
from the PJM market and scale it down to obtain different
levels of renewable penetration in active district. We define the
renewable penetration in the active district as the ratio between
average renewable generation and peak demand of active
district. Unless otherwise specified, we assume the utilities
have 30% of its demand coming from the active district,
and the renewable penetration in active district is fixed at
10%. Meanwhile, weather information including temperature,
humidity, pressure, and wind speed are gathered from the
Pennsylvania State Climatologist [4] to perform load forecast-
ing.

B. Impact of Renewable Uncertainty

Purpose: As new types of retail customers with local
renewable sources in electricity supply chain, active districts
exhibit large fluctuations in their net demand due to the
uncertainty from renewables. Previous analysis highlights the
negative impact of renewable uncertainty on the load fore-
casting accuracy, but it remains unclear to what extent this
renewable uncertainty can affect the load forecasting accuracy.
This subsection aims to answer this question.

Nowadays, various load forecasting tools have been em-
ployed to perform the day-ahead prediction. For example,
similar day method, Artificial Neural Network (ANN), and
regression analysis are used in ISO-NE [1]. In our experi-
ments, we use an ANN model to conduct load forecasting,
and the load forecasting errors are obtained by subtracting the

forecasted demands from the true demands. Note that in the
experiments, we do not preset a model for the load forecasting
errors.

The artificial neural network, which is composed of a
number of interconnected neurons with different connection
weights, was first developed by researchers to mimic the
structure of the human brain. Through a learning process
based on the training data set, ANN adjusts the connection
weights among neurons and generates a mapping between the
inputs and the outputs. Once the ANN is trained, it can then
be utilized to predict target value based on the input data.
In our experiments, the training of a three-layer feedforward
neural network is performed by Neural Network Toolbox in
MATLAB [9] using the Levenberg-Marquardt algorithm. The
target value is the load consumption, and the input data to train
the ANN model include the weather information, the holiday
information, the 24-hour-ahead load consumption and the 48-
hour-ahead load consumption.

Observations:
We observe that the load forecasting errors in our ex-

periments do not follow normal distribution. To see this,
in Fig. 4 we plot the histogram of forecasting error for
a utility. The distribution is symmetric, and the mean and
standard deviation of the samples are 0.7659 and 9.7391,
respectively. We then use the Lilliefors Goodness-of-Fit Test
to perform the normality test on the load forecasting error
samples. It turns out that the null hypothesis (i.e., “the data are
normally distributed”) is rejected at the 5% significant level.
This observation demonstrates the robustness of our analysis.
Namely, for our main results to hold, the load forecasting
errors need not necessarily follow a normal distribution. As
stated in Theorem 2, the main results extend to any forecasting
errors that follow a symmetric distribution with zero mean.
In addition, we note that there are correlations in the load
forecasting errors among different utilities, and the largest
correlation coefficient is 0.76 in the experiments.

We define the normalized standard deviation as the standard
deviation of load forecasting error in all hours normalized by
the mean of actual load. As shown in Fig. 5, the load fore-
casting error increases as the renewable penetration continues
to grow in the active district. In particular, we can observe
an increasing normalized standard deviation from roughly
8% under no renewable condition to around 17% when the
renewable penetration reaches 50% in active district. We note
that although the mean absolute percentage error (MAPE)
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is commonly used as a measure of prediction accuracy of
a forecasting method in statistics, here we use normalized
standard deviation instead, since the variance is commonly
used to model the load forecasting error in the power system
literature [7], [17], [19], [23].

C. Impact of Increasing Load Forecasting Error

Purpose: As suggested in Sec. III, the increasing load
forecasting error in one utility will increase the ABC of this
utility and decrease the ABC of all other utilities on the same
market. In this subsection, we conduct experiments to verify
our theoretical results. Toward this end, we vary the renewable
penetration of the active district in one utility from 0% to 50%,
while fixed the renewable penetration of the active district in
all other utilities and measure the ABCs. We note that each
point in the following figures is the average ABC of the utility
under 17520 different executions (2 years hourly data).

Observations: Fig. 6 shows the average of ABC for the
utility with active district as its retail customer under different
levels of renewable penetration. The result depicts that as
renewable penetration increases, the ABC increases as well.
Note that when the renewable penetration reaches 50% in
active district, the ABC of the utility increases by more than
10% as compared to the case with no renewable penetration.
This observation further verifies the result in Corollary 1 on the
local impact of uncertainty in distributed renewable generation.

