Cost-Effective Low-Delay Design for Multi-Party
Cloud Video Conferencing

Mohammad H. Hajiesmaili, Lok To Mak, Zhi Wang, Chuan Wu, Minghua Chen, and Ahmad Khonsari

Abstract—Multi-party cloud video conferencing architecture
has been recently advocated to exploit rich computing and
bandwidth resources in cloud to effectively improve video con-
ferencing performance. As a typical design in this architecture,
multiple agents, i.e., virtual machines, are deployed in different
cloud sites, and users are assigned to the agents. Then, the
users communicate through the agents, and the agents might
transcode the recorded videos given the heterogeneities among
devices in terms of hardware specification and connectivity. In
this architecture, two critical and nontrivial challenges are: (1)
assigning users to agents to reduce the operational cost and
the user-to-user conferencing delay, (2) identifying best agents
to perform transcoding tasks, taking into account the heteroge-
neous bandwidth and processing availabilities. To address these
challenges, we cast a joint problem of user-to-agent assignment
and transcoding-agent selection. The ultimate objective is to
simultaneously minimize the cost of the service provider and
the conferencing delay. The problem is combinatorial in nature
which belongs to the NP-hard node assignment problems. We
leverage the Markov approximation framework and devise an
adaptive parallel algorithm that finds a close-to-optimal solution
to our problem with a bounded performance guarantee. To
evaluate the performance of our solution, we implement a
prototype video conferencing system, and carry out trace-driven
experiments. In a set of large-scale experiments using PlanetLab
traces, our solution decreases the operational cost by 77% and
simultaneously yields lower conferencing delay compared to an
existing alternative.

Index Terms—Video Conferencing, Cloud Computing, Net-
work Combinatorial Optimization, Parallel Algorithm.

I. INTRODUCTION

OWADAYS the usage of video conferencing as a multi-

party applications has skyrocketed with 51.7% annual
growth [3], which is mainly due to the popularity of front-
facing cameras on laptops, tablets, and smart phones, and
recent advances in cellular networks. Moreover, it is esti-
mated that cloud applications generate over 90% of mobile
data traffic by 2018 [4], especially in multimedia networking

M. H. Hajiesmaili is with the Whiting School of Engineering, The Johns
Hopkins University, Baltimore, USA (email: hajiesmaili @jhu.edu). This work
is done when M. H. Hajiesmaili was with The Chinese University of Hong
Kong.

L. T. Mak and M. Chen are with the Department of Information En-
gineering, The Chinese University of Hong Kong, Hong Kong (emails:
{mlt014,minghua} @ie.cuhk.edu.hk).

Z. Wang is with the Graduate School at Shenzhen, Tsinghua University,
Shenzhen, China (e-mail: wangzhi@sz.tsinghua.edu.cn).

C. Wu is with the Department of Computer Science, The University of
Hong Kong, Hong Kong, (e-mail:cwu@cs.hku.edu.hk).

A. Khonsari is with the School of ECE, College of Engineering, University
of Tehran, and with the School of Computer Science, Institute for Research
in Fundamental Sciences (IPM), Tehran, Iran, (email: ak@ipm.ir).

The preliminary version of this paper has appeared in IEEE ICDCS’15 [23].

N
{ és/l /g

(c) Cloud

\:

K%
@

(a) Clinet/Server (b) Peer-to-Peer

Fig. 1. Different video conferencing architectures

applications [38]. Hence, a promising trend is to leverage
cloud computing services for multi-party video conferencing
systems. The exploitation of rich on-demand resources span-
ning multiple geographic regions of a distributed cloud boosts
the conferencing experience and overcomes the constraints of
resource-limited user devices (e.g., [19], [25], [39], and see
[41] for commercial examples).

A. Cloud Video Conferencing: Architecture and Benefits

As illustrated in Fig. 1(c), in cloud conferencing architec-
ture, multiple agents, i.e., virtual machines, are deployed in
different geographical locations, and users join a conferencing
session by subscribing to the cloud agents. Then, the users
exchange the streams indirectly via the cloud agents. In
addition, the potential high processing tasks such as transcod-
ing are performed by the proper agents. In this way, the
lightweight operations performed on user devices consume
less resources of the mainly battery-limited devices. On the
other hand, high demand tasks are shifted to the resource-rich
cloud agents, boosting the conferencing experience. This cloud
architecture has more potentials compared to the traditional
client/server (C/S) (Fig. 1(a)) and P2P (Fig. 1(b)) conferencing
architectures [13], [30], for two main reasons.

1) Better at meeting stringent delay requirements. The
tolerable conferencing delay is around 400 ms [26]. There
are extensive studies on reducing the delay of different video
applications [16], [25], [29]. In C/S architecture, depending on
the distance between the servers and the clients, the end-to-end
conferencing delay might be large. In P2P architecture there
is no server in the middle, hence users communicate directly
together that reduces the delay [13], [30]. Measurements in
[19] have shown that the delay in a cloud architecture is
comparable or even lower than the delay in P2P architecture.

2) Providing more bandwidth and processing capacity
at lower costs. User devices in video conferencing are mainly
smart phones that are highly heterogeneous in terms of screen
resolution, hardware, and operating system [32]. This hetero-
geneity, along with different network connectivity demands

for on-the-fly transcoding to convert the streams from one
format/bitrate to another [21], [31]. The dedicated servers in
C/S architecture can be used to perform such high complexity
transcoding tasks. However, this architecture is not scalable
and on-demand. On the other hand, the resource-limited de-
vices in P2P architecture cannot be exploited to execute such
computation-intensive tasks. In contrast, the cloud agents can
effectively perform high demand tasks and this architecture
provides scalability by using on-demand cloud agents, at a
lower cost.

B. Critical Problem and Key Design Challenges

Nevertheless, there are two critical challenges to minimize
the service provider’s cost and the conferencing delay.

(1) How to select a proper agent for each user is an
important design issue that has substantial effects on both user-
to-user delay and the costs to the service provider. The existing
solutions follow nearest assignment policy, i.e., each user is
assigned to the nearest nearby agent [19], [39]. This policy
is not optimal in terms of user-to-user conferencing delay
and inter-agent traffic cost'. The reason is that the nearest
policy is oblivious to whereabouts of the other users in a
conferencing session and diversity of transcoding latency in
heterogeneous agents. For instance, in Fig. 2, the SG agent
must be chosen for user 4 if we follow the nearest policy.
However, assigning user 4 to the TO agent (the second nearest
one) is better as (i) the inter-user delay is lower because the
TO agent is closer to other agents, e.g., the delay of user
4 to user 1 via TO is at least 27 + 67 = 94, whereas this
value via the SG is at least 20 + 117 = 137; (ii) as user
3 is already assigned to the TO agent, it is beneficial to
assign user 4 to the TO agent rather than the SG agent to
avoid exchange of the streams. This assignment decreases
traffic cost. Note that reducing the cloud cost, i.e., traffic
and processing costs, has been studied for other types of
multimedia streaming applications [27], however, the multi-
party nature of video conferencing applications makes the
problem more challenging.

(2) Proposing an approach that attempts to find a proper
agent to transcode the streams has not been studied. The
agents are heterogeneous in terms of resource availability;
hence, they might have different transcoding latencies. The
agent that must perform transcoding task should be chosen,
to minimize the cost and latencies. For example in Fig. 2,
we previously demonstrated that choosing the TO agent for
user 4 is better since it reduces the delay and operational cost.
However, since the SG agent has more computational power
than the TO agent, it is better in terms of the latency of the
potential transcoding tasks.

C. Summary of Contributions

Almost all of the existing studies that we are aware,
neglect to consider the cost to the service provider and

lAccording to our rough estimate, based on real data from Amazon EC2,
the monthly cost of inter-region stream exchange may be in the order of
multi-million dollars for a cloud conferencing service provider in the scale of
Skype.

[OSession1 OSession2 {>Cloud Agents |

Fig. 2. A video conferencing scenario with 7 users (PlanetLab nodes) in
2 sessions and 4 cloud agents (Amazon EC2 instances). The numbers on
edges are real-world measured latency values. Agents in larger diamonds have
higher processing capabilities. SG: Singapore, TO: Tokyo, OR: Oregon, SP:
Sao Paulo, HK: Hong Kong, BR: Brazil, CA: Canada, JP: Japan.

simply adopt the nearest policy for user-to-agent assignment
(e.g., Airlift [19] and vSkyConf [39]). To the best of our
knowledge, this study is the first that aims to improve the cloud
video conferencing design by tackling the user-to-agent and
transcoding assignments problem in a unified combinatorial
optimization framework. The main contributions of this study
are summarized below.

> We formulate the User-to-agent Assignment Problem
(UAP), that tries to select the user-to-agent assignment and
transcoding assignment in a multi-party application with the
objective of simultaneously minimizing the operational cost to
the service provider and conferencing delay. The problem is
subject to the capacity constraints of the diverse agents and the
user-to-user conferencing delay constraints. The problem is a
nonlinear combinatorial optimization problem in the category
of NP-hard node assignment problems [6] which are difficult
to solve due to persistent dynamics in the system and large
problem size.

> We leverage the Markov approximation framework [12]
which is a technique for solving the combinatorial network
problems in a distributed fashion. We devise an efficient
parallel and iterative algorithm to solve the UAP, which runs
locally in a representative agent of each session and converges
to a close-to optimal assignment. The algorithm adapts to the
system dynamics, provides a bounded approximation gap, and
is robust against the inaccurate measurements of the problem
data. In addition, we improve the convergence of the algorithm
by proposing another initialization algorithm called AgRank,
which is a simple scheme with low complexity.

