
1

Energy-Efficient Timely Transportation of
Long-Haul Heavy-Duty Trucks

Lei Deng, Mohammad H. Hajiesmaili, Minghua Chen, Senior Member, IEEE, and Haibo Zeng, Member, IEEE

Abstract—We consider a timely transportation problem where
a heavy-duty truck travels between two locations across the
national highway system, subject to a hard deadline constraint.
Our objective is to minimize the total fuel consumption of the
truck, by optimizing both route planning and speed planning.
The problem is important for cost-effective and environment-
friendly truck operation, and it is uniquely challenging due
to its combinatorial nature as well as the need of considering
hard deadline constraint. We first show that the problem is NP-
Complete; thus exact solution is computational prohibited unless
P=NP. We then design a fully polynomial time approximation
scheme (FPTAS) to solve it. While achieving highly-preferred
theoretical performance guarantee, the proposed FPTAS still
suffers from long running time when applying to national-wide
highway systems with tens of thousands of nodes and edges.
Leveraging elegant insights from studying the dual of the original
problem, we design a heuristic with much lower complexity. The
proposed heuristic allows us to tackle the energy-efficient timely
transportation problem on large-scale national highway systems.
We further characterize a condition under which our heuristic
generates an optimal solution. We observe that the condition
holds in most of practical instances in numerical experiments,
justifying the superior empirical performance of our heuristic.
We carry out extensive numerical experiments using real-world
truck data over the actual U.S. highway network. The results
show that our proposed solutions achieve 17% (resp. 14%) fuel
consumption reduction, as compared to a fastest path (resp.
shortest path) algorithm adapted from common practice.

Index Terms—Energy-efficient transportation, timely delivery,
route planning, speed planning.

I. INTRODUCTION

In the U.S., heavy-duty trucks haul more than 70% of all
freight tonnage [2], and they consume 17.6% of energy in
transportation sector [3, Tab. 2.8] and contribute to about
5% of the greenhouse gas emission [4]. Fuel cost is the
largest operating cost (34%) of truck owners/operators [5],
and reducing fuel consumption is critical for cost-effective and
environment-friendly heavy-duty truck operations.

Manuscript received ...
Part of this work has been presented at the seventh ACM International

Conference on Future Energy Systems (ACM e-Energy), Waterloo, Canada,
June 21 - 24, 2016 [1]. This work was supported in part by National Basic
Research Program of China (Project No. 2013CB336700) and the University
Grants Committee of the Hong Kong Special Administrative Region, China
(Theme-based Research Scheme Project No. T23-407/13-N).

L. Deng and M. Chen are with the Department of Information Engineering,
the Chinese University of Hong Kong, Hong Kong, China (e-mail: {dl013,
minghua}@ie.cuhk.edu.hk).

M. H. Hajiesmaili is with the Department of Electrical and Computer
Engineering, Johns Hopkins University, Baltimore, MD 21218, USA (email:
hajiesmaili@jhu.edu).

H. Zeng is with the Department of Electrical and Computer Engineering,
Virginia Tech, Blacksburg, VA 24061, USA (e-mail: hbzeng@vt.edu).

Currently there are mainly two lines of efforts to reduce
fuel consumption of heavy-duty trucks. The first line is to
operate with more fuel efficient trucks, from better designs for
engines, drivetrains, aerodynamics, and tires [6]–[8], to better
management of truck parts such as maintaining optimal tire
pressures [9]. The second line is to operate heavy-duty trucks
more economically. This explores several possibilities, e.g.,
reducing idling energy consumption [10], platooning more
than one heavy-duty trucks [11], [12], route planning [13]–
[15], and speed planning [16]–[19]. In this paper, we focus on
route and speed planning. Different routes could have different
mileages, levels of congestion, road grades, and surface types,
etc., all of which would largely affect the fuel consumption.
Real-world studies [15] show that choosing a more efficient
route for a heavy-duty truck can improve its fuel economy by
21%. Speed planning is another well recognized approach to
effectively reduce fuel consumption. Different running speed
could lead to different fuel economy. For a vehicle with certain
weight running on a road, normally there is a most fuel-
efficient speed. When the running speed is below or above the
most fuel-efficient speed, the fuel economy will be degraded.
As a rule of thumb for truck operations on highway, every
one mile per hour (mph) increase in speed (above the most
fuel-efficient speed) incurs about 0.14 mile per gallon (mpg)
decrease in fuel economy [18], [19].

However, operating at low speed may result in excessive
travel time and the goods carried by the truck cannot be
delivered on time. We remark that timely delivery is critical
for truck operators [20], [21]. As estimated by the U.S.
Federal Highway Administration (FHWA) in [20], unexpected
delay can increase freight cost by 50% to 250%. Multiple
reasons can explain the importance of timely delivery. First,
some freight goods are perishable, such as food [22], which
definitely require timely delivery. Second, to ensure customers’
satisfaction, some companies, e.g., Amazon, may have a
service-level agrement (SLA) with users, under which the
delivery delay is guaranteed [23]. Finally, violating scheduled
delay can introduce difficulties for global logistic decisions
and even increase the uncertainty and inefficiency of supply
chains [20]. Overall, it is crucial to ensure timely goods
delivery for truck operators, and considering timely delivery
in fuel cost minimization poses a unique challenge.

Motivated by the above observations, in this paper, we
study the problem of energy-efficient timely transportation for
heavy-duty trucks. We aim to minimize the heavy duty truck’s
fuel consumption while satisfying a hard deadline constraint,
under which we take both route planning and speed planning
into account to exploit complete design space of reducing

2

TABLE I
COMPARISONS OF OUR STUDY AND EXISTING WORKS ON PERFORMANCE OPTIMIZATION IN VARIOUS TRANSPORTATION SYSTEMS WITH DELAY TAKEN

INTO CONSIDERATION. HERE RSP STANDS FOR RESTRICTED SHORTEST PATH PROBLEM, VRPTW STANDS FOR VEHICLE ROUTING PROBLEM WITH
TIME WINDOWS, AND BSP STANDS FOR BI-OBJECTIVE SHORTEST PATH PROBLEM.

Our Work RSP [24]–[26] VRPTW [27]–[30] Other Works [31], [32] BSP [33]–[36]

Se
tt

in
gs

Objective Cost minimization Cost minimization Cost minimization
Cost minimization or
profit maximization

Bi-objective
(cost and delay) minimization

Constraints A hard deadline A hard deadline
Time window?,

Other constraints
Time window?,

Other constraints
N/A

Design Spaces
Route planning,
Speed planning

Route planning Route planning
Route planning,
Speed planning

Route planning

R
es

ul
ts Hardness NP-Complete NP-Complete [25] NP-Complete [27] N/A NP-Complete [33]

Algorithms
FPTAS,

Heuristic†
FPTAS [24],

Heuristic [26]
Heuristic [28]–[30] Heuristic

FPTAS [34], [35],
Heuristic [36]

? The time window constraint captures the hard deadline constraint in our problem and RSP as a special case.
† We further characterize a condition under which the heuristic outputs the optimal solution to our problem.