Fig. 7 demonstrates the decrease of the ABC for other
utilities (we have plotted the results for the utilities with
the highest ABC, the lowest ABC, and the average ABC of
other 9 utilities to keep the figure clear). This decrease is
consistent with the analysis in Sec. III, that the increasing
load forecasting error in one utility can benefit other utilities
by reducing their ABC. As compared to the amount of increase
in the ABC of the utility with active district (10% with 50%
penetration), the decrease in the ABC of the others is rather
minor (0.1% decrease with 50% penetration, on average).
From Fig. 5, we know that as the renewable penetration in
active district increases from 0% to 50%, the load forecasting
error of the utility will increase from 8% to 17%. Theoretically,
we can compute from (6) that the ABC of this utility will
increase by 10% and the ABC of other utilities will decrease
by 0.08% under our simulation setting (Please refer to the
experiment settings in Sec. IV-A, we use the mean of pd and
Di to approximate the ABC when σ−i takes two different
values, and calculate its relative change in percentage). In other
words, the simulation result matches the theoretical result. We
note that the local impact only affects one utility, while the
global impact can affect all other utilities in the electricity
market. In this sense, the global impact is significant as well.

D. Implication on the Cost-saving of the Active District

Purpose: The increase in the ABC of the utility eventually
leads to the increase in the retail price for customers. In this
way, even though the active district increases the renewable
penetration and reduces its electricity demand, it will observe
less cost-saving as compared to the case without renewable
uncertainty, since the increased retail prices caused by the

renewable uncertainty partially offset the benefit of the re-
newable generation. To evaluate the impact of the renewable
uncertainty on the cost-saving of active district, in this sub-
section, two different scenarios are considered: 1) the utility
predicts the day-ahead demand with ANN prediction method;
2) the utility has accurate day-ahead demand prediction. The
two scenarios differs in the utility’s ability to predict the future
demand. The second scenario serves as the benchmark to study
the impact of renewable uncertainty.

We define the cost-saving as η(x) = Cm−C(x)
Cm

, where Cm is
the cost of active district without renewable energy and C(x) is
the cost of active district with different renewable penetration
levels (x ∈ {5%, 10%, ..., 50%}). We denote ηANN (x) and
ηAP (x) as the cost-saving with ANN prediction method
and accurate prediction, respectively. Then the cost-saving
reduction is formally defined as ηAP (x) − ηANN (x). Small
cost-saving reduction indicates a small impact of renewable
uncertainty on the cost-saving of active district.
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Fig. 8. The percentage of cost-saving and cost-saving reduction in active
district

Observations: Results in Fig. 8 depict that the cost-saving
of active district increases with high renewable penetration.
This is reasonable as the renewable generation is free of
charge and the more renewable generation, the less electricity
active district needs to buy from the utility. However, the cost-
saving reduction in active district is increasing as renewable
penetration in active district increases, which demonstrates the
negative impact of renewable uncertainty. The uncertainty of
renewable increases the ABC of the utility and consequently
the retail price, which partially offset the benefit of renewable
generation in active district.

E. Impact of Increasing Renewable Penetration in Multiple
Utilities

Purpose: Previous experiments have focused on the sce-
narios that increase of renewable penetration occurs only in
one utility, while other utilities on the same market have
fixed renewable penetration. In practice, multiple utilities
may simultaneously suffer larger load forecasting error due
to increase of renewable penetration. In this subsection, we
consider the scenarios that multiple utilities have increasing
renewable penetration and investigate the changes in their
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ABCs3. More specifically, we assume that utilities in the
market can be categorized into two groups, with 6 of them
belong to group-1 and 4 of them belong to group-2. In this
experiment, we consider two scenarios for comparison. In
the first scenario, group-1 utilities have an annual increase
in renewable penetration at 5%, while group-2 utilities have
an annual increase at 10%. At year 0 all the utilities do not
have renewables at all and their renewable penetration start to
increase year by year. By year 5, the group-1 utilities have
25% renewable penetration and group-2 utilities have 50%
renewable penetration. In the second scenario, group-1 utilities
do not increase their renewable penetration, while group-2
utilities have an annual increase at 10%.
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Fig. 9. The mean of ABC for different groups of utilities.