> We implement a cloud video conferencing system proto-
type using Amazon EC2 [1] platform and also carry out trace-
driven evaluation experiments using PlanetLab [17] nodes. The
results demonstrate the significant improvement of our solution
compared to the existing alternatives. In a representative exper-
imental setting of PlanetLab traces, our algorithm outperforms
the nearest assignment policy [19], [39] by reducing the
operational cost and the delay by 77% and 2%, respectively.

The rest of this paper is organized as follows. We review
the related work in Sec. II. In Sec. III, we introduce the cloud
video conferencing system model. The problem is formulated

in Sec. IV. Then, in Sec. V, our solution design is proposed. In
Sec. VI, we propose a fast session initialization algorithm. We
discuss the implementation and the complexity issues of our
solution design in Sec. VII. The results of the prototype system
implementation and trace-driven experiments are demonstrated
in Sec. VIII. Finally, the paper is concluded in Sec IX.

II. RELATED WORK

Multi-party Video Conferencing. Previously, P2P archi-
tecture [13], [30] was considered as an alternative to traditional
client/server architecture. In [13], following network utility
maximization framework, a problem of video conferencing
in P2P architecture has been studied. In another recent work
[30], the authors propose a scheme to maximize video quality
under uplink-downlink capacity constraints for peer-to-peer
multi-party video conferencing. However, in P2P there is no
powerful server in the architecture which hinders executing the
high demand tasks such as transcoding. The cloud architecture
for video conferencing has been proposed in Airlift [19] for
the first time, and it suggests to use cloud bandwidth resources
to boost the conferencing experience. In vSkyConf [39], the
computational resources of the cloud is exploited for executing
processing tasks, in addition to the dedicated cloud communi-
cation infrastructure. These studies assume nearest assignment
policy, which is not optimal in a multi-party application
in terms of intra-cloud traffic and user-to-user conferencing
delay. Two recent studies [25], [43] propose different server
selection/placement and topology control approaches to only
minimize the latency in transcoding-free video conferencing,
without taking into account the operational cost. Finally,
the delay-constrained video streaming in different network
infrastructures and applications has been studied previously,
e.g., in wireless and wireline networks [9], [16], [22], [24],
[29], [35], [37]. For example, the authors in [37] propose
a wireless-aware cloud server scheduling policy for mobile
gaming applications. In contrast, this work focuses on a cloud
video conferencing scenario, which has a different set of
challenges mainly because of its multi-party and interactive
nature. Finally in [33], a stochastic approach for cloud server
scheduling with the goal of load-balancing has been proposed.
This approach is for the general applications and cannot be
leveraged to multi-party video conferencing settings mainly
due to the delay consideration of such applications.

Virtual Network Embedding. In network virtualization
[20] multiple virtual networks cohabit the same substrate
network. In cloud video conferencing architecture, one can
imagine the underlying cloud agents as the substrate networks
and the conferencing sessions as the virtual networks on top
of them. In [31], a competitive online algorithm has been
proposed for general resources, i.e., bandwidth and processing
resources, for delay-sensitive multimedia applications. The
solution follows virtual network embedding approach and
could be customized for video conferencing scenarios in cloud
architecture. Unlike [31], further study of the UAP reveals
that this is a challenging combinatorial problem that makes
the approach in [31] inadequate. The idea of migrating the
current configuration has been widely used in VN embedding

TABLE I
KEY NOTATIONS
[Notation | Definition

S Set of video conferencing sessions, S 2 |S|
4 u Set of users, U = |U|
2 U(s) Users of session s

s(u) Session of user u
P(u) Set of other parties in user u’s session
g R Set of video representations, R = |R|
E k() Bitrate of representation r
3 o Upstream representation of user u
) rd, Downstream repr. of user u from user v
) P U x U transcoding matrix; 6y, = 1, if
s(v) = s(u) and 72 # rd; 0, otherwise

L Set of cloud agents, L £ ||

uy Upload capacity of agent [
Jg d; Download capacity of agent [
& t Transcoding capacity of agent [
< Transcoding latency of agent [from representation

a1 (7“1,1"2) r1 to representation ro

D L x L inter-agent delay matrix

H L x U agent-to-user delay matrix
A N User assignment variable; 1 if user u is assigned to
g tu agent [; 0, otherwise
= - Transcoding task assignment variable; 1 if TSu =r
o ruv and the transcoding is done at agent [; 0, otherwise

problems to improve the acceptance rate of VNs [42], energy
saving [34], and house cleaning [14]. These goals could be
imagined as additional motivations for proper assignment in
the UAP. Finally, we note that in another recent paper [28],
the cost minimization problem of cloud clone migration using
a Markov Decision Problem has been studied. While the
problem studied in [28] is largely different from ours, the
approach in [28] towards providing a trade-off between the
migration cost and the content transmission cost could be
considered as a potential method to extend our work to the
more general setting.

III. VIDEO CONFERENCING MODEL

A video conferencing system in cloud architecture is as-
sumed with multiple sessions. Each session is established
among multiple users. Within a session, each user transmits
its video in a specific representation which represents a fixed
format/bitrate. Each user is assigned to a cloud agent and inter-
user transfer is done indirectly through the agents. In addition,
each user demands specific representations from other parties
of the session. Within each particular pair of the users in
the session, the upstream representation of the sender might
vary from the downstream one demanded by the receiver. In
this situation, real-time converting of the representations, i.e.,
transcoding, is required which is carried out by the agents.
The key notations of the system model are listed in Table I.

A. Session and User

Denote S and U as the set of conferencing sessions and
users, respectively. Let U(s) C U be the users of session
s and s(u) € S be the session that user u belongs to. Let
P(u) C U be the set of other parties in user u’s session, (i.e.,

P(u) = {vjv e, s(v) = s(u),v # u}).

B. Representation

By representation, we mean a particular format, bitrate,
and resolution of a video, e.g., for YouTube videos, the
standard representations are (360p, 1Mbps), (480p, 2.5Mbps),
(720p, 5Mbps), (1080p, 8Mbps), etc. Denote R as the set
of possible representations in cloud conferencing system. The
upstream representation of user u, denoted by 5 € R, is an
input to the problem and takes into account its connection
and device hardware specification. Moreover, the downstream
representation, 74, € R represents the required representatlon
from another user v in the session. The parameter rd, € R is
the input to the problem, and it can be set so as to further limit
the transcoding of each stream to a single target representation
for all of the other users, e.g., to transcode each stream to the
lowest common resolution to simplify the design.

By k(r), we represent the bitrate of representation 7.
Moreover, let 8 = [0,]uxv be the transcoding matrix, where
0., = 1 given that u and v belong to a same session and
produce/demand different representations, i.e., s(v) = s(u)
and r # rd . and 6, = 0 otherwise. Note that is consid-
ered in our model in a general form. It could be customized
to be restricted to practical constraints, e.g., to support only
high-to-low quality transcoding operations we can change the
definition of 6,,, = 1 if s(v) = s(u) and 73, < r2. Finally, we
assume these representations are computed by another design
scheme, e.g., the approach in [13]. Hence, in this study, the
representations are given as the input to the problem. However,
because of the dynamic network conditions, representations
are subject to change. Our solution design can effectively adapt
to these dynamics, as explained in Sec. V.

C. Cloud Agent

Agents, in set L, are typically virtual machines that a
conferencing service provider, like Skype, leases from a cloud
service provider, like Amazon. There can be multiple agents
with diverse computation and communication resources each
of which in a different data center. The agents are heteroge-
neous resources with the following properties for agent I: (i)
u; represents the upload capacity of [(in Mbps); (ii) d; is the
download capacity of [(in Mbps); (iii) ¢; is the transcoding
capacity of [(the number of concurrent transcoding tasks).
We assume that each agent is a virtual machine with a fixed
amount of processing resources for the transcoding tasks, i.e.,
one unit of its transcoding capacity, such that its number
of concurrent transcoding tasks can be derived; and finally,
(iv) o;(.) represents the transcoding latency of [(in ms). The
transcoding latency o;(r1,72) is an increasing function of the
bitrates of the input (1) and output (r3) representations, given
that transcoding is typically done by decoding the source
stream to an intermediate format, and then re-encoding the
stream from the intermediate format to the destination bitrate
[39]. The more computing capacity an agent has, the more
concurrent transcoding tasks it can perform, and the faster
each of the tasks can be completed.

Let D = [Dy|rx1 be the inter-agent delay matrix and
H = [H,)xu be the agent-to-user delay matrix, where Dy
is the delay between agents [and k and Hj, is the delay

Fig. 3. A video conferencing scenario: S =1,U =4,L = 3, R = {1,2}.
Users are labeled by their upstearm and downstream representations. Squares
denote transcoding operations that are required due to different representations
requested by the source and the destination users in some flows.

A} P

40, ap 60 140

{10,104,100} S

@f;§ ﬁ
@1 40 200/@
@ 130 200@

{10,10,8,50} {10,10,8,50}

Fig. 4. Illustration of user-to-agent and inter-agent latency values of con-
ferencing scenario of Fig. 3. Agents in diamonds are labeled with quadruple
{ui,d;, t;,01}. The labels in edges are either user-to-agent or inter-agent
latency values. A possible user-to-agent assignment is highlighted in gray.

between agent [and user u. We have D;; = 0 and D;;, = Dy,
Vi, k € L. Considering the dedicated cloud infrastructure, it is
reasonable to assume that any pairs of the agents are connected
together. Similar to the representations, in practice, the inter-
agent and agent-to-user delay and transcoding latency values
are subject to change, and thus a proper design should adapt
to dynamics (Sec. V-C).