TABLE II
COMPARISONS OF OUR WORK AND EXISTING WORKS ON

ENERGY-EFFICIENT HEAVY-DUTY TRUCK OPERATION.

Paper Route Planning Speed Planning Hard Deadline
[37] 3 7 7

[16] 7 3 7

[17] 7 3 3

This work 3 3 3

fuel consumption. Since heavy-duty trucks are mainly operated
for long-haul delivery and most of time run on highways [3,
Tab. 5.2 and Fig. 5.1], we focus our model on their operation
in the highway transportation network system. We summarize
our contributions in the following.

B We formulate an energy-efficient timely transportation
problem of minimizing the fuel consumption subject to a
hard deadline constraint for a heavy-duty truck running on
a highway transportation network, with design spaces of both
route planning and speed planning in Sec. II. To the best of our
knowledge, as compared to existing works on energy-efficient
heavy-duty truck operation [16], [17], [37], our work is the
first one that simultaneously considers route planning, speed
planning, and hard deadline (see Tab. II).

B We show that our problem is NP-Complete and then de-
sign a fully polynomial time approximation scheme (FPTAS)
in Sec. III to solve our problem. The proposed FPTAS attains
an approximation ratio of (1+ ε) with a network-size induced
complexity of O(mn2/ε2), where m and n are the numbers
of nodes and edges, respectively.

B While achieving highly-preferred theoretical performance
guarantee, the proposed FPTAS still suffers from long running
time when applying to national-wide highway systems with
tens of thousands of nodes and edges. In Sec. IV, by leveraging
elegant insights from studying the dual of the original problem,
we design a fast heuristic solution with O(m + n log n)
complexity. The proposed heuristic scheme allows us to tackle
the energy-efficient timely transportation problem on large-
scale national highway systems. We further characterize a
condition under which our heuristic generates an optimal
solution. We observe that the condition holds in most of

the practical instances in numerical experiments in Sec. V,
justifying the superior empirical performance of our heuristic.
B We carry out extensive numerical experiments using real-

world truck data over the U.S. highway network in Sec. V. The
results show that our proposed solutions achieve 17% (resp.
14%) fuel consumption reduction, as compared to a fastest
path (resp. shortest path) algorithm adapted from common
practice. The amount of fuel consumption saving is enough
to power up more than 90% of the entire transportation sector
in New York State [38].

Comparison with existing works on energy-efficient
heavy-duty truck operation. There are a large number of
works focusing on energy-efficient heavy-duty truck operation,
e.g., [16], [17], [37]. But to the best of our knowledge,
our work is the first one that simultaneously considers route
planning, speed planning, and hard deadline (see Tab. II).

Comparison with existing works on performance op-
timization in various transportation systems with delay
taken into consideration. Theoretically, we also compare the
problem studied in our work with other related problems stud-
ied in existing works in Tab. I. First, our energy-efficient timely
transportation problem is a generalized version of Restricted
Shortest Path problem (RSP) [24]–[26], with an extra design
space of speed planning. Therefore, we generalize the FPTAS
design and the dual-based design of RSP to our problem.
Second, for the well-studied Vehicle Routing Problem with
Time Windows (VRPTW) [27]–[30], if we only consider
one vehicle and one customer with departure deadline, then
it becomes the RSP problem, which is a special case of
our problem without speed planning. Third, our problem can
be regarded as a special case of the studied problems in
[31], [32] under different contexts from our focus on trucks,
where both route planning and speed planning are considered.
However, [31], [32] do not prove the hardness of the problem
and only propose a heuristic algorithm without performance
guarantee to solve the problem. The heuristic algorithm in
[31] uses the column generation approach but terminates in
certain iterations, and the heuristic algorithm in [32] is based
on a multi-start local search approach, both of which could
incur high complexity and do not have performance guarantee.
The performance of these generic approaches can be quite

3

43

1 2

{D
e
, R

lb e
, R

ub e
, f

e
}

{D
e
, R

lb e
, R

ub e
, f

e
}

ss dd

Fig. 1. System model.

unsatisfactory in some specific problems. For example, column
generation approach suffers from slow convergence and thus
terminating in certain iterations could produce a solution far
away from the optimal one [39], [40], and multi-start local
search could also get trapped in a bad local optimum [41].
Our work, instead, shows that our studied problem is NP-
complete, and proposes an FPTAS and a heuristic algorithm
with characterizing an optimality condition to solve the prob-
lem. Our numeric results in Sec. V demonstrate the excellent
performance of our solutions in practical scenarios. We also
explicitly show that the time complexity of the FPTAS and the
heuristic is polynomial in the problem size. Finally, another
related problem is the Bi-objective Shortest Path problem
(BSP) [33]–[36], which needs to find all Pareto-optimal paths
to simultaneously minimize the travel cost and travel time.
BSP is different from our problem in that it regards the travel
time as one objective instead of a constraint to satisfy and it
does not have the design space of speed planning.

Due to the space limitation, all proofs are included in the
supplementary materials.

II. MODEL AND PROBLEM FORMULATION

A. System Model

Consider a highway transportation network as exemplified
in Fig. 1. We model it as a directed graph G = (V, E),
where V is the vertex/node set and E is the edge/road set.
We define n , |V| as the number of nodes and m , |E|
as the number of edges. For each edge e ∈ E , we denote
De > 0 as its distance (unit: mile), and Rlb

e > 0 (resp.
Rub
e ≥ Rlb

e) as its minimum (resp. maximum) speed (unit:
mph). (Governments usually set the maximum speed for all
highways and the minimum speed for some highways. For the
sake of both safety and fuel efficiency, lower speed limits than
passenger cars may be applied to large commercial vehicles
like heavy-duty trucks and buses.) Now consider a long-haul
heavy-duty truck at time 0 who aims to ship cargos from a
source node s ∈ V to a destination node d ∈ V . The goal is
to minimize the energy/fuel1 consumption subject to a hard
deadline requirement T > 0 (unit: hour).