Observations: Fig. 9 shows the mean of ABC for the two
groups of utilities in different scenarios. In the first scenario
(shown in solid line), we can observe that as renewable
penetration increases year by year, all the utilities in the market
suffer an increasing ABC. In particular, the utilities with higher
renewable penetration have higher ABCs. This result depicts
the significance of the local impact. In the second scenario
(shown in dash line), we can observe that the ABC of group-
1 utilities decrease slightly, which demonstrates the existence
of global impact from the group-2 utilities. In addition, we
note that the ABC of group-2 utilities in scenario 1 is slightly
smaller than that in scenario 2. This is because in scenario
1 the renewable penetration in group-1 utilities also increase
and they have global impact on the group-2 utilities.

V. CONCLUSION

In this paper, we investigated the impact of the uncertainty
from distributed renewable sources in active districts on the
efficiency of the deregulated electricity supply chain. Our com-
prehensive study demonstrated that the distribted renewable
uncertainty can lead to (i) an increase in the average buying
cost per unit electricity of the utility serving the active district,
termed as local impact, and (ii) a decrease in the average
buying cost per unit electricity of other utilities in the same
regional market, termed as global impact. Putting together,

3We note that when all the utilities increase the renewable penetration, the
total demand will decrease and it may lead to a lower day-ahead price, which
will decrease their ABC. In this paper, we do not consider this case and
assume that the day-ahead price is not affected by the decreasing demand.

these observations revealed the potential inefficiency in the
operation of the current deregulated electricity market that was
designed for the cases with low uncertainty in both supply and
demand. An interesting future direction is then to investigate
how to redesign the market operation to be robust against this
demand side uncertainty.

APPENDIX A
PROOF SKETCH OF LEMMA 1

Proof: Recall from (1) that the actual demand Di for a
particular hour of utility i is settled in two timescales: (i) an
amount of Di −∆i is settled in day-ahead operation at price
pd, and (ii) the remaining amount ∆i is settled in real-time
operation at the spot price ps expressed in (3). Since ∆i takes
symmetric values in φ(δi, σ

2
−i), summing over these two cases

will result in a fixed day-ahead market settlement pd. Thus,
the increase in δi will only affect the real-time settlement.
• When ∆i = δi > 0, the total mismatch ∆ follows
N
(
δi, σ

2
−i
)

where the variance σ2
−i is fixed under the

setting of Lemma 1. For large δi > 0, ∆ tends to take
large positive values. As spot price ps is increasing w.r.t.
∆, large positive ∆ leads to large positive ps (and indeed
large positive ps−pd according to (3)). Thus, in real-time
operation, the utility i will buy electricity at a statistically
high price to settle the positive mismatch δi.

• When ∆i takes the symmetric value −δi < 0 (of the
same magnitude), the total mismatch ∆ ∼ N

(
−δi, σ2

−i
)
.

Following similar arguments, the utility i will sell at
statistically low spot price to settle the negative mismatch.

In the first case, utility i will buy δi amount of electricity at
a price that is higher than pd and proportional to δi, denoted
as ps1. In the second case, it will sell δi amount of electricity
at a price that is lower than pd and proportional to (−δi),
denoted as ps2. Hence, the real-time settlement cost of utility
i, summing over these two equally-likely cases, i.e., δi(ps1 −
ps2) is positive and increasing w.r.t. δi, and thus φ(δi, σ

2
−i)

increases as (the magnitude) δi increases.

APPENDIX B
PROOF SKETCH OF LEMMA 2

Proof: Following similar arguments in the proof sketch of
Lemma 1, we know that σ2

−i affects φ(δi, σ
2
−i) only through

the real-time settlement. Meanwhile, when ∆i = δi > 0 is
fixed4, the total imbalance ∆ follows a normal distribution
with mean δi and variance σ2

−i. Let’s begin with the following
two simple cases to see the intuition:
• If a1 = a2, b1 = b2 in the pricing model, then the spot

price ps is a linear continuous function in ∆. Fig. 10
shows the spot price function and the distribution of ∆.
We can observe that the real-time settlement cost on
average is invariant to the changes in σ2

−i, due to the
symmetry property in the distribution of ∆.

• If a1 = a2, b1 > b2 in the pricing model, then the spot
price ps is a linear “step” function in ∆, as shown in
Fig. 11. Unlike the first case, when ∆ < 0, the utility

4Similar arguments can be applied when ∆i = −δi < 0.
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Fig. 13. ∆i = −δi < 0.

can buy electricity at a spot price that is much lower,
indicating a gain for the utility. In other words, as long
as the sign of ∆ is different from that of ∆i, utility i
will gain from the market. Increasing σ2

−i in this case
will increase the probability of utility i to gain, thus its
real-time settlement cost will decrease.

