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ABSTRACT
This paper studies the problem of utilizing energy storage
systems to perform demand-response in microgrids. The ob-
jective is to minimize the operational cost while balancing
the supply-and-demand mismatch. The design space is to
select and schedule a subset of heterogeneous storage devices
that arrive online with different availabilities. Designing a
performance-optimized solution is challenging due to the ex-
istence of mixed packing and covering constraints in a com-
binatorial problem, and the essential need for online design.
We devise an online algorithm and show that it achieves log-
arithmic bi-criteria competitive ratio. Experimental results
demonstrate the effectiveness of our algorithm.

1. INTRODUCTION
We study crowd-sourced storage-assisted demand response

in microgrid. In this approach, hundreds of electric vehicles
and residential storages, residing in a microgrid, with huge
aggregate capacity can actively participate in microgrid de-
mand response through reducing their charging demand or
even discharging and selling back the electricity to the mi-
crogrid, e.g., through vehicle-to-grid scheme for EVs. In
this way, not only the microgrid can reduce its electricity
usage from main grid, but also, the customers can benefit
by participating in this scheme.

We consider a scenario in which the microgrid operator so-
licits contribution of heterogeneous energy storage systems
(or sources), such as EVs and residential batteries, in de-
mand response through storage crowd-sourcing paradigm.
After receiving all the information of the available sources,
the operator selects a subset of sources and schedules their
participation volume, by either reducing their charging rate
or even discharging, to (i) fulfill the supply shortage of mi-
crogrid, for reliable operation, and (ii) minimize total cost
of involving the chosen sources, for economic operation.

Challenges. It turns out that achieving the above ob-
jectives is a formidable task since it requires solving a joint
Source Selection and Scheduling Problem (S3P), which is
uniquely challenging to solve because of two critical chal-
lenges:

Heterogeneity of the sources, in terms of cost, capacity,
and availability in time leads to a combinatorial problem
with both packing constraints, i.e., capacity constraint of
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the sources, and covering constraints, i.e., supply shortage
of the microgrid. It turns out that a simplified version of
the S3P can be re-expressed as the Capacitated Facility Lo-
cation Problem (CFLP) [Levi et al. 2004], which is known
to be as a fundamental theoretical CS problem [Williamson
and Shmoys 2011]. The S3P is more complicated than the
CFLP as it involves a topological constraint caused by the
availability of sources.

The second challenge is the essential need for online so-
lution design. In practice, the supply shortage as well as
the availability of sources reveal online. The underlying
problem, however, is coupled over the time, i.e., the cur-
rent decision depends on input of future slots, thereby it
is challenging to make online scheduling decisions without
knowing future input. It turns out that in online setting,
achieving a bounded performance against offline optimum
without violating either packing or covering constraints is
infeasible [Azar et al. 2013]. Therefore, we follow bi-criteria
competitive online algorithm design paradigm [Williamson
and Shmoys 2011] which jointly minimizes both cost and the
amount of packing constraint (capacity) violation.

Contributions. We focus on designing an online frac-
tional algorithm for the linear-relaxed version of the S3P.
Note that even linear version of the problem is still difficult
in online scenario, because the input to the time-coupled
linear problem is not known in advance. By adapting the
recently proposed framework for online mixed packing and
covering problems [Azar et al. 2013], we propose an online
fractional algorithm called OnFrc. In the OnFrc at each slot,
we obtain a fractional solution for the S3P by constructing
a potential function that is linear in cost and exponential in
violating the capacity constraint of the storage sources.

We analyze the performance of the OnFrc using bi-criteria
competitive ratio analysis1 and demonstrate that the OnFrc
is a bi-criteria O(log n, log n)-competitive online algorithm,
where n is the number of sources. By experiments using
real-world data traces, we investigate the performance of
the algorithm. Note that although the proposed algorithm is
logarithmic competitive, this is a worst-case bound and our
results demonstrate much better performance in practical
settings.

2. PROBLEM FORMULATION
1In context of our problem, a bi-criteria (α, β)-competitive
online algorithm produces a solution at cost of at most α
times of the offline optimum, while violating the capacity
constraints by no more that a β factor.
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We assume that the system is time-slotted, where each
time slot t ∈ T , (T � |T |) has a fixed length (e.g., 1 hour).
At slot t, the microgrid has a shortage dt ≥ 0 in supply
whose value is revealed at the beginning of the slot.2 For
the future slots, we have no assumptions on the exact or
stochastic modeling of dt. Let I, (n � |I|), be the set of
energy storage systems (sources, used interchangeably) in
the microgrid that are available to contribute in demand re-
sponse scheme. By storage system, we mean any devices
like EVs and residential batteries that can be connected to
the microgrid and participate in demand response by either
reducing their charging rate or discharging back to the mi-
crogrid. The sources are heterogeneous in terms of availabil-
ity over time horizon, capacity, and operating cost. Source
i is available in interval Ti ⊆ T , where Ti = [ai, bi] and ai