Fuel consumption and travel delay are usually in conflict
with each other, both of which are related to the speed
profile of the truck. High travel speed obviously decreases
the travel delay, but it can also increase the fuel consumption

1We interchangeably use fuel and energy in this paper.

significantly [18], [19]. To analyze the performance tradeoff
between energy and delay, we need to model the relationship
between the fuel consumption and the travel speed. There are
an intensive number of such models (see a survey in [42]).
In this paper, we use the instantaneous fuel consumption
model [42], [43] which generally depends on three factors: (i)
static vehicle/road/environment properties, (ii) instantaneous
acceleration/deceleration, and (iii) instantaneous speed. As we
consider a specific vehicle running over a specific network,
static vehicle/road/environment properties are fixed, and thus
we model them as fixed parameters in our fuel consumption
model. We further neglect the effects of instantaneous accel-
eration/deceleration based on the following two observations.
First, as shown in [44], [45] and our results in Lemma 1,
running at a constant speed is most fuel-economic on a
road segment with homogeneous grade and road/environment
conditions. Thus, it is reasonable to ignore the effects of
acceleration/deceleration inside any road segment (with ho-
mogeneous grade and road/environment conditions). Second,
while a truck may involve acceleration/deceleration when
switching from one road segment to another road segment, the
acceleration/deceleration distance is negligible as compared to
the length of road segments. For example, as shown in [46],
the heavy-duty truck can accelerate from zero speed to 31mph
in just 500 feet, while the average length of highway road
segments is 3.26 miles, according to our study of the U.S.
national highway data (see Tab. IV). Thus, it is also reasonable
to ignore the effects of acceleration/deceleration during road
segment switch. With the above justification, in this paper, we
assume that the instantaneous fuel consumption is a function
of the instantaneous speed.

We thus define fe : [Rlb
e , R

ub
e]→ R+ as the (instantaneous)

fuel-rate-speed function of the truck running on edge e: if
the vehicle’s speed on edge e is re (unit: mph), the fuel
consumption rate is fe(re) (unit: gallons per hour (gph)),
and then the total fuel consumption for driving time τ (unit:
hour) with the constant speed re is fe(re) · τ (unit: gallon).
Since many existing models [43], [47]–[50] use polynomial
functions to model the fuel consumption which are also strictly
convex in a reasonable speed limit region, in this paper, we
assume that fe(·) is a polynomial function and is strictly
convex2 over [Rlb

e , R
ub
e]. This assumption also holds in the

physical interpretation of fuel-rate-speed function as shown
in Append. A in the supplementary materials, and is further
verified in our simulation using real-world data (see Fig. 5(a)).

B. Problem Formulation

We consider two design spaces: path selection (route plan-
ning) and speed optimization (speed planning). For path se-
lection, we define a binary variable xe for any e ∈ E ,

xe =

{
1, Edge e is on the selected path;
0, otherwise.

(1)

For the speed optimization, the truck needs to determine a
speed profile (speeds at all travel time) over any selected

2The strict convexity can be relaxed to convexity. For simplicity, we use
the strict convexity in this paper.

4

edge. This is a functional variable, but the convexity of fuel-
rate-speed function can simplify the speed profile significantly
based on the following lemma.

Lemma 1: For any edge e, if the travel time te is given,
i.e., the truck must pass edge e with exactly te hours, then the
optimal speed profile to minimize the fuel consumption is to
maintain constant speed De/te during the whole trip.

Proof: See Append. B in the supplementary materials.
Lemma 1 shows that for any edge, any non-constant speed

profile is dominated by another constant speed profile in terms
of fuel consumption without sacrificing the delay performance.
Therefore, without loss of optimality, the truck only needs
to follow a constant speed for any edge. As explained in
Sec. II-A, since we consider a long-haul highway scenario, we
will ignore the speed transition period between two adjacent
edges. Thus, for the speed optimization, we consider the travel
time te > 0 over each edge e as the design variable, which
equivalently implies a constant speed De/te over e. We then
define a fuel-time function ce(·) for each road e,

ce(te) , te · fe(
De

te
), (2)

which is the total fuel consumption for the truck traveling edge
e with travel time te.

By vectorizing our decision variables as x , {xe : e ∈ E}
and t , {te : e ∈ E}, now we are ready to formulate our PAth
selection and Speed Optimization (PASO) problem,

PASO: min
x∈X ,t∈T

∑
e∈E

xe · ce(te) (3)

s.t.
∑
e∈E

xete ≤ T, (4)

In PASO, set X restricts that one and only one s− d path
is selected, defined as

X , {x : xe ∈ {0, 1},∀e ∈ E , and∑
e∈out(v)

xe −
∑

e∈in(v)
xe = 1{v=s} − 1{v=d},∀v ∈ V},

where 1{·} is the indicator function, in(v) , {(u, v) : (u, v) ∈
E} is the set of incoming edges of node v ∈ V , out(v) ,
{(v, u) : (v, u) ∈ E} is the set of outgoing edges of node v.
Set T captures the speed limits of all roads, defined as

T , {t : tlbe ≤ te ≤ tube ,∀e ∈ E},
where tlbe , De

Rub
e

and tube , De

Rlb
e

are the minimum and maximum
travel time due to the speed limits on edge e, respectively.
Constraint (4) is to satisfy the hard deadline requirement.
Objective (3) is to minimize the total fuel consumption over
the selected path.

Note that one major difficulty of our problem PASO is that
the route planning and the speed planning are coupled with
each other and thus we need to tackle them simultaneously.

C. Complexity Hardness

PASO has both integer variables and continuous variables.
Thus it is worth understanding its hardness first. It turns out
that a special case of PASO is the well-known Restricted

Shortest Path (RSP) problem [24], [25]. In RSP, a directed
graph is given where each edge has a fixed travel time and
travel cost, and the goal is to find a minimum-cost path
subject to a hard path deadline requirement. Clearly, our
problem PASO generalizes RSP where we allow a varying
edge cost and edge time because of the design space of speed
optimization. Since RSP is NP-Complete [25], we can thus
easily prove that our problem PASO is also NP-Complete.

Theorem 1: PASO is NP-Complete.
Proof: We can prove it by setting Rlb

e = Rub
e to an

appropriate value for each edge e in PASO, and using the
result that RSP is NP-Complete [25].

Theorem 1 shows that exact solution is computational pro-
hibited unless P=NP. In this paper, we thus seek approximate
but efficient solutions to PASO.

D. Preprocessing and Some Notations

We first check the feasibility of our problem PASO. We can
use the shortest path algorithm where each edge e has cost tlbe
to find the fastest path. If the travel time of the fastest path is
larger than the deadline requirement T , PASO is infeasible.
In the rest of this paper, we thus assume that the deadline
constraint T is at least the travel time of the fastest path such
that the problem is feasible.