D. Illustrative Example

Fig. 3 illustrates a conferencing session with four users.
There are three cloud agents and possible user-to-agent assign-
ments are depicted in Fig. 4. In Fig. 3, when the upstream rep-
resentation of a user (r}' = 2, say) differs from the downstream
representation requested by another user (rg; = 1, say), a flow
is marked using dotted lines with a transcoding task in the
middle (e.g., the flow from user 1 to user 2). On the other hand,
in flows where the upstream and downstream representations
are the same solid lines are used (e.g., flows from user 2 to
user 1). Fig. 4 plots a potential user-to-agent assignment by
highlighting the assigned links with thick lines, i.e., users 1,
2, and 3 are assigned to agent 1 and user 4 is assigned to
agent 2. Fixing this user-to-agent assignment, agents 1 and
2 are the best candidates for hosting the transcoding tasks.
However, the result of comparing the transcoding capacity and
latency values of these agents (eight concurrent tasks as the
transcoding capacity and the transcoding latency 50 ms for
agent 2, and transcoding capacity 4 and latency 100 ms for
agent 1, respectively) suggests that agent 2 is the best host for
the transcoding tasks.

IV. USER-TO-AGENT ASSIGNMENT PROBLEM
A. Optimization Variables

Let A\;, be the user assignment variable such that A\;,, = 1
if user u is assigned to agent /; and \;, = O otherwise. Each
user must be assigned to one agent. Hence we have

ZAW:L Yu e U, (1)
lel
Aiw € {0,1}, Vie LVYuel.)

The second decision variable indicates at which agents the
transcoding tasks must be performed. Each transcoding task
could be performed at the source agent, the destination agent,
or a tertiary agent. Denote 7., as the transcoding task
assignment variable where 7., = 1 if user v requires
representation from user u (i.e., 73, = r) and the transcoding
is done at agent [; and -, = 0 otherwise. 7y, satisfies the
following constraints:

Z Z Viruv = Ouv, Yu € U, Vv € P(’U,), 3)

leLreER
Yiruw € {0,1},Vl € L,Vr € R,Yu e U,Yv € P(u). (4)

Constraint (3) states that the transcoding of the flow from « to
v is needed only when 6, = 1, and exactly one agent should
carry out the transcoding to the required representation.

B. Capacity Constraints of Cloud Agents

To formulate the capacity constraint, first we intro-

duce some notations for the ease of explanation. Let
A s

Vipy = MaXyep(u) Viruw denote whether agent [transcodes u’s
stream to representation r for at least one other participant in
u’s session (1 yes and 0 no), and z/l'u £ maX,cR Vi, denote
whether agent [transcodes u’s stream at all (1 yes and 0 no).
The download capacity constraint of agent [is formulated as

S (k) + Y) £ A€ L ©)

uel keL kL

where the first term is due to the last-mile traffic of users
that are assigned to agent /. The second term represents the
outgoing traffic of user u from all of the other agents towards
agent [. Denote py;, as the total download traffic at agent [
that is the result of receiving the stream via another agent k
and originated from user u, as follows:

fiktn = Mk, k(1) + (max Ao) A (1 = v,)R (73)
veP(u),
gu'u:O
)\ v 1- >\ u U 9
+ Z Uér%)ax 1w)(1) Vi k(1)
r;ﬁr Tuu =r

where the first term represents the traffic from u’s agent k
to agent [so that u’s stream can be transcoded at [; the
second term depicts the traffic resulting from sending the
upstream to other parties; and the last term is the traffic caused
by bitrate changes after transcoding. Note that the definition
of p1,, captures cloud-level multicasting by considering the
inter-agent stream of each user once, regardless of the number
of parties on the target agent. In this way, this formulation

takes the advantages of multicasting in the design. For the
upload capacity we get:

S (e X w0+ Y k) Sw VL (©)

ueU veEP(u) kel k#l

Now we formulate the transcoding capacity constraints of the
agents. Note that regardless of the number of destinations,
transcoding of user w’s upstream to representation r occupies
one unit of the transcoding capacity of agent [. This constraint

is formulated as
DD v <ty VIEL ™
ueEU rerR

C. End-to-End Delay Constraints of Users

The end-to-end delay of a flow from user u to user v is the
summation of the following.

1) Propagation delay from w to its agent [; Hy,.
2) The propagation delay between u’s agent and v’s agent,
including two cases:

a) from w’s agent [to v’s agent k directly; Dy; and
b) from w’s agent ! to a tertiary agent m (for transcod-
ing) and then to v’s agent k; Dy, + Diye.
3) From v’s agent k to v; Hp,.
4) (Possibly) the transcoding latency at an agent [;
01 (Tuv Tgu)
We ignore any queuing delay at the agents, as our bandwidth
and transcoding capacity constraints ensure the availability of
resources for the respective tasks.
Using the transcoding matrix ¢ and defining Oup =1 =040,
we get the user-to-user delay of flow u — v as

duv - Z ()\lquu +)\llev) +0_uv <Z Z AluAkalk>

leL leL kel
uv <Z Z Z Yiruv (le /\k:u + Ak:v) + Ul(Tws vu))) .
leLkeLreR

Let D™&* be the maximum acceptable delay, so, the end-to-
end conferencing delay constraint is

duy < D™ Vu €U, Vv € P(u). (8)

D. Optimization Problem

Objective function. The goal is to minimize the operational
cost to the conferencing service provider, and the conferencing
delay. The operational cost to the provider has two parts.

1) The bandwidth cost, which is expressed
as G(zs) = D cpqi(zs) for session s, where
Tis = D ueui(s) 2oker kil Mhlu is the total incoming traffic

to agent [from other agents in session s, and vector
s = [ris|iec. gi(.) is a convex and increasing function.
By expressing the bandwidth cost in this way, we focus the
inter-agent traffic cost. We do not consider the traffic cost
between the users and the agent, since it is fixed regardless
of the user-to-agent assignment.

2) Transcoding cost at the agents in session s is similarly
formulated as follows

H(y,) =Y Myis) ys = Wishec,vis = >, D Virus

lel uweU(s) TER

where 15 indicates the number of transcoding tasks that agent
[performs in session s and h;(.) is a convex function. In our
experiments, we use linear functions for both bandwidth cost
and transcoding cost functions.

The delay cost at users in session s is described by function
F(d,), where dg = [du]ucu(s), du = MaXy.uep(v) dou 18
the maximum end-to-end delay experienced by user u for
receiving streams from other parties, and F'(.) is a convex
and increasing function, e.g., F'(ds) = (3., cp(s) du)/|U(5)],
which corresponds to the average user delay in the session.
Problem formulation. We cast the user-to-agent and transcod-
ing task assignments problem as

UAP: min
AlusViruw

> (a1 F(dy) + asGlas) + asH(y,))
sES
s.t. Constraints (1)-(8).

Remarks. The solution to the UAP finds the optimal user-to-
agent and transcoding task assignments. The objective is to
minimize the service provider’s total bandwidth (G(x)) and
processing costs (H (y,)), and the conferencing delay (F'(ds)).
Considering delay in the objective function is intended to
ensure that conferencing delay is as small as possible, although
we have constrained their stringent requirement in Eq. (8). The
objective function is the sum of the above costs, weighted
by design parameters oy, as, and ag. The constraints of the
problem are the bandwidth and processing capacity of the
cloud agents (Sec. IV-B) and the end-to-end delay of the users
(Sec. IV-C). Design parameters «; > 0 can be tuned towards
any desired trade-off between reducing the operational cost
and conferencing delay, e.g., a larger «; leans more towards
optimizing conferencing delay, whereas larger ao and a3 stress
to reduce the cost to the service provider. In Sec. VIII, we
experimentally evaluate the effect of these parameters. Finally,
we remark that the user-to-agent assignment part of the UAP
belongs to the node assignment problems which are NP-
hard [6]; hence, tackling the UAP even in a centralized manner
is difficult. We highlight that a proper solution for this problem
have to be adapted to the dynamics in the system and be
implemented in large-scale systems.

V. MARKOV APPROXIMATION-BASED PARALLEL
ALGORITHM

The goal is to devise a parallel and adaptive solution for the
UAP. By parallel, we mean that each session solves its local
problem separately. In this way, the solution can be imple-
mented for the large-scale conferencing systems. The recently
proposed Markov approximation approach [12] is a general
framework to tackle network combinatorial problems (see e.g.,
[5], [44]) that allows us to design a parallel and adaptive
solution. We proceed to briefly introduce the framework.

A. Markov Approximation Framework

Generally, the Markov approximation framework [12] aims
to devise distributed solutions for network combinatorial opti-
mization problems by 1) constructing a certain Markov chains
with a target steady-state distribution following the structure
of the problem and 2) investigating a particular structure of
the Markov chain that could be implemented in distributed
manner.

We first begin with a brief primer on the theoretical approxi-
mation framework. Denote f = {\,~v} € F as an instance of
feasible solutions to the UAP, where F is the set of all of
the feasible solutions, i.e., all of the assignments that satisfy
constraints (1)-(8). Let ®; be the objective value of the UAP
when the assignment is f. In addition, let p; be the fraction
of time that f is used as the solution to the UAP. Using these
notations, we can rewrite the UAP as follows:

prq)f, S.t. pr =1.

feF feF

UAP-EQ:

min
Ps ,VfEJ:

We cast an approximate version, UAP-3, of the UAP-EQ
using log-sum-exp approximation [10] as

. 1
UAP-3 : min Zp]ﬂbf—kf prlogpf
pr VfEF B
fer fer
S.t. Z pr =1,
feF

where [is a sufficiently large fixed parameter that can be
exploited to control how accurate is the approximation [12].
The UAP-S is a convex optimization problem. The optimal
solution could be achieved by solving the KKT conditions [10]
as follows:

exp(—B®Py)
Zf'e]-‘ exp(—ﬁ@f/) ’

and the optimal objective function value is

d = —% log (Z exp(—ﬁéf)).

feF

P} = fer, ©)

(10)

Moreover, the optimality gap between the optimal objective
values of the UAP-$ and the UAP is characterized by

1
B

Note that the approximation gap vanishes as [approaches
infinity, i.e., the larger S is, the more accurate the approxima-
tion model is. We further investigate the effect of 8 on the
performance of our algorithm in Sec. VIIIL.