and bi are the arrival and departure slots. This captures
the availability of sources, e.g., EVs are available in differ-
ent intervals in parking lots. In our model, we also assume
sources arrive online. Source i announces total capacity ci
which can be used arbitrarily in its availability window for
demand response scheme. Cost model of source i is: (i) a
fixed cost fi as the participation cost, which is fixed value
regardless of the amount of energy that is solicited, and (ii)
a unit cost ui which must be multiplied by the volume of
energy that is contributed by source i.

Given the set of heterogeneous sources, the objective is
to use the potentials of the available sources by selecting a
subset of them such that by a proper scheduling, the supply
shortage during time horizon is covered, and at the same
time the aggregate fixed and unit costs are minimized. The
optimization problem is a joint source selection and schedul-
ing problem (S3P) that is formulated as

S3P : min
∑
i∈I

(
fixi + ui

∑
t∈Ti

yi(t)
)

s.t.
∑
t∈Ti

yi(t) ≤ cixi, ∀i ∈ I, (1a)

∑
i∈I:t∈Ti

yi(t) ≥ dt, ∀t ∈ T , (1b)

vars. xi ∈ {0, 1}, ∀i ∈ I,
yi(t) ≥ 0, ∀i ∈ I, t ∈ Ti,

where optimization variables are xi and yi(t). xi = 1, if
source i is selected; xi = 0, otherwise. In addition, yi(t)
denotes the amount of energy that is covered by source i at
time t. Constraint (1a) is the capacity (packing) constraint
of the sources. Constraint (1b) is the covering constraint
that guarantees that total acquired energy by the chosen
sources covers the shortage at each slot. Finally, note that
the S3P is an NP-hard mixed integer linear program which
is difficult to solve, in general, even in offline setting. Re-
call that the S3P without availability limit of the sources is
equivalent to the CFLP, which is generally difficult to tackle
even in offline setting.

Our design is even more challenging since the S3P requires
online solution design. The online inputs in our problem are
two-fold. First, supply shortage dt is revealed in slot-by-slot

2In general, dt could be either negative or positive, in which
negative value corresponds to the case that there is extra
supply in microgrid that could be absorbed by the storage
systems. In this paper, however, we focus on the cases where
dt ≥ 0.

Algorithm 1: OnFrc- Online Fractional Algorithm, at
time t

1 Initialization
2 It ← an ordering of sources that are available in t in

ascending order of vi(t) in Eq. (2)
3 Pt ← the maximal subset of It such that

∑
i∈Pt

xi < 1

4 lt ← the first source in It that is not in Pt

5 while
∑

i∈Pt∪{lt}:t∈Ti
zi(t) < 1 do

6 foreach i ∈ Pt ∪ {lt} do
7 if i ∈ Pt or (i = lt and xi < 1) then

8 xi ← min
{
xi + xi/f̂iT, 1

}
9 zi(t) ← min

{
2xi,

xi−1/n

di(t)+ûi(t)/f̂i

}
10 end
11 if i = lt and xi = 1 then
12 zi(t) ← zi(t) + 1/vi(t)T
13 end

14 end

15 end

fashion. Second, the sources arrive online. In this way, all
the characteristics (cost, capacity, and departure time) of
available sources reveal at the beginning of each time slot.
In terms of underlying optimization problem, both packing
and covering constraints arrive online.

3. ONLINE SOLUTION DESIGN
Since the S3P encounters mixed packing and covering con-

straints, to achieve a competitive ratio better than O(n) in
online scenario, it is inevitable that either packing or cov-
ering constraint is violated [Hajiesmaili et al. 2017]. In de-
mand response, however, it is critical that the shortage is ful-
filled by the chosen sources. Hence, in our online algorithm
design, we force the covering constraint to be respected, and
as a result, violation of capacity constraints of the sources
is permitted. As such, our goal is to minimize the capac-
ity violation of selected sources, in addition to total cost
minimization.

In this work, we briefly explain our online algorithm de-
sign for the linear version of the S3P. In [Hajiesmaili et al.
2017], we propose a randomized rounding approach to find
an integral solution based on the fractional solution obtained
from linear S3P. We skip the details of randomized integral
solution due to space limit and refer to [Hajiesmaili et al.
2017].