We then analyze properties of the fuel-time function ce(·).
Lemma 2: ce(te) is strictly convex over [tlbe , t

ub
e]. Also,

there exists a point t̂e ∈ [tlbe , t
ub
e]3 such that ce(te) is first

strictly decreasing over [tlbe , t̂e] and then strictly increasing
over [t̂e, tube].

Proof: See Append. C in the supplementary materials.
Based on Lemma 2, we can easily prove that the travel

time over edge e, i.e., te, in any optimal solution of PASO
must be in the region [tlbe , t̂e]. Otherwise, we can decrease the
travel time from te to t̂e and at the same time decrease the
fuel consumption, which violates the optimality of te. Thus,
without loss of optimality, we can reset the travel time limit
from [tlbe , t

ub
e] to [tlbe , t̂e], which equivalently implies that we

reset the speed limit from [Rlb
e , R

ub
e] to [De/t̂e, R

ub
e]. After

such preprocessing, in the rest of the paper, ce(te) can be
assumed to be strictly convex and strictly decreasing over te ∈
[tlbe , t

ub
e] without loss of optimality.

In the rest of the paper, define an s− d path p as the set of
all edges over p and tp , {te : e ∈ p} as the corresponding
travel time set. Moreover, we define c(p, tp) ,

∑
e∈p ce(te)

as the fuel consumption of path p with travel time set tp, and
OPT as the optimal value of PASO.

Next, we will propose a fully polynomial time approxima-
tion scheme (FPTAS) in Sec. III and a fast dual-based heuristic
scheme in Sec. IV to solve our problem PASO.

III. AN FPTAS FOR PASO

Since PASO generalizes RSP, which is well-known to have
an FPTAS [24], [51], it is natural to ask whether we can extend
RSP’s FPTAS for our problem PASO. In this section, by
carefully tackling the difference between PASO and RSP, we

3Note that t̂e can be on the boundary.

5

“reformulate” PASO such that we can adapt RSP’s FPTAS
to construct an FPTAS for PASO. More specifically, in this
section, we propose an approximation scheme (Algorithm 3)
such that for any given ε ∈ (0, 1), it can find a (1 + ε)-
approximate solution in the sense that the solution is feasible
and the corresponding fuel consumption is at most (1+ε)OPT,
and the time complexity is polynomial in both the problem size
and 1

ε .
The essence of RSP’s FPTAS [24], [51] is a test procedure.

For any input value S > 0 and any input accuracy parameter
δ > 0, the test procedure can “approximately” compare S
and the optimal value OPT in the sense that it can tell either
OPT > S or OPT ≤ (1 + δ)S in polynomial time. Based on
this test procedure, starting with some arbitrary lower bound
LB and upper bound UB for OPT, a binary search scheme is
designed [24], [51] to exponentially narrow down the bounding
interval [LB,UB] and finally a (1+ ε)-approximate solution is
outputted.

To solve our problem PASO, we adapt RSP’s FPTAS by
designing our own test procedure. In RSP, [24] and [51] use
the rounding and scaling technique, where each fixed edge
cost is rounded into certain (polynomial) number of cost levels
controlled by the accuracy parameter δ. As we only require
an “approximate” comparison, rounding into certain number
of cost levels is enough to perform such a task. However, as
opposed to a fixed edge cost in RSP, in PASO each edge has
a fuel-time function. Hence, instead of rounding a fixed cost
in RSP, we quantize the continuous fuel-time function ce(·)
into another staircase fuel-time function c̃e(·) according to the
input value S and the input accuracy parameter δ, which can be
further characterized by a polynomial number of representative
points. We then prove that such quantization can perform the
“approximate” comparison.

Later on we will describe our algorithms in a bottom-up
fashion. We first describe the quantizing procedure (Algorithm
1) in Sec. III-A. Then we present our own test procedure
(Algorithm 2) which invokes Algorithm 1 in Sec. III-B.
Finally, we describe the whole FPTAS (Algorithm 3) which
invokes Algorithm 2 in Sec. III-C.

A. Quantizing Fuel-Time Function

For any input value V > 0 and N ∈ Z+, we quantize the
edge-e fuel-time function ce(te) to be

c̃e(te) , min

{⌊
ce(te)

V

⌋
+ 1, N

}
,∀te ∈ [tlbe , t

ub
e]. (5)

Since we have assumed that ce(te) is strictly decreasing in
Sec. II-D, c̃e(te) thus becomes a staircase function with at
most N stairs. During the quantization, parameter V is to
control the accuracy, which is the vertical span of each stair.
Larger V means rougher quantization and lower accuracy but
smaller complexity. Parameter N is to control the maximum
number of stairs. Since ce(te) could take an arbitrarily large
value, the number of stairs could be unbounded, which defi-
nitely incurs high complexity. To design a polynomial time test
procedure where we only need to perform an “approximate”
comparison, we truncate ce(te) by putting a ceil V N . This

1 2 3 4
20

40

60

80

100

120

te

c e
(t

e
)

V = 20.00, N = 4

(2.8, 2)

(1.8, 3)

(1.0, 4)

1 2 3 4
1

2

3

4

5

6

c̃ e
(t

e
)

Original curve
Quantized curve
Representative points

Fig. 2. An example for quantizing
ce(·).

BL BUS 2S

BUBL OPT

BL BUOPT

Before TEST(S,S,1)

TEST(S,S,1) Returns FAIL

TEST(S,S,1) Returns A Path

Fig. 3. Binary search (Step 2) of
Algorithm 3.

truncation is sufficient for use in the test procedure (see
Sec. III-B). Clearly, c̃e(te) is a quantized and truncated version
of ce(te). An example is shown in Fig. 2. Here we set
V = 20, N = 4. Thus, each stair spans 20 and ce(te) is
truncated by the ceil V N = 80. The resulting curve c̃e(te) is
a non-increasing staircase function, which jumps from 4 to 3
at te = 1.8 and jumps from 3 to 2 at te = 2.8.

Moreover, since c̃e(te) is a staircase function and only
takes integer values, we can use an N -dim vector τ e to
represent it without any information loss. We define it as
τ e , (τ1e , τ

2
e , · · · , τNe) where τ ie is the minimum travel time

over [tlbe , t
ub
e] such that c̃e(·) = i and is defined as nan if

c̃e(·) = i has no solution. For the example in Fig. 2, we have
τe = (τ1e , τ

2
e , τ

3
e , τ

4
e) = (nan, 2.8, 1.8, 1).

We call (τ ie, i) the i-th representative point of c̃e(·). Thus
c̃e(·) is characterized by at most N representative points,
which will play a key role in our test procedure in Sec. III-B.
We summary the quantizing procedure QUANTIZE(e, V,N)
in Algorithm 1. The basic idea is to first find the range of the
stair levels, i.e., [nmin, nmax] and then find τ ie for any level i
in this range by solving an equation ce(te) = iV .