In Lemma 2, we consider the pricing model in (3), where
a1 > a2, b1 > b2. For ease of discussion, let’s denote the slope
of the spot price function as k1 when ∆ > 0 and k2 when
∆ < 0, respectively. Thus k1 = a1 > k2 = a2. In this case,
summing the real-time settlement cost over two equally-likely
cases, i.e., ∆i = δi > 0 and ∆i = −δi < 0, can be shown
to be the same as the case when summing over ∆i = δi > 0
and ∆i = −δi < 0 under the setting where k1 = k2. To see
this, let’s consider the following two cases:

• As shown in Fig. 12, if ∆i = δi > 0, when ∆ = −δ < 0,
the real-time settlement cost for utility i will increase by
(a1 − a2)δ as compared to the case when k1 = k2 = a1.

• As shown in Fig. 13, if ∆i = −δi < 0, when ∆ = δ > 0,
the real-time settlement cost for utility i will decrease by
(a1 − a2)δ as compared to the case when k1 = k2 = a2.

Now summing over these two cases results in a real-time
settlement cost that is the same as that of summing over these
two cases under the setting where k1 = k2. As discussed
before, when k1 = k2, increasing σ2

−i will decrease real-time
settlement cost. Consequently φ(δi, σ

2
−i) is decreasing w.r.t.

σ2
−i.

APPENDIX C
INTUITIVE EXPLANATION FOR GLOBAL IMPACT

In this appendix, we present the intuitive explanation for
the global impact, i.e., fixed σ2

i , E[ABCi] decreases w.r.t. σ2
−i.

According to the independent assumption of ∆i and ∆−i, the
E[ABCi] can be expressed as:

E[ABCi] =

∫ ∞
0

∫ ∞
0

ω(δi, δ−i)f∆i
(δi)f∆−i

(δ−i)dδidδ−i,

where

ω(δi, δ−i) =E[ABCi|∆i = δi,∆−i = δ−i]

+ E[ABCi|∆i = δi,∆−i = −δ−i]
+ E[ABCi|∆i = −δi,∆−i = δ−i]

+ E[ABCi|∆i = −δi,∆−i = −δ−i],

δi, δ−i > 0 and f∆i
(·) and f∆−i

(·) are the PDF of random
variable ∆i and ∆−i, respectively. Since δi+δ−i > 0, −(δi+
δ−i) < 0, we have

E[ABCi|∆i = δi,∆−i = δ−i]

=
pd
Di

(Di − δi) +
pdδi
Di

(a1δi + a1δ−i + b1),

E[ABCi|∆i = −δi,∆−i = −δ−i]

=
pd
Di

(Di + δi) +
pdδi
Di

(a2δi + a2δ−i − b2).

If δ−i < δi, we have

E[ABCi|∆i = δi,∆−i = −δ−i]

=
pd
Di

(Di − δi) +
pdδi
Di

(a1δi − a1δ−i + b1),

E[ABCi|∆i = −δi,∆−i = δ−i]

=
pd
Di

(Di + δi) +
pdδi
Di

(−a2δi + a2δ−i + b2).

Summing the above four terms we have for δ−i < δi,

ω(δi, δ−i) = 4pd +
2pdδi
Di

((a1 + a2)δi + b1 − b2). (10)

Similarly, when δ−i > δi, following similar calculation we
have

ω(δi, δ−i) = 4pd +
2pdδi
Di

(a1 + a2)δi. (11)

Now we can observe that fixed δi, when δ−i increases, if
it is always less (or larger) than δi, from (10) (or (11)) we
know that the ω(δi, δ−i) remains unchanged. If δ−i increases
from δ−i < δi to δ−i > δi, the ω(δi, δ−i) decreases due to the
positive term b1 − b2. Thus ω(δi, δ−i) is non-increasing w.r.t.
δ−i. Note that in this case, the gap (b1 − b2) at ∆ = 0 in the
pricing model in (3) is the key factor that cause the ABCi to
decrease.

Finally, we note that as σ2
−i increases, the random variable

∆−i is more likely to take value of large magnitude, resulting
in a large δ−i. Thus given fixed σ2

i , E[ABCi] decreases as σ2
−i

increases.
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