We assume that the number of time slots (T ) is known
in advance and the optimal offline cost Opt is given.3 We
assume that fi ≤ Opt, ∀i ∈ I, otherwise, we exclude the
sources with fixed cost greater thanOpt. Now, we introduce
f̂i as the scaled fixed-cost of source i as f̂i = max{(fin)/Opt, 1},
and ûi(t) as the normalized unit cost of the source i at time
t as ûi(t) = (uidtn)/Opt. Finally, we define di(t) = dt/ci.
Note that by multiplying fixed and unit cost parameters
by n/Opt, the optimal value of the problem changes to

3These assumptions are reasonable since T is fixed usually.
The optimal offline cost also can be estimated based on his-
torical data. Nevertheless, the algorithm can be extended
to the case that the optimal offline cost is not known at
the expense of adding a multiplicative logarithmic order in
competitive ratio [Azar et al. 2013].
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Figure 1: Impact of input parameters on total cost of different algorithms

O(n), facilitating the competitive analysis. Let xi ≥ 0
be the relaxed integer source selection variable. Moreover,
zi(t) ∈ [0, 1] is the portion of supply shortage dt that is ful-
filled by source i, provided that t ∈ Ti. Indeed, yi(t) = dtzi(t).

The proposed online competitive algorithm, summarized
as Algorithm 1, accomplishes source selection and schedul-
ing by providing an ascending ordering among the available
sources at each slot. In this way, our main endeavor is to
construct a metric to be used to sort the sources. The sort-
ing metric vi(t) which we refer to it as virtual cost of source
i at time t is defined as follows.

vi(t) =

{
f̂iθ

γi(t)−1di(t) + ûi(t), if xi = 1,

f̂idi(t) + ûi(t), otherwise,
(2)

where θ > 1 is a constant factor and γi(t) =
∑

τ∈Ti:τ≤t di(τ)zi(τ)
is the current congestion level of source i. Hence, we call θ
the congestion parameter. By this definition, when source i
is not fully chosen (xi < 1), the cost is linear in both nor-
malized fixed and unit cost. On the other hand, if source
i is already fully chosen (xi = 1) in the fractional solution
due to the scheduling in the previous time slots, the virtual
cost is linear in fixed cost, however exponential in the con-
gestion level γi(t). The following theorem characterizes the
competitive ratio of the OnFrc.

Theorem 1. [Hajiesmaili et al. 2017] Given 1 < θ < 1.5,
OnFrc generates a fractional schedule that is O(log n, log n)-
competitive.

4. PERFORMANCE EVALUATIONS
In this section, we report a selected set of results of the

online fractional algorithm (in Sec. 3) and the randomized
rounding algorithm in [Hajiesmaili et al. 2017] that is built
on top of the fractional one and leads to an integral solution.
The electricity data traces are from [Commission 2006] and
we assume that on average 10% of the demand is regarded as
supply shortage in each slot. The unit cost for each source
follows a uniform distribution over [$0, $1]. The fixed cost
is chosen in order of ×20 of the unit costs, which is roughly
around 1/3 of the volume cost. The available capacity ci
is randomly generated in [10, 70]kWh. We set T = 12 and
the length of each slot to 1 hour. We compare the result of
online algorithms to the offline optimum.

In Fig. 1, we report the total costs of offline optimal solu-
tion and our fractional and integral algorithms as a function
of different input parameters. The result in Fig. 1(a) shows
that as the number of sources increases, total cost of all algo-
rithms decreases, which is reasonable since with the increase
in sources, there is more freedom to pick more cost-effective
sources. The average cost ratios, i.e., the cost of the al-
gorithms over the offline optimums cost, for the fractional

and integral algorithms are 1.56 and 1.71, respectively which
demonstrate sound performance of our algorithms. The ob-
tained empirical cost ratios demonstrate that our algorithms
can achieve much better results than those obtained in theo-
retical analysis. The difference between the cost of fractional
and integral algorithms is due to the integrality gap made
by randomized rounding [Hajiesmaili et al. 2017]. Fig. 1(b)
shows that as the number of slots increases, total cost in-
creases for all solutions. This is reasonable since with fixed
number of sources as the number of slots increases, more
demand must be covered and hence total cost increases.
The results in Fig. 1(c) show that as the capacity of sources
scales, total cost decreases since each source can cover more
supply shortage.

5. CONCLUSIONS
This paper advocates the idea of using the potentials of

existing sources in a microgrid to perform crowd-sourced
storage-assisted demand-response. It formulates a joint prob-
lem of source selection and scheduling with the goal of min-
imizing the cost, while respecting mixed packing and cov-
ering constraints. An efficient online competitive algorithm
for the problem is devised and experiments show that the
performance of the algorithm is near optimum. The under-
lying problem could be imagined as a natural expansion of
the minimum knapsack problem over time, and one can find
several applications rather that demand-response in micro-
grids. In fact, our formulation makes sense in any applica-
tion in which different sources can contribute in fulfilling a
service that arrives in time.
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