Time Complexity: (i) When nmin = nmax (e.g., if
tube = tlbe), the loop in lines 7-12 will not be executed. Thus,
the total complexity of QUANTIZE(e, V,N) is O(N) due
to the initial loop in lines 1-3. (ii) When nmin < nmax,
we need to solve an equation for each i in the range
[nmin, nmax − 1] as shown in line 8. Since we have assumed
that ce(te) is a strictly decreasing function, we can use
a binary search to solve this equation, which has time
complexity O

(
log
⌈
tube −t

lb
e

tol

⌉)
where tol is the tolerance level

for termination. The total complexity of QUANTIZE(e, V,N)

is O
(
N + (nmax − nmin) log

⌈
tube −t

lb
e

tol

⌉)
=

O
(
N +N log

⌈
tube −t

lb
e

tol

⌉)
= O

(
N log

(
2
⌈
tube −t

lb
e

tol

⌉))
.

To unify the expression of time complexity for both (i) and
(ii), we define

ξe , max

{
2, 2

⌈
tube − tlbe

tol

⌉}
,

then the complexity of QUANTIZE(e, V,N) is O(N log ξe).
Also, if we define

ξ , max
e∈E

ξe, (6)

then the complexity of QUANTIZE(e, V,N) is O(N log ξ) for
any e ∈ E .

6

Algorithm 1 A Quantizing Procedure QUANTIZE(e, V,N)

1: for i = 1, 2, · · · , N do
2: Set τ ie = nan
3: end for
4: Set nmin = c̃e(t

ub
e) = min{b ce(t

ub
e)

V c+ 1, N}
5: Set nmax = c̃e(t

lb
e) = min{b ce(t

lb
e)

V c+ 1, N}
6: Set τnmax

e = tlbe
7: for i = nmin, nmin + 1, · · · , nmax − 1 do
8: Solve the equation ce(te) = iV over te ∈ [tlbe , t

ub
e]

9: if the equation has a solution te then
10: Set τ ie = te
11: end if
12: end for
13: return τ e = (τ1e , τ

2
e , · · · , τNe)

B. The Test Procedure

As introduced above, the test procedure should “approx-
imately” compare S and the optimal value OPT such that
it can answer either OPT > S or OPT ≤ (1 + δ)S in
polynomial time. Inspired by [51], which improves the FPTAS
of RSP in [24], we adopt a more powerful test procedure,
denoted by TEST(L,U, δ). It can answer either OPT > U or
OPT ≤ U+δL. Clearly, if we set L = U = V , TEST(S, S, δ)
can answer either OPT > S or OPT ≤ (1+δ)S, which exactly
completes the “approximate” comparison. The reason to adopt
a more powerful test procedure, similar to [51], is that we will
also use it to finally output a (1+ε)-approximate solution. We
will discuss it soon in Sec. III-C.

The details of TEST(L,U, δ) are shown in Algorithm 2.
As we mentioned before, the major difference between our
problem PASO and the existing problem RSP is that PASO
has a continuous fuel-time function for each edge instead of
a fixed cost. Thus, different from the test procedure for RSP
(see [51, Fig. 1]), we have a step to invoke the quantizing
procedure (Algorithm 1) to quantize the fuel-time function, as
shown in lines 3-5 in Algorithm 2. More importantly, since our
test procedure TEST(L,U, δ) aims to check either OPT > U
or OPT ≤ U + δL, roughly speaking, we do not need to
quantize the portion of each fuel-time function with high fuel
cost, i.e., larger than U + δL. Hence, to ensure polynomial
time complexity eventually, we put a ceil V (N +1) for ce(te)
as shown in line 4 of the algorithm, where V and N are
appropriately set such that V (N + 1) ≥ U + δL.

After such quantization, the fuel-time function ce(te) for
each edge e consists of at most N + 1 representative points.
Therefore, conceptually we can construct a new graph G̃ =
(V, Ẽ). Each edge e ∈ E in the original graph corresponds
to at most N + 1 edges in the new graph Ẽ . For each edge
e ∈ Ẽ , the edge cost c̃e is a positive integer, as shown in (5).
This is exactly an RSP problem. Therefore, the remaining
steps follow the test procedure for RSP on the new graph
G̃. Specifically, since each edge e ∈ E has at most N + 1
possible cost values all of which are positive integers (each
edge e in the new graph Ẽ has a positive integer cost), we
can use dynamic programming to complete such test. Similar
to [24], [51], we define gv(c) as the minimum path travel time

Algorithm 2 A Test Procedure TEST(L,U, δ)

1: Set V = Lδ
n+1

2: Set N = bUV c+ n+ 1
3: for e ∈ E do
4: Get τ e = QUANTIZE(e, V,N + 1)
5: end for
6: Set gs(c) = 0, ∀c = 0, 1, · · · , N
7: Set gv(0) =∞, ∀v 6= s, v ∈ V
8: for c = 1, 2, · · · , N do
9: for v ∈ V do

10: Set gv(c) according to (7)
11: end for
12: if gd(c) ≤ T then
13: return the corresponding path p and travel time set

tp = {te : e ∈ p}
14: end if
15: end for
16: return FAIL

among all s− v paths whose path cost is at most c ∈ Z+, and
define gv(c) = ∞ if no such path. The optimality condition
(or Bellman’s equation) becomes, for any c = 1, 2, · · · ,
gv(c) =min{gv(c− 1),

min
u,i:e=(u,v)∈E,i=1,··· ,N,τ i

e 6=nan
{gu(c− i) + τ ie}} (7)

which is shown in line 10 in Algorithm 2. Since we only
need to answer either OPT > U or OPT ≤ U + δL, we
do not have to process large c. Instead, iterating c from 1
to N is enough for us to complete this task. This dynamic
programming procedure is shown in lines 6-15 of Algorithm 2.

In PASO, we should carefully design the quantizing and
the dynamic programming procedures jointly to guarantee
performance, as shown in the following lemmas, which are
the counterparts to Lemma 2 and Lemma 3 for RSP in [51].

Lemma 3: If Algorithm 2 returns a path p and travel time
set tp, then we have

OPT ≤ c(p, tp) ≤ U + Lδ. (8)

Proof: See Append. D in the supplementary materials.
Lemma 4: If U ≥ OPT, then Algorithm 2 must return a

feasible path p and travel time set tp, which satisfy

c(p, tp) ≤ OPT + Lδ. (9)

Proof: See Append. E in the supplementary materials.
Lemma 5: If Algorithm 2 returns FAIL, then we have

OPT > U. (10)

Proof: This directly follows Lemma 4.
Our test procedure either returns a path p and travel time

set tp in line 13, which implies that OPT ≤ U + Lδ from
Lemma 3, or returns FAIL in line 16, which implies OPT > U
from Lemma 5. Therefore, Lemma 3 and Lemma 5 justify that
our test procedure (Algorithm 2) completes the “approximate”
comparison, i.e., answers either OPT > U or OPT ≤ U+Lδ.