We use the above approximation framework to find the
optimal solution to the UAP-S by time-sharing among its
feasible solutions f € F according to p’} in (9). The key is
to construct a Markov chain that models feasible solutions as
states, achieves stationary distribution p%,V f, and allows effi-
cient parallel construction among the conferencing sessions.

in®; — —log|F| < ® < min®;. 11
mindy og | F| < < min @y (11)

@,

@,
T<=>
g

(a) All 8 feasible assignment solutions, assuming both cloud agents are powerful enough and the end-to-end delays

of both flows are always less than D™a*,

OO WREICIRIO NS @ @
peverirdpdods ot sl
@ @ 4@ 5@ 6@ @ @ (D ®

R
IOWE

; \
\MO\‘\
O

:

;

!

(b) The Markov chain

Fig. 5. A simple video conferencing scenario with 1 session, 2 users, 1 transcoding operation, and 2 agents

B. Algorithm Design

We propose a parallel algorithm that finds a close-to-optimal
assignment by simulating such a Markov chain over time.
Specifically, the algorithm starts with a feasible assignment
solution f of the UAP, and transits to another feasible solution
f" according to transition rate g, ;.. After several iterations, the
algorithm converges to the Markov chain’s steady-state p} as
defined in (9), which is the optimal solution to the UAP-/ and
a close-to-optimal solution to the UAP. The transition rates,
however, must be carefully computed to achieve the steady-
state distribution. In addition, although we have given the
concrete form of p; in (9), we should note that it is computed
using KKT conditions in a centralized fashion, which requires
complete, static information of the entire system. This incurs a
further challenge of computing the transition rates in a parallel
fashion (in each session respectively), to achieve the desired
overall stationary distribution.

Based on the theoretical insights from [12], the sufficient
conditions for constructing such a Markov chain are to ensure
that in the Markov chain the following are true:

1) any two states are reachable from each other (i.e., the
Markov chain is irreducible); and

2) the detailed balance equations are satisfied,

pagp =ppasp,p V[P EF.

The sufficiency of the above conditions is the key in
providing two degrees of freedom in Markov chain design
that leads to a parallel implementation of the desired Markov
chain.

The first degree of freedom is that we are allowed to set
the transition rate between any two arbitrary states to zero,
i.e., remove their edge in the underlying graph, if they are
still reachable from the remaining Markov chain. By doing
so, the stationary distribution of the modified Markov chain
distribution is still p}. In the implementation, direct transition
between two states is equivalent to the migration of the current
assignment to another feasible one. This imposes migration
overhead to the system, that could be minimized by allowing
direct links between two states in the Markov chain only if
either one user or transcoding assignment differs between the
two states. An example Markov chain is depicted in Fig. 5(b)
corresponding to the scenario in Fig. 5(a). Consider feasible
solution 1 in Fig. 5(a) where both users and the transcoding
task are assigned to L1, and feasible solution 2 where both
users are assigned to L1 but the transcoding task is assigned
to L2. They are different in only one particular assignment;

ie.,

hence, a direct link is depicted between these two states in
Fig. 5(b).

The second degree of freedom is that for two assignments
(Markov chain states) f and f’ with direct transitions, there
are many options in the design of transition rates gy and
gy, To facilitate parallel Markov implementation, we design
the transition rate between two states as

1
q5,f = T eXp (§ﬁ(¢f - ‘I’.f'))

1
= Texp (55(@s,f - q’s,f')>v

where @, ; and ®, s are the local objective values of session
s (e., a1 F(ds) + a2G(xs) + asH(y,)) at solutions f and
/', respectively, and T is a positive constant. In our algorithm
based on the value of 7, each session initiates a timer and
when timer expires, the session (possibly) migrates to another
assignment. Larger 7 reduces the convergence of the algo-
rithm, but it may impose the overhead of frequent assignment
migration. In Sec. VIII, we explain the migration overhead of
our algorithm in more details. Note the transition rate could be
computed using the local values of each conferencing session,
thereby the algorithm can be implemented per session locally,
in a parallel manner. The rationale is that we allow only
one decision variable’s value to be different between f and
f'. Note that by this construction of the transition rates, the
detailed balance equations are respected.

Our proposed algorithm is listed as Alg. 1. First, we mention
that the algorithm runs in each session separately, hence it is
parallel. In addition, the algorithm procedure is performed in a
representative agent of each session, e.g., the session initiator’s
agent, so, it has no overhead on the user devices. In the HOP
procedure, session s migrates to another feasible assignment
with a probability proportional to the local objective value of
the target solution. Since our design allows migrating to the
assignments with at most one change in assignments and given
the residual capacity of the agent as in Line 11, session s finds
Fs (Line 12) which is the set of all target feasible assignments
with one change. We refer to Sec. VII-C for the complexity
analysis of computing the target feasible assignments.

In the WAIT procedure, if session s receives a FREEZE
message, it pauses its countdown, as another session is mi-
grating. After receiving UNFREEZE message which means that
the migration is done, it resumes the countdown, which is
still exponentially distributed. This is true since exponential
distribution is memoryless and because of this property an
exponential count down timer is used in our algorithm design.

12)

Algorithm 1: Markov approximation-based assignment
(for each session s)

1 procedure WAIT

2 Generate an exponentially distributed random number
with mean % and begin countdown according to it

3 while the timer has not expired

4 if Receive a FREEZE message then Pause

5 if Receive a UNFREEZE message then Resume

6 end

7 Invoke HOP

8 end procedure

9 procedure HOP

10 Broadcast a FREEZE message to other sessions

11 Fetch the updated list of residual capacities of agents

12 F; « set of all feasible solutions with only one
different decision

13 Migrate to solution f’ € F, with probability
proportional to exp(3B(®,,r — P f/))

14 Broadcast a UNFREEZE message to other sessions

15 Invoke WAIT

16 end procedure

Last but not the least, we remark that the FREEZE message is
an intra-message within the cloud agents that are synchronized
together in a cloud environment owned by a single cloud
provider. The result in Proposition 1 shows that regardless of
the initial assignment, Alg. 1 converges to the stationary state
with provable convergence time, with the proof given in [12].

Proposition 1: Alg. 1 realizes a continuous-time Markov
chain, which converges to the stationary distribution in Eq. (9).

C. Robustness to System Dynamics and Noisy Measurements

In practice, almost all inputs to the UAP are subject to
change because of dynamics in network connectivity, duration
of the conferencing sessions, and users’ device conditions.
As an important feature, our parallel algorithm is robust to
variations due to system dynamics, e.g., arrival and departures
of the sessions. In particular, upon arrival of a session, a
feasible assignment must be found, and the session’s local
algorithm is initiated by generating its counting process.

In addition, our algorithm adapts well to inaccurate mea-
surements of the problem data. For example, in practice, the
latency values between the users and the agents are perturbed.
Furthermore, transcoding latency is highly dependent on both
content characteristics and agents’ load. Hence, the transition
rate of each session is subject to the perturbation with in-
accurate values of either @,y and ®, ;. In this situation,
the Markov-based algorithm converges to another steady-state
point, since the objective value is perturbed. The Markov
approximation framework comes with an optimality gap bound
when the problem data is perturbed.

We assume the perturbed @ ; belongs to one of the following
discrete values:

1 1
[(bf—Af,...,(I’f—fAf,(I)f,(I)f—FfAf,...,(I)f—FAf]
ng ng

and the perturbed ®; takes the value ®; + j/nyA; with

probability n; and Z?ifnf n;,¢ = 1, where Ay is the error

bound on configuration f and ny is a positive constant.
Theorem 1: The stationary distribution of the perturbed

assignment-hopping Markov chain is

by = 5y exp(—5®y)
> prer Op exp(=Boy)’

where §; = Z?i_nf 0,5 exp(f %), and optimality gaps are

VfeF, (13)

0 < ave _ gmin < W’ (14)

0< pave _ pmin < (U+05";;)105L 4 Amax’ (15)

where 05" = 37 > i 0us is the total number of
transcoding tasks, A™** = maxscr Ay is the maximum
perturbation error, ®™" = min;cx ®; is the optimal value
of the UAP, o2& = > fe 7Dy is ‘the expected objective
with the original Markov chain, and ®2V&8 = " feF Dy®y is
the expected objective with the perturbed Markov chain.

The proof is given in the Appendix. Egs. (14) and (15)
demonstrate that when [increases the optimality gap of the
perturbed Markov chain decreases; however, larger 8 values
increase the convergence time of Alg. 1 [44].

VI. AGRANK: A FAST SESSION BOOTSTRAPPING
ALGORITHM

We proceed to design an agent ranking algorithm for
identifying a good starting feasible assignment solution, for
bootstrapping the Markov approximation based algorithm. The
intuition is that if Alg. 1 can start from a close-to-optimal
assignment, not only high-quality conferencing experience can
be provided to the users starting from the beginning, but also
fast convergence of the algorithm can be achieved.

A first idea might be using the nearest assignment policy
[19], [39] as the initial assignment. However, the motivating
example in Sec. I clearly evinces that nearest assignment is a
resource-oblivious and inter-agent proximity oblivious policy,
which only considers the one-hop distance between the user
and the nearest agent, while this agent might be far away from
other agents and also might impose severe inter-agent traffic
to the service provider. Instead, we prefer to seek a resource-
aware and proximity-aware policy.

In a nutshell of the algorithm which we refer to as AgRank,
upon the start of a session, a potential agent of the session
(e.g., the nearest agent to the session initiator) identifies a set
of potential agents, ranks the agents, and assigns the users and
transcoding tasks based on the ranking. Based on the example
in Fig. 2, inter-agent delay is important in agent ranking, in
addition to the agents’ residual capacities and user-to-agent
delay. The design of AgRank is motivated by the idea of
Google’s PageRank [8] and topology-aware node ranking in
virtual network embedding [15] and is summarized in Alg. 2.