Thus, for the purpose of the test procedure, Lemma 3 and
Lemma 5 are enough. However, we present Lemma 4, which

7

Algorithm 3 An FPTAS
1: Get a lower bound LB and upper bound UB for OPT
2: Set BL = LB
3: Set BU = UB
4: while BU

BL
> 16 do

5: S =
√
BL ·BU

6: Call TEST(S, S, 1)
7: if TEST(S, S, 1) returns FAIL then
8: Set BL = S
9: else

10: Set BU = 2S
11: end if
12: end while
13: Call TEST(BL, BU , ε)

is stronger than Lemma 5, to provide a sufficient condition
such that our test procedure returns a path p and travel time
set tp. We will use Lemma 4 shortly in Sec. III-C to finally
output a (1 + ε)-approximate solution.

Time Complexity: The quantizing procedures for all edges
in lines 3-5 require O(mN log ξ). The dynamic programming
procedure in lines 6-15 requires O(mN2). Since N = bUV c+
n + 1 = bUL · n+1

δ c + n + 1 = O(UL · nδ + n), the total
time complexity of Algorithm 2 is O(mN log ξ + mN2) =
O(m(UL · nδ + n) log ξ +m(UL · nδ + n)2).

C. The Proposed FPTAS

Based on our own test procedure (Algorithm 2), we then
follow the FPTAS for RSP in [51, Fig. 2] by replacing its
test procedure with ours. For completeness, we present the
FPTAS in Algorithm 3 and explain it with the following three
steps.

Step 1 (line 1): To initialize the bound interval, we need
to first obtain a lower bound LB and an upper bound UB for
the optimal value OPT. Define that the minimum single-edge
fuel cost is Clb , mine∈E ce(t

ub
e) and the maximum single-

edge fuel cost is Cub , maxe∈E ce(t
lb
e). Simply, we can use the

minimum single-edge fuel consumption Clb as the lower bound
LB and use the maximum single-path4 fuel consumption nCub

as the upper bound UB. Also, in Sec. IV, we will propose a
heuristic scheme which can always output a set of LB and UB.

Step 2 (lines 2-12): Using the initial lower bound LB
and upper bound UB, we design a binary search scheme,
which repeatedly invokes our test procedure (Algorithm 2)
to exponentially narrow down the bound interval [BL, BU]
until BU/BL ≤ 16. The binary search step is visualized in
Fig. 3. Note that we always keep BL as a lower bound and
BU as an upper bound for OPT. Whenever BU/BL > 16, we
input the geometric mean S =

√
BL ·BU and δ = 1 to the

test procedure, as shown in lines 5 and 6. If TEST(S, S, 1)
returns FAIL, then according to Lemma 4, we must have
S < OPT. In this case, we reset the lower bound BL to be S
in line 8. Otherwise, TEST(S, S, 1) returns a feasible path p
and travel time set tp. According to Lemma 3, we must have

4A simple path can have at most n edges.

OPT ≤ S + δS = 2S. We reset the upper bound to be 2S in
line 10. It can be easily shown that this binary search returns
a lower bound BL and an upper bound BU for OPT such that
BU/BL ≤ 16 in O(log log UB

LB) iterations.
Step 3 (line 13): When BU

BL
≤ 16, we call our test procedure

again but we use L = BL and U = BU and δ = ε. Since
BU ≥ OPT, according to Lemma 4, TEST(BL, BU , ε) must
return a feasible path p and travel time tp such that

c(p, tp) ≤ OPT + εBL ≤ OPT + εOPT = (1 + ε)OPT.

Therefore, we get a (1 + ε)-approximate solution to PASO.
Time Complexity: Step 1 requires O(m) to get an initial

lower bound LB and upper bound UB. Step 2 invokes the
test procedure O(log log UB

LB) times and each invoke takes
O(mn log ξ +mn2) time by using L = U = S and δ = 1.
Thus Step 2 takes O((mn log ξ+mn2) log log UB

LB). Step 3 also
invokes the test procedure, and it takes O(mn log ξ

ε + mn2

ε2)
time by using δ = ε < 1 and O(UL) = O(BU

BL
) = O(1)

because BU

BL
≤ 16 = O(1). Here we can also see why

we need to use a binary search to obtain BU

BL
≤ 16 in

Step 2. This is because BU

BL
= O(1) ensures polynomial

time complexity in Step 3. Therefore, the total complexity is
O((mn log ξ +mn2) log log UB

LB + mn log ξ
ε + mn2

ε2).
We summarize our results for the approximate scheme in

the following theorem.
Theorem 2: Algorithm 3 returns a (1 + ε)-approximate

solution for PASO in time O((mn log ξ +mn2) log log UB
LB +

mn log ξ
ε + mn2

ε2). In addition, under our assumption that any
edge-e fuel-rate-speed function fe(·) is a polynomial function
(see Sec. II-A), when we use LB = Clb and UB = nCub where
Clb , mine∈E ce(t

ub
e) and Cub , maxe∈E ce(t

lb
e) = ce1(t

lb
e1),

we have log log UB
LB = max{O(log log n), O(Ie1)} where Ie1

is the input size of all parameters of edge e1. Thus, Algorith-
m 3 has time complexity polynomial in the input size of the
problem PASO and 1

ε and therefore is an FPTAS.
Proof: See Append. F in the supplementary materials.

Although we generalize the FPTAS design from RSP to
PASO, such an FPTAS (Algorithm 3) still has high complexity
for a large-scale highway network with tens of thousands of
nodes and edges. In the next section, we propose a heuristic
scheme with substantially lower complexity.

IV. A FAST DUAL-BASED HEURISTIC

In this section, we present a heuristic scheme for our prob-
lem PASO based on Lagrangian relaxation. Such a heuristic
scheme, as we will show later in Sec. IV-C, runs much faster
than the FPTAS (Algorithm 3). Also, it always outputs a lower
bound LB and an upper bound UB on OPT, which implements
Step 1 in Algorithm 3. Moreover, in most practical scenarios
as shown in Sec. V, this heuristic scheme outputs an optimal
(or at least near optimal) solution, i.e., LB = UB = OPT (or
at least LB ≈ OPT ≈ UB).