A. Constructing the Potential Agent List

In the first step, the set of all potential agents is constructed.
Toward this, a set of top n"8Pr closest agents, N (u), for
user u are picked as the possible agents and then the set

Algorithm 2: AgRank (for each session s)

// The 1lst step — constructing
potential agents
1 J\/(u) < @ // set of potential agents of user u
2 N(s) — (Z) // set of potential agents of session s
3 foreach user u € U(s) do
4 N (u) + top n"8"" nearest agents to u in L.
5 | N(s) < N(s)+N(u)
6 end
// The 2nd step — agent ranking
7¢>0,t+0

Iz)] = BN

// al,cil,fl, and 0; are the normalized
residual quadruple of agent [
9 repeat
w | 7Tt +1]« wT[HD
1 0« ||w[t + 1] — =[t]||
12 t—t+1
13 until § < ¢
14 T < T[t]
// The 3rd step — user assignment
15 foreach user u € U(s) do
16 ‘ Assign u to I3 « arg maxje(u) T;
17 end

of potential agents of the session, N(s), is constructed by
putting together A/(u) of all users (Lines 1-6). The parameter
neb* € [1, L] is the maximum number of potential agents for
each user that could be set on a per-session or per-user basis.
Setting n"&P" = 1 yields the nearest assignment. In addition,
n"8bT = [, results in subscribing all users to the highest ranked
agent, which is similar to the traditional C/S architecture,
where the whole session is maintained in a single server.

B. Agent Ranking

The second step is to rank the potential agents based on
a random walk model [8]. We define the initial ranking of
agent | € N (s) as in Line 8, based on the normalized
residual quadruple of agent [. In this way, the initial ranking
of the agents is aware of the resource availability of the
potential agents which turns AgRank into a resource-aware
algorithm. Let D = [le]‘ N(s)|x|N(s)] as normalized inter-
agent delay matrix where le = (minl/’kzeN(s) Dl’k/)/ley
and 7w = [m];ec is the vector of ranking of the agent. The
rank vector is updated iteratively with w7 [t + 1] = w7 [t]D,
whose rationale is to capture inter-agent delay in ranking and
find the optimal ranking of the agents (Lines 7-14). It has
been shown that this iterative procedure converges very fast
to a unique vector * = [7]];c., as the optimal ranking of
the agents [8].

C. User and Transcoding Assignment

Next, user u is assigned to the highest ranked agent within
the set A/(u) (Line 16). For transcoding task assignment, we

apply the rule of thumb that when there are at least two
destinations with the same downstream representations for the
outgoing flow of a particular user, assigning the corresponding
transcoding task at the source agent is a good solution, whose
transcoded stream can be served to more than one destination.
One may imagine other schemes for assigning the transcoding
tasks, but here we are only seeking a good feasible one.

VII. DISCUSSION
A. Differences with Similar Approaches

Note that in simulated annealing [36], Gibbs sampling,
and other Monte Carlo Markov chain approaches [11], the
general approach of iterative execution following a particular
Markov chain is similar to the Markov approximation frame-
work [12]. However, different from the Markov approximation
framework, above approaches do not explicitly design the
Markov chain in such a way that it can be implemented in
a parallel manner. Thus, the alternative approaches cannot be
used to devise parallel algorithm for the UAP. In addition, the
alternative approaches are inadequate in handling the dynamics
in the system and perturbation of the input to the problem.
As discussed in Sec. V-C, Markov approximation, however, is
robust against both system dynamics and inaccurate data. Last
but not the least, our framework can provide a performance
guarantee that is characterized in Eq. (11). Finally, in another
recent work [18], a solution approach based on spectral cluster-
ing methodology has been proposed for resource selection and
task assignment in distributed computing environments. In this
paper, we apply Markov approximation framework to solve our
problem because of the need for parallel implementation and
robustness against system dynamics and perturbation in input
measurements.

B. Real-Time Assignment Migration without User Experience
Degradation

Our proposed algorithm executes in an iterative manner and
eventually converges to a bounded neighborhood of the opti-
mal solution. However, these iterations come at the expense of
imposing overhead needed to establish the new assignments.
In each migration, the users might suffer from a momentary
interruption, such as a freeze in playback, since switching into
a new cloud agent is in progress. To prevent degradation of the
user experience, one may suggest to keep both the new and
the old assignments alive during the switching process. Finally,
we note that transcoding migration could be seamlessly imple-
mented by finishing the current task in the previous agent and
beginning the next transcoding in the next agent, following
the idea of segmentation-based transcoding [21]. We give the
implementation details in Sec. VIII.

C. Complexity Analysis

Recall that a representative agent at each session (e.g.,
the session initiator’s agent) runs the proposed algorithms.
By doing so, user devices are not involved in running the
procedures of the algorithms, thereby there is no overhead
in the user devices. At each iteration of Alg. 1, the time

complexity of calculating all of the feasible solutions with
only one different decision is O(|U(s)|>L). In addition, for
each potential target assignment, a delay feasibility check is
required which could be done by measuring the round-trip time
of each target assignment and pruning those that are beyond
the end-to-end delay requirement of conferencing session as
in Eq. (8). Note that the transition probability in Line 13 of
Alg. 1 could be computed given the local input of the session.
Thus, Alg. 1 is a parallel algorithm that does not require the
global knowledge of the other conferencing sessions.

The iterative scheme in AgRank yields precision e with
the number of iterations proportional to max{1, —loge} [8].
Constructing candidate agents, user assignment, and transcod-
ing assignment takes a computation time of O(|U/(s)|L log L),
O(JU(s)|) and O(|U(s)|?), respectively.

VIII. PERFORMANCE EVALUATION

Our experimental results are categorized into two different
sets of experiments with different goals. First, we implement
a prototype conferencing system (Sec. VIII-A), to investi-
gate the practicality of the algorithms in real environment
with several actual users in different locations. Second, using
PlanetLab traces [17], we implement large-scale experiments
(Sec. VIII-B), to investigate the effectiveness of the proposed
algorithms in Internet-scale scenarios.

The baseline for evaluating the effectiveness of the proposed
solution is the nearest assignment policy (Nrst), i.e., the
assignment policy used in Airlift [19] and vSkyConf [39]. The
transcoding tasks are assigned to the agent of the sender of the
stream at the initial assignment in either Nrst or our proposed
AgRank. For the performance metrics, we report the inter-
agent traffic (corresponding to the operational cost) and the
conferencing delay, i.e., the average delay of all of the users,
where the delay of each user is d, = max,.,ep(v) dvu- We
set D™ = 400 ms according to ITU-U G.114 [26]. Finally,
as the proposed algorithm runs in an iterative manner, we
report the evolution of the results over the time, wherein the
initial values are either Nrst [19], [39] or our proposed AgRank
assignments.

A. Experiments on Prototype System

1) Prototype Overview and Setup: A prototype cloud video
conferencing system is implemented based on our solution
design. The OpenCV library [2] is used to record video
streams of device cameras in two different representations
and to transcode the streams. In addition, we deploy six
Linux-based EC2 instances in different regions. These virtual
machines are used as the cloud agents in our prototype. A
software is implemented and installed on the virtual machines
to run our solutions and to stream the videos and also transcode
different representations. Conferencing users are located in
ten regions (five in the US and Canada, three in Asia, one
in Middle-east, and one in Europe). We install a lightweight
video conferencing application on the user devices. This
software only transfers the conferencing videos to/from the
virtual machines.

*)
a
@
¥
=3

by

N
=)
m:

>
5300

33}

o

Inter—agent Traffic (|
2
Conferencing Del

N
2
=]

=)
N
=3
=)

50 150 200 50 150 200

100 100
Time (s) Time (s)

(a) Inter-agent traffic (b) Conferencing delay

Fig. 6. Evolution of traffic and delay over time (200 seconds) by executing
Alg. 1 with 8 = 400 and Nrst for initial assignment

5 320,
@ —_
g £310
= S
520 &
£ 3 300
= 2
z 5
5 2 290
o [
g 15| 5
g & 280
= o

10 270

50 100 150 200 50 100 150 200
Time (s) Time (s)

(a) Inter-agent traffic (b) Conferencing delay

Fig. 7. Evolution of traffic and delay over time (200 seconds) by executing
Alg. 1 with 8 = 200 and Nrst for initial assignment

Unless otherwise mentioned, the bandwidth and transcoding
capacities of the cloud agents are considered sufficiently large.
In addition, the transcoding latency of agents are in [30, 60]
ms, which varies based on the processing capability of each
EC2 virtual machine. We remark that the agent associated
with the initiator of each session is responsible for executing
Alg. 1 and AgRank, hence by migrating the execution of
the algorithms to the cloud agents, no additional overhead
is imposed to the client devices. Finally, each session is
established among 3-5 participants and there are in total ten
sessions.

2) Implementation Details of Alg. 1: As for the main
parameter in Alg. 1, we set 8 = 400. This value is in
order of the logarithm of the state space of the problem [12].
Moreover, we set timer expiration to [0, 10] seconds based
on exponential distribution. The migration transparency (See
Sec. VII for details) is done as follows. First, we remark
that at each iteration one assignment is migrated. In this
way, if the previous assignment is teared down immediately,
there would be an interruption on the receiving streams of
the other participants. In the prototype system, we can see
a frozen screen for 2-3 frames, which is less than a second.
Our solution to mitigate this negative effect is as follows. The
migrated device streams its video to both the previous and
the new agents for a period of less than 30 ms, on average,
according to the distance between user and agent. We note that
this overhead, whose volume is around 13.2 Kb is negligible
compared to the amount of traffic reduction after migration
due to the execution of our algorithm.