A. Lagrangian Relaxation and Dual Problem

In our problem PASO, since the hard deadline constraint
(4) couples path selection variable x with speed optimization

8

variable t, we relax it and introduce a Lagrangian dual variable
λ ≥ 0, which can be interpreted as a (per-unit) delay price over
the entire network.

Based on such relaxation, we can get the corresponding
Lagrangian,

L(x, t, λ) ,
∑
e∈E

xe · ce(te) + λ(
∑
e∈E

xete − T)

=
∑
e∈E

xe · (ce(te) + λte)− λT, (11)

and the corresponding dual function is defined as D(λ) ,
minx∈X ,t∈T L(x, t, λ). Then the dual problem of PASO is
formulated as

(PASO-Dual) max
λ≥0

D(λ)

B. Obtain Dual Function

Before we solve the dual problem, let us first show how to
obtain the dual function for a given λ as follows,

D(λ) = min
x∈X ,t∈T

L(x, t, λ)

= −λT + min
x∈X ,t∈T

∑
e∈E

xe · (ce(te) + λte)

(E1)
= −λT + min

x∈X

[
min
t∈T

∑
e∈E

xe · (ce(te) + λte)

]
(E2)
= −λT + min

x∈X

∑
e∈E

xe · min
tlbe≤te≤tube

(ce(te) + λte)

(E3)
= −λT + min

x∈X

∑
e∈E

xe · [ce(t∗e(λ)) + λt∗e(λ)]

(E4)
= −λT + min

x∈X

∑
e∈E

xe · we(λ)

(E5)
= −λT +

∑
e∈p∗(λ)

we(λ). (12)

We explain (E1)− (E5) in (12) one by one. Equality (E1)
is because no coupled constraints exist for x and t. Equality
(E2) is because no coupled constraints exist for the travel time
at different edges in T .

In equality (E3), t∗e(λ) is defined as

t∗e(λ) , arg min
tlbe≤te≤tube

(ce(te) + λte) . (13)

Note that since we have assumed that ce(te) is strictly convex
and strictly decreasing over [tlbe , t

ub
e] in Sec. II-D, t∗e(λ) is

unique and thus (13) is well defined. Specifically, t∗e(λ) can
be obtained analytically as follows.

Lemma 6: Define c′−1e (·) as the inverse function of c′e(·).
Then we have

t∗e(λ) =


tube , If 0 ≤ λ < −c′e(tube);
c′−1e (−λ), If −c′e(tube) ≤ λ ≤ −c′e(tlbe);
tlbe , If λ > −c′e(tlbe).

(14)

Proof: See Append. G in the supplementary materials.
Now let us consider the complexity of computing t∗e(λ)

based on Lemma 6. Since we assume that fe(·) is a polynomial

function in Sec. II-A and we define ce(te) = te · fe
(
De

te

)
in

(2), then we can easily evaluate c′e(te) for any te. Thus, we
can first determine the region that λ belongs to. Then,
• If 0 ≤ λ < −c′e(tube), we obtain t∗e(λ) = tube with time

complexity O(1).
• If λ > −c′e(tlbe), we obtain t∗e(λ) = tlbe with time

complexity O(1).
• If −c′e(tube) ≤ λ ≤ −c′e(tlbe), however, we cannot directly

get c′−1e (−λ) because the inverse function c′−1e (·) is not
easy to evaluate. Instead of directly evaluating the inverse
function, we find a te such that c′e(te) = −λ and such
a te becomes t∗e(λ). Since c′e(·) is a strictly increasing
function due to the strict convexity of ce(·), numerically
we can design a binary search scheme to obtain t∗e(λ),
whose time complexity is O

(
log
⌈
tube −t

lb
e

tol

⌉)
= O(log ξ).

Overall, the time complexity to obtain t∗e(λ) is O(log ξ).
In addition, (13) has a nice economic interpretation. As we

have relaxed the hard deadline constraint, we penalize each
edge e with a delay cost, which is the product of the travel
time te and the (per-unit) delay price λ. Then for a given delay
price λ, each edge selects the optimal travel time to minimize
its generalized cost, including both fuel cost ce(te) and delay
cost λte. Thus, t∗e(λ) is the best response of edge e for a given
delay price λ.

In equality (E4), we(λ) is defined as

we(λ) , ce(t
∗
e(λ)) + λt∗e(λ), (15)

which can be interpreted as the minimum generalized cost
(including both fuel cost and delay cost) of edge e for a given
delay price λ. Obviously, we(λ) is the generalized cost under
the best response t∗e(λ).

In equality (E5), since X restricts that an s − d path is
selected, minx∈X

∑
e∈E xe · we(λ) is exactly a shortest path

problem where each edge e has a generalized cost we(λ). We
define p∗(λ) as the resulting shortest-generalized-cost path.

In summary, (12) shows that for any dual variable λ, we
only need to solve a shortest path problem to obtain the dual
function value D(λ), which is much easier than PASO.

C. The Heuristic Algorithm

Our heuristic scheme relies on one key observation. Define

δ(λ) ,
∑

e∈p∗(λ)

t∗e(λ), (16)

which is the total travel time of the resulting shortest-
generalized-cost path p∗(λ) for a given λ. Our key observation
is the following theorem (see an example in Fig. 6).

Theorem 3: δ(λ) is non-increasing over λ ∈ [0,+∞).
Proof: See Append. H in the supplementary materials.

Theorem 3 shows that increasing λ will decrease the total
travel time of the selected path based on the best responses
of all edges. Intuitively, since λ can be interpreted as a delay
price, increasing λ will force all edges to select a shorter travel
time and further force the resulting shortest-generalized-cost
path to have a shorter travel time.

Based on Theorem 3, we can use a simple dual variable λ to
coordinate the total travel time. For example, when δ(λ) > T ,

9

Algorithm 4 A Heuristic Scheme
1: Set λL = 0
2: Set λU = λmax

3: while λU − λL > tol do
4: Set λ0 = λL+λU

2
5: Get t∗e(λ0) from Lemma 6 for all e ∈ E
6: Get we(λ0) = ce(t

∗
e(λ0)) + λ0t

∗
e(λ0) for all e ∈ E

7: Get the shortest path p∗(λ0) in terms of we(λ0)
8: if δ(p∗(λ0)) = T then
9: return (p∗(λ0), {t∗e(λ0)})

10: else if δ(p∗(λ0)) > T then
11: Set λL = λ0
12: Set p∗(λL) = p∗(λ0)
13: Set t∗e(λL) = t∗e(λ0),∀e ∈ E
14: else
15: Set λU = λ0
16: Set p∗(λU) = p∗(λ0)
17: Set t∗e(λU) = t∗e(λ0),∀e ∈ E
18: end if
19: end while
20: return (p∗(λL), {t∗e(λL)}) and (p∗(λU), {t∗e(λU)})

we can increase λ such that δ(λ) can be decreased to finally
satisfy the hard deadline requirement. On the other hand, when
δ(λ) < T , it means that the truck travels very fast and there
still exists some room to increase the travel time and thus
decrease the fuel consumption. Then we decrease λ such that
δ(λ) can be increased to reach T . This is called a coordination
mechanism [52, Ch. 5.1.6]. Therefore, we aim to find a λ0 such
that δ(λ0) = T . However, our problem PASO is not convex
but has a combinatorial difficulty. Thus it is not guaranteed
to find such a λ0. We thus call our binary search for λ0
(Algorithm 4) as a heuristic scheme.