In Figs. 6-11, the initial traffic/delay values at time O are
results of either the Nrst or AgRank assignment policies, and
running Alg. 1 following the initial assignment reduces them
over time.

Sessioh Arrival 320

; Session Arrival
Session Departure

N

Session Departure

=)

Inter—agent Traffic (Mbps)

20 40 100 120 20

60 60
Time (s) Time (s)
(a) Inter-agent traffic (b) Conferencing delay

Fig. 8. Evolution of traffic and delay over time by executing Alg. 1 with

8 =400 in the presence of session arrival/departure

n
=3
W
18}
=3

o

>
© 300

=)

Inter-agent Traffic (Mbps)

Conferencing Del

N
N
=]

o
N
=3}
=)

20 40 60 80 100 20 40 60 80 100
Time (s) Time (s)

(a) Inter-agent traffic (b) Conferencing delay

Fig. 9. Evolution of traffic and delay over time (100 seconds) by executing
Alg. 1 with 8 = 400 and AgRank with n"8P* = 2 for initial assignment

3) Traffic and Delay Reduction of Alg. 1: The results in
Fig. 6 clearly show that Alg. 1 reduces traffic and delay
of the initial assignment by Nrst significantly. In addition,
after around 180 seconds it converges to the final assignment.
To explore the impact of parameter 5 on the evolution of
Alg. 1, we also execute our algorithm with 8 = 200. The
result is shown in Fig. 7. Alg. 1 with a lower value of 3
is highly fluctuating and converges to the final solution more
slowly. Consequently, a larger value of 3 is preferable. In a
scenario with session arrival/departure (Fig. 8), six sessions
are initialized at time O, four more sessions arrive at ¢t = 40,
and three sessions depart at ¢ = 80. The results show that the
algorithm adapts well to the dynamics and converges to the
new stable assignment quickly.

4) Effectiveness of AgRank: Now, we report the results
of Alg. 1 when our proposed AgRank algorithm is used for
the initial solution of user-to-agent assignment. The results in
Fig. 9 demonstrate that AgRank outperforms Nrst by reducing
initial inter-agent traffic from 22 Mbps to 15 Mbps. In addition,
the initial conferencing delays are almost similar for both
AgRank and Nrst. Also, the inter-agent traffic and conferencing
delay values of AgRank at 100th second are the same as those
with Nrst at around 200th second. This shows that starting
from a good initial point by AgRank, Alg. 1 converges faster.
Note that AgRank is a fast algorithm, and takes less than 200
ms to find the initial assignment of the users after session
initialization. In addition to AgRank, which is a proper algo-
rithm that reduces the convergence time of Alg. 1, the other
candidate parameter that can further reduce the convergence
is the countdown parameter which may, however, increase the
migration overhead of the algorithm.

5) Case Study: The previous experiments demonstrated the
average/aggregate results of ten sessions. In this experiment

Mlinitial 400

. [CAverage| 350
[Last

300

3 50

S

Inter-agent Traffic (Mbps)
Conferencing Delay (ms)
P)
S
3

o
o

12 3 45 6 7 8 9 10 1.2 3 5 6 7 8 9 10
Session Index Session Index

(a) Traffic per session (b) Delay per session

Fig. 10. Per-session improvements of Alg. 1 with Nrst as the initial
assignment
3.5 - 4002
— Session 1 (5 users) e — Session 1 (5 users)
@ 3 - - -Session 8 (4 users) - : - - -Session 8 (4 users)
g - = Session 9 (3 users) £ 3500 i - = Session 9 (3 users)
2258 > : . - :
o 3 % AN LN S B o A Te L
S 2 8300
o o
€ 1.5 S
5 g 250
F 1 S |
g 5 200
Eo05 o -
: oo Tronbibomminseind S gpaetinstn
H 4
0 150 200 S0 50 100 150 200

50

100
Time (s) Time (s)

(a) Inter-agent traffic (b) Conferencing delay

Fig. 11. Evolution of traffic and delay with Alg. 1 for the case of 3 sample
sessions with different number of users

shown in Figs. 10-11, we study the results of a particular
session in details. A comparison between the initial values
in Fig. 10 with Nrst as initialization, and the average and
last values of executing Alg. 1 clearly shows that Alg. 1
reduces both inter-agent traffic and the conferencing delay
of all of the users. More specifically, in Fig. 11, the traffic
and delay of three random sessions are shown. In session §,
following Nrst policy, four users are assigned to three different
EC2 instances in Tokyo, Singapore, and Ireland. However,
by executing our algorithm, all of the users are assigned to
Tokyo agent, which reduces the inter-agent traffic to zero. This
migration eliminates the inter-agent traffic and also reduces the
average delay of the users by 18% (388 to 318 ms). Finally,
we note that because of the probabilistic nature of our solution
design, a session may migrate to a worse assignment for some
time, e.g., migration of session 9 at ¢ = 131, but can recover
soon, e.g., session 9 migrates back to the optimal assignment
at t = 141. As a “rule-of-thumbs”, our solution recommends
assigning the users as much as possible to the same agents,
but not if this increases the user delay.

B. Large-Scale Trace-Driven Experiments

1) Experimental Setup: In this section, we scrutinize the
performance evaluation of solution using Internet-scale sce-
narios where we set up trace-driven experiments using 256
PlanetLab nodes as the users and the traces of seven EC2
instances as the agents. The user-to-agent and inter-agent delay
values (approximately RTTs divided by 2) are from [7], [40].
We use four different representations 360p, 480p, 720p, and
1080p. A sparse transcoding matrix is considered such that
80% of users use 720p as their representation. We generate
100 random scenarios for each set of experiments and the
statistical results are reported. In each experiment 200 out of

TABLE II
INTER-AGENT DELAY MATRIX (IN MS) FOR AMAZON EC2 VMSs [7], (VA:
VIRGINIA, OR: OREGON, CA: CALIFORNIA, IR: IRELAND, SI:

SINGAPORE, TO: TOKYO, SY: SYDNEY, SP: SAO PAULO)

[[ORJCAJT IR [SIJTTO [SY [SP |
VA 413 | 423 54 127 | 101 133 81.5
OR 115 | 855 | 117 | 67.5 | 100.5 104
CA 85 94 72 89.5 93
IR 117 | 138 168 120
SI 453 | 121.5 | 1815
TO 72 150.5
SY 166.5
1

05} 1
O I 1 I I I I

10 20 30 40 50 60 70

g 250 = 2250 =
) : 3
2 i S
2* - : 220 T L . 3
k= 0 - 5 T T -
s =2 + 1 s |2
o 1501 = o - Q Q
5) € 1501 * :
S - o 8 i -
Nist ap =0 ay =0y a; =0 AgRank ay =0 ay=a a; =0

(a)

(b)

Fig. 13. Comparison of conferencing delay of Alg. 1 with two initialization
AgRank and Nrst and with different values of design parameter o

Latency difference threshold

Fig. 12. The fraction of the number of users (among total 256 PlanetLab
nodes) whose p,, is lower than a threshold

256 PlanetLab nodes are randomly chosen, who join different
sessions, each of which with at most five users.

2) Trace Data Analysis: In this section, we briefly analyze
the trace data [7], [40] of the latency values between 256
PlanetLab nodes and seven EC2 instances. We have two goals.

First, to investigate the contribution of inter-agent latency
values in total end-to-end delays. Toward this, we report
the inter-agent latency values in Table II. The values clearly
show that the latency between some agents is quite large. On
average, inter-agent latency values are 101 ms, which is about
25% of total end-to-end delay requirements (400 ms). This
means that the contribution of inter-agent latency to end-to-
end delay is not negligible in most cases. In addition, the
results in Table II further corroborate our decision to consider
inter-agent proximity values when ranking the potential agents
in the AgRank algorithm.

Second, to further investigate the scenario in which some
conferencing users are quite close to more than one cloud
agent (e.g., the HK user in Fig. 2 is in the vicinity of
both the TO and the SG cloud agents). In such cases, by
choosing agents intelligently, both conferencing delay and
inter-agent traffic can be reduced simultaneously. We intro-
duce p, = ming gec|Hp — Hiul, Vu € U, ie., the difference
between the user-to-agent latency of user u and its top two
closest cloud agents (e.g., ps = 27 — 20 = 7, in Fig. 2). In

TABLE III
THE EFFECT OF DESIGN PARAMETER « ON ALG. 1
Alg. Cost | TInit. Alg. 1
a1 =0
oz =0 a1 = a| (traffic
(delay only) only)
Nry | Traffic | 1443 979 329 521
Delay | 166 149 150 200
R |_Traffic | 384 499 335 296
& Delay | 176 162 163 214

g - 2 200 -

£350 8 g :

= ~ L .

2300 . 2150 ¢ H

£ - - 5 . -

£ 250 Lo £ 8 -

= 200 g : £ 100 ' : T

7 150 e T g - 5 3

i - g 500 % : :

£ 100 E__ g - H -
Nrst ap=0 ag=ay a; =0 AgRank =0 ay=ay oy =0

(@) (b)

Fig. 14. Comparison of inter-agent traffic of Alg. 1 with two initialization
AgRank and Nrst and with different values of design parameter o

Fig. 12, we show the fraction of the number of PlanetLab
nodes (among all 256 nodes) whose p, is lower than a
threshold. The results show that 76% of the PlanetLab nodes
are close to two different agents with a delay difference lower
than 35 ms. Thus, in most cases each user is close enough to
at least two cloud agents, so the design space for assignment
is large.

3) Effect of Design Parameters: Parameters oy and o are
the weighting parameters of the hybrid objective function. In
this experiment, we investigate the effect of these parameters
on the performance of our algorithm. For simplicity ag = 0.
Table III and Figs. 13-14 show the highlights of the com-
parisons. The results in Table III demonstrate that when the
importance of cost and delay are the same, i.e., a; = g,
Alg. 1 with Nrst (AgRank) as initialization reduces the traffic
and the delay compared to Nrst by 42% (77%) and 10% (2%),
respectively. Moreover, initialization by AgRank reduces the
traffic by 73% at the expense of a 6% higher conferencing
delay compared to Nrst. Figs. 13-14 show the statistical results
for the conferencing delay and inter-agent traffic with different
values of «. The results in Fig. 13 demonstrate that the
conferencing delay of AgRank is slightly higher than Nrst.
However, the inter-agent traffic of AgRank is significantly
lower than in Nrst, as shown in Fig. 14.

Above result clearly shows that the nearest policy yields
neither minimal delay nor minimal traffic cost. Furthermore, it
signifies that our solution design improves the user experience
and reduce the operational cost.

4) Performance of AgRank when Bandwidth and Transcod-
ing Capacities of Agents Are Limited: The previous results
showed that AgRank significantly outperforms Nrst by reduc-
ing the initial traffic cost. This reduction could be translated
into an increased success rate of the initial assignment, i.e.,
all users in the system can successfully subscribe to agents,
by serving more sessions with limited capacities of the agents.

© AgRank#3
AgRank#2
Nrst

© AgRank#3
AgRank#2
80 Nrst

IS [}
o =)

N
=]

% of Successful Scenarios
% of Successful Scenarios

60

0 0Y 600 700 800 900 30 40 50
Mean Bandwidth Capacity (Mbps) Mean Transcoding Capacity (#)

(a) different bandwidth capacities (b) different transcoding capacities

Fig. 15. Comparison of AgRank and Nrst

v T -

-
- o
T T T 5 3

.
T
1000 B
i

v

n!

N
N
3

4

1

a
=3
S

n
=1
S

o
=3
S

Inter-agent Traffic (Mbps)
>
3

Conferencing Delay (ms)
=
3

N
S

0 T

%Bé%

(a) Inter-agent traffic (b) Conferencing delay

Fig. 16. The impact of n"&P* on AgRank

In Fig. 15, we show the percentage of successfully initialized
scenarios (out of 100 random scenarios), with two versions
of AgRank, AgRank#2 with n"&*" = 2 and AgRank#3 with
n"8P" = 3. and Nrst under different average bandwidth
capacities (Fig. 15(a), unlimited transcoding capacity) and
transcoding capacities of the agents (Fig. 15(b), unlimited
bandwidth capacity). We observe that with AgRank#3, all 100
random scenarios can be successfully initialized under aver-
age bandwidth capacity 750 Mbps, while with the resource-
oblivious Nrst, only 8% of the randomly generated scenarios
can be successfully initialized. The higher success rates of
AgRank#3 than AgRank#2 show that picking among a larger
number of potential agents provides a larger feasible set. To
explore this further, we compare the performance of AgRank
under different values of n”8P* in Fig. 16. Clearly, nhsbr — 1,
by which AgRank is equivalent to Nrst, yields the highest
traffic cost. With n™8P* = [all users of each session
are subscribing to one agent and hence suffer from long
conferencing delays.

IX. CONCLUSIONS AND FUTURE DIRECTIONS

This study addresses the problem of user-to-agent as-
signment and transcoding task assignment in cloud video
conferencing architecture. Considering the challenges of the
problem due to the underlying large-scale combinatorial prob-
lem, we devise a parallel and adaptive solution to optimize
the assignment tasks. The algorithm achieves a suboptimal
solution with a bounded performance guarantee. Observations
on prototype system implementation corroborate our claim that
user assignment is a critical design issue in cloud architecture
that can lead to a big difference in entire system performance.
In addition, trace-driven simulations demonstrate that our
solution design outperforms the existing solutions in terms of
reduced delay and cost, and thus demonstrates its viability as
a win-win solution for both users and conferencing service

provider. Finally, in future research, a promising direction
to tackle is the more general problem in which other tasks,
rather than transcoding are performed at the cloud agents. The
problem could be further generalized to consider other types of
communication and computation cloud resources for general
interactive real-time multimedia applications.

ACKNOWLEDGMENT

The work presented in this paper was supported in part
by National Basic Research Program of China (Project No.
2013CB336700) and the University Grants Committee of the
Hong Kong Special Administrative Region, China (Area of
Excellence Grant Project No. AoE/E-02/08 and Collaborative
Research Fund No. C7036-15G), and the National Natural
Science Foundation of China under Grant No. 61402247, and
Hong Kong RGC grants 718513, 17204715, and 17225516.

REFERENCES

[1] Amazon elastic compute cloud, http://aws.amazon.com/ec2/.

[2] http://opencv.org/.

[3] Cisco VNI service adoption forecast, 2012-2017. White Paper, Febru-

ary, 2013.

Cisco VNI global mobile data traffic forecast update, 2013-2018. White

Paper, February, 2014.

[5] B. Alinia, M. H. Hajiesmaili, and A. Khonsari. On the construction of
maximum-quality aggregation trees in deadline-constrained WSNs. In
IEEE INFOCOM, pages 226234, 2015.

[6] D. G. Andersen. Theoretical approaches to node assignment. Technical
Report, 2002.

[7] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein, and
I. Stoica. Highly Available Trans.: virtues and limitations. In VLDB,
2014.

[8] M. Bianchini, M. Gori, and F. Scarselli. Inside PageRank. ACM Trans.
on Int. Tech., 5(1):92-128, 2005.

[91 H. Bobarshad, M. van der Schaar, A. Aghvami, R. Dilmaghani, and

M. Shikh-Bahaei. Analytical modeling for delay-sensitive video over

wlan. [EEE Trans. on Multimedia, 14(2):401-414, April 2012.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge

University Press, 2004.

P. Bremaud. Markov chains: Gibbs fields, Monte Carlo simulation, and

queues, volume 31. springer, 1999.

M. Chen, S. C. Liew, Z. Shao, and C. Kai. Markov approximation

for combinatorial network optimization. [EEE Trans. on Information

Theory, 59(10):6301-6327, 2013.

X. Chen, M. Chen, B. Li, Y. Zhao, Y. Wu, and J. Li. Celerity: A low-

delay multi-party conferencing solution. In ACM Multimedia, pages

493-502, 2011.

X. Chen, Y. Luo, and J. Wang. Virtual network embedding with border

matching. In JEEE COMSNETS, pages 1-8, 2012.

X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang.

Virtual network embedding through topology-aware node ranking. ACM

SIGCOMM Comp. Comm. Rev., 41(2):38-47, 2011.

S.-P. Chuah, Y.-P. Tan, and Z. Chen. Rate and power allocation for

joint coding and transmission in wireless video chat applications. IEEE

Trans. on Multimedia, 17(5):687-699, 2015.

B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak,

and M. Bowman. Planetlab: an overlay testbed for broad-coverage

services. ACM SIGCOMM Comp. Comm. Rev., 33(3):3-12, 2003.

N. D. Doulamis, P. Kokkinos, and E. Varvarigos. Resource selection for

tasks with time requirements using spectral clustering. /IEEE Trans. on

Computers, 63(2):461-474, 2014.

Y. Feng, B. Li, and B. Li. Airlift: Video conferencing as a cloud service

using inter-datacenter networks. In /EEE ICNP, 2012.

A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hesselbach.

Virtual Network Embedding: A Survey. [EEE Comm. Surv. & Tut.,

15(4):1888-1906, 2013.

G. Gao, W. Zhang, Y. Wen, Z. Wang, and W. Zhu. Towards cost-efficient

video transcoding in media cloud: Insights learned from user viewing

patterns. IEEE Trans. on Multimedia, 17(8):1286-1296, 2015.

[4

=

[10]
(11]

(12]

[13]

[14]

[15]

(16]

[17]

(18]

[19]

(20]

[21]

[22] M. H. Hajiesmaili, A. Khonsari, A. Sehati, and M. S. Talebi. Content-
aware rate allocation for efficient video streaming via dynamic network
utility maximization. Journal of Network and Computer Applications,
35(6):2016-2027, 2012.

M. H. Hajiesmaili, L. T. Mak, Z. Wang, C. Wu, M. Chen, and
A. Khonsari. Cost-effective low-delay cloud video conferencing. In
IEEE ICDCS, pages 103-112, 2015.

M. H. Hajiesmaili, M. S. Talebi, and A. Khonsari. Multi-period network
rate allocation with end-to-end delay constraints. /EEE Trans. on Control
of Network Systems, 2017.

Y. Hu, D. Niu, and Z. Li. A geometric approach to server selection for
interactive video streaming. IEEE Trans. on Multimedia, 18(5):840-851,
May 2016.

ITU-T. G. 114. One-way transmission time, 18, 2000.

Y. Jin, Y. Wen, and K. Guan. Toward cost-efficient content placement
in media cloud: Modeling and analysis. IEEE Trans. on Multimedia,
18(5):807-819, 2016.

Y. Jin, Y. Wen, H. Hu, and M.-J. Montpetit. Reducing operational costs
in cloud social TV: an opportunity for cloud cloning. IEEE Trans. on
Multimedia, 16(6):1739-1751, 2014.

A. Khalek, C. Caramanis, and R. Heath. Delay-constrained video
transmission: Quality-driven resource allocation and scheduling. [EEE
Journal of Selected Topics in Signal Processing, 9(1):60-75, 2015.

E. Kurdoglu, Y. Liu, and Y. Wang. Dealing with user heterogeneity
in p2p multi-party video conferencing: Layered distribution versus
partitioned simulcast. IEEE Trans. on Multimedia, 18(1):90-101, Jan
2016.

J. Liao, P. Chou, C. Yuan, Y. Hu, and W. Zhu. Online allocation
of communication and computation resources for real-time multimedia
services. IEEE Trans. on Multimedia, 15(3):670-683, 2013.

Y. Liu, F. Li, L. Guo, B. Shen, and S. Chen. A server’s perspective
of internet streaming delivery to mobile devices. In IEEE INFOCOM,
pages 1332-1340, 2012.

S. T. Maguluri, R. Srikant, and L. Ying. Stochastic models of load bal-
ancing and scheduling in cloud computing clusters. In /IEEE INFOCOM,
pages 702-710, 2012.

E. Rodriguez, G. Alkmim, D. Batista, and N. da Fonseca. Live migration
in green virtualized networks. In IEEE ICC, pages 2262-2266, 2013.
M. S. Talebi, A. Khonsari, and M. H. Hajiesmaili. Utility-proportional
bandwidth sharing for multimedia transmission supporting scalable
video coding. Computer Communications, 33(13):1543-1556, 2010.

P. J. Van Laarhoven and E. H. Aarts. Simulated annealing. Springer,
1987.

S. Wang, Y. Liu, and S. Dey. Wireless network aware cloud scheduler
for scalable cloud mobile gaming. In /EEE ICC, pages 2081-2086,
2012.

Y. Wen, X. Zhu, J. J. Rodrigues, and C. W. Chen. Cloud mobile media:
Reflections and outlook. IEEE Trans. on Multimedia, 16(4):885-902,
2014.

Y. Wu, C. Wu, B. Li, and F. C. Lau. vSkyConf: Cloud-assisted multi-
party mobile video conferencing. In ACM SIGCOMM Workshop on
Mobile Cloud Computing, pages 33-38, 2013.

Z. Wu and H. V. Madhyastha. Understanding the latency benefits of
multi-cloud webservice deployments. ACM SIGCOMM Comp. Comm.
Rev., 43(1):13-20, 2013.

Y. Xu, C. Yu, J. Li, and Y. Liu. Video telephony for end-consumers:
measurement study of google+, ichat, and skype. In ACM IMC, pages
371-384, 2012.

M. Yu, Y. Yi, J. Rexford, and M. Chiang. Rethinking virtual network
embedding: Substrate support for path splitting and migration. ACM
SIGCOMM Comp. Comm. Rev., 38(2):17-29, 2008.

S. Zhang, D. Niu, Y. Hu, and F. Liu. Server selection and topology
control for multi-party video conferences. In ACM NOSSDAV, 2014.
S. Zhang, Z. Shao, M. Chen, and L. Jiang. Optimal distributed P2P
streaming under node degree bounds. IEEE/ACM Trans. on Networking,
22(3), 2014.

[23]
[24]
[25]

[26]
[27]

[28]
[29]

[30]

[31]
[32]
[33]

[34]

[35]

[36]

[37]
[38]
[39]
[40]
[41]
[42]

[43]

[44]

APPENDIX
A. Proof of Theorem 1

To prove, first we should prove that the stationary distri-
bution of the perturbed Markov chain is Eq. (13), this part
is very similar to the proof in [44] and hence we proceed to
prove Egs. (14)-(15).

Let us define the dirac distribution as follows
1 if f = fmin,

0 otherwise.

pbr=

where f™" is the optimal solution of the UAP (i.e., f™* =
argminger). In addition, p} as defined in Eq. (9) is the
optimal solution for the UAP-3. Hence, using the result is
Eq. (11) we have

Zp}@f + % Zp}logp} < Zﬁf@f + % Zﬁflogﬁf.

feF feF feF feF
(16)
By Jensen’s inequality [10] we get
1
prflogpf:prlog— 17
feF fer by
1
<log | Y ps— | =log|F|. (18)
jer PI
Moreover, we have Ve = Zf cF PPy and

pmin — 3 feF pr®y, by combining these equations, we
get

o
PvE < pmin 3 log | F]. (19)

We know that |F| < LUYT?™ where U, #5'™, and L are
the total numbers of the users, the transcoding tasks, and the
agents, respectively, hence

(U+6"™)log L
— 5

The above equation proves the inequality in Eq. (14).

In the next step, we prove the optimality gap of the
perturbed Markov chain as characterized in Eq. (15). By
reformulating Eq. (14) for the perturbed Markov chain we
have

O g (I)avg _ @miﬂ S (20)

esum 1 L
prq)/f — min P, < M7 Q1)
feF 1'er B
where <I>} is the modified objective function of the UAP-§ in
perturbed setting and is defined as ®’, = ®; — lo%‘;f , then by
substituting the value of CIJ'f in Eq. (21) we get
_ log &) log ¢ (U + 65" log L
> (@ 3 f)—;;lelg(@f— 5 1y < 5 :
feF
(22)

In addition, since A™?* is the maximum perturbation error,
we have ¢ < exp(SA™®), f € F and hence

log (Sf S Amax7
B
Finally, we have ®2'8 = ter Ps®y and then by combining
Eq. (22) and Eq. (23), we get
(U +65"™)log L
B
This proves the inequality in Eq. (15).

fer. (23)

0 < (i)avg o (I)min < 4 Amax, (24)

Mohammad H. Hajiesmaili received his B.Sc.
degree in Computer Engineering from the Depart-
ment of Computer Engineering, Sharif University of
Technology, Iran, in 2007, and his M.Sc. and Ph.D.
degrees in Computer Engineering from the Electrical
and Computer Engineering Department, University
of Tehran, Iran, in 2009 and 2014, respectively.
He was a Postdoctoral Fellow with the Department
of Information Engineering, The Chinese University
of Hong Kong, from 2014 to 2016. He is cur-
rently a Postdoctoral Fellow with the Department
of Electrical and Computer Engineering, Johns Hopkins University. His
research interests include optimization, algorithm, and mechanism design in
communication, energy, and transportation networks.

Lok To Mak received his B.Eng. degree from
the Department of Information Engineering at the
Chinese University of Hong Kong in 2014, and
is currently pursuing the MPhil degree in Depart-

PLACE ment of Information Engineering at the Chinese
PI]{'I&IE) University of Hong Kong. His research interests

include multimedia networking and electric vehicle
scheduling.

Zhi Wang (S’10 M’14) received his BE and PhD
degrees in Computer Science in 2008 and 2014,
respectively, both from Tsinghua University, Beijing,
China. He is currently an assistant professor in
Tsinghua University. His research areas include mul-
timedia big data, mobile cloud computing and large-
scale multimedia systems. He is a recipient of the
China Computer Federation Outstanding Doctoral
Dissertation Award (2014), ACM Multimedia Best
Paper Award (2012), and MMM Best Student Paper
Award (2015).

Chuan Wu received her B.Engr. and M.Engr. de-
grees in 2000 and 2002 from the Department of
Computer Science and Technology, Tsinghua Uni-
versity, China, and her Ph.D. degree in 2008 from the
Department of Electrical and Computer Engineering,
University of Toronto, Canada. Since September
2008, Chuan Wu has been with the Department of
Computer Science at the University of Hong Kong,
where she is currently an Associate Professor. Her
research is in the areas of cloud computing, data
center networking, distributed machine learning and
big data analytics. She is a senior member of IEEE, a member of ACM,
and served as the Chair of the Interest Group on Multimedia services
and applications over Emerging Networks (MEN) of the IEEE Multimedia
Communication Technical Committee (MMTC) from 2012 to 2014. She has
also served as TPC members and reviewers for international conferences and
journals, including IEEE INFOCOM, IEEE ICDCS, ACM MM, IEEE ICC,
IEEE GLOBECOM, TPDS, TON and TMM. She was the co-recipient of the
best paper awards of HotPOST 2012 and ACM e-Energy 2016.

Minghua Chen (S04 M06 SM 13) received his
B.Eng. and M.S. degrees from the Dept. of Elec-
tronic Engineering at Tsinghua University in 1999
and 2001, respectively. He received his Ph.D. de-
gree from the Dept. of Electrical Engineering and
Computer Sciences at University of California at
Berkeley in 2006. He spent one year visiting Mi-
crosoft Research Redmond as a Postdoc Researcher.
He joined the Dept. of Information Engineering, the
Chinese University of Hong Kong in 2007, where
he is currently an Associate Professor. He is also an
Adjunct Associate Professor in Institute of Interdisciplinary Information Sci-
ences, Tsinghua University. He received the Eli Jury award from UC Berkeley
in 2007 (presented to a graduate student or recent alumnus for outstanding
achievement in the area of Systems, Communications, Control, or Signal
Processing) and The Chinese University of Hong Kong Young Researcher
Award in 2013. He also received several best paper awards, including the
IEEE ICME Best Paper Award in 2009, the IEEE Transactions on Multimedia
Prize Paper Award in 2009, and the ACM Multimedia Best Paper Award in
2012. He is currently an Associate Editor of the IEEE/ACM Transactions on
Networking. He serves as TPC Co-Chair of ACM e-Energy 2016 and General
Chair of ACM e-Energy 2017. His current research interests include energy
systems (e.g., smart power grids and energy-efficient data centers), intelligent
transportation system, networked system, online competitive optimization,
distributed optimization, and delay-constrained network coding.

Ahmad Khonsari received the B.Sc. degree in
electrical and computer engineering from Shahid-
Beheshti University, Iran, in 1991, and M.Sc. degree
in computer engineering from Iran University of
Science and Technology (IUST), Iran, in 1996, and
Ph.D. degree in computer science from the Univer-
sity of Glasgow, UK, in 2003.

He is currently an Associate Professor in the
Department of Electrical and Computer Engineering,
University of Tehran, Iran, and a researcher at the
School of Computer Science, Institute for Research
in Fundamental Sciences (IPM), Iran. His research interests include perfor-
mance modeling/evaluation, wired/wireless networks, distributed systems, and
high performance computer architectures.