In Algorithm 4, we first set an initial lower bound λL = 0
and an initial upper bound λU = λmax for the targeted λ0. In
practice, since we are considering the fuel consumption and
λ can be interpreted as a delay price, λmax can be reasonably
set to be an upper bound of the fuel consumption per hour.
In our simulation in Sec. V, we set λmax = 100, which
works for all settings. Then we do binary search in lines 3-
19, where tol in line 3 is the tolerance level for termination
which is close to zero. During the binary search, based on
the non-increasing property of δ(λ) (Theorem 3), we keep
updating the lower bound λL and its corresponding solution
(p∗(λL), {t∗e(λL) : e ∈ p∗(λL)}), as well as the upper bound
λU and its corresponding solution (p∗(λU), {t∗e(λU) : e ∈
p∗(λU)}).

This algorithm has two possible results:
B Case 1: If it returns in line 9, then we have found a λ0
such that δ(λ0) = T . We prove that the returned solution is
optimal for PASO in Theorem 4.
B Case 2: If it returns in line 20, then we have found a
λ0 such that δ(λL) > T and δ(λU) < T . With a small
enough tolerance level tol, λL = λ0 − tol/2→ λ−0 . Likewise,
λU = λ0 + tol/2 → λ+0 . Roughly speaking, this means
that δ(λ) is not continuous at λ = λ0. Although this return
does not guarantee optimality, we prove in Theorem 5 that

the returned solutions (p∗(λL), {t∗e(λL) : e ∈ p∗(λL)}) and
(p∗(λU), {t∗e(λU) : e ∈ p∗(λU)}) give a lower bound LB and
an upper bound UB for OPT, respectively.

Theorem 4: If Algorithm 4 returns in line 9, then the re-
turned solution (p∗(λ0), {t∗e(λ0) : e ∈ p∗(λ0)}) is an optimal
solution of PASO.

Proof: See Append. I in the supplementary materials.
As a by-product, Theorem 4 also shows that the strong

duality for the combinatorial problem PASO holds in this
case. Also, λ0 is the optimal solution to the dual problem
PASO-Dual.

Theorem 5: If Algorithm 4 returns in line 20,
and define LB ,

∑
e∈p∗(λL) ce(t

∗
e(λL)) and UB ,∑

e∈p∗(λU) ce(t
∗
e(λU)), then we have LB ≤ OPT ≤ UB.

Proof: See Append. J in the supplementary materials.
The LB and UB returned by Algorithm 4 in line 20 can be

used for Step 1 of Algorithm 3. For the case that Algorithm 4
returns in line 9, we use the returned optimal solution as both
a lower bound and an upper bound with LB = UB = OPT.
After such unification, Algorithm 4 always outputs a LB and
UB for the optimal solution OPT.

Time Complexity: In line 7 in Algorithm 4, we use
Dijkstra’s shortest-path algorithm with a min-priority queue,
which is the fastest known algorithm for the single-source
single-destination shortest path problem with time complexity
O(m + n log n) [53]. Thus, in the while loop, each iteration
requires O(m log ξ +m + n log n) time. And since the total
number of iterations is O(log λmax

tol), Algorithm 4 has complex-
ity O(m log ξ +m+ n log n) log λmax

tol), much faster than the
FPTAS (Algorithm 3). We summarize the complexity result in
the following theorem.

Theorem 6: The time complexity of Algorithm 4 is
O((m log ξ +m+ n log n) log λmax

tol).
Remark: A similar dual-based heuristical approach for

RSP is proposed in [26]. However, as mentioned in Sec. III,
different from RSP, our problem PASO has an extra de-
sign space of speed optimization. Therefore, theoretically our
contribution in this section is to generalize the dual-based
heuristical design from RSP [26] to PASO.

V. PERFORMANCE EVALUATION

In this section, we use real-world data to evaluate the
performance of our algorithms. Our objectives are three-
fold: (i) collect realistic dataset and model the fuel-rate-
speed function, (ii) evaluate and compare the performance of
our FPTAS and heuristic, (iii) compare our algorithms with
baseline algorithms, including both shortest path algorithm and
fastest path algorithm adapted from common practice, and (iv)
investigate the energy-deadline tradeoff of long-haul heavy-
duty trucks by evaluating how much fuel can be saved by
increasing the hard deadline.

A. Dataset

Transportation Network: We construct the U.S. Nation-
al Highway Systems (NHS) from the dataset of Clinched
Highway Mapping (CHM) Project [54]. The whole highway

107.1 Dataset
Transportation Network: To construct United States

National Highway Systems (NHS), we use the graph dataset
from Clinched Highway Mapping (CHM) Project [17]. The
whole graph file is specified in [2] which consists of 84504
nodes (waypoints) and 89119 edges. Each node has its lat-
itude/longitude coordinates while each edge is represented
by a pair of nodes. The graph data has a reasonable level of
accuracy for us to model the NHS network.

Elevation: In this paper, we only consider the grade/slope
effect when modeling road-dependent fuel-rate-speed con-
sumption function. In order to obtain the grade of each
road segment, we use the Elevation Point Query Service [7]
provided U.S. Geological Survey (USGS). We write a script
to query elevations of all 84504 nodes in the NHS graph.

Speed Limits: Although usually U.S. highways will spec-
ify its maximal speed limit, it is generally meaningless to use
the maximal speed limit. Instead, it is more reasonable to
use the average speed limit according to historical flow data
for each road segments. HERE map [6] has put speed de-
tectors over many countries including U.S., and it provides
some APIs to query location-based real-time speed informa-
tion. For our purpose, using the corridor parameter is a
suitable choice [6]. For each edge (road segment), we use
the latitude/longitude coordinates of its two endpoints and
a width of 100 meters to specify the corridor. We are keep-
ing collecting the real-time speed information for the whole
NHS graph and using the running average as the average
speed of each road segments.

Fuel Consumption Data: It is hard for us to get good
real-world fuel consumption function data. In this paper,
we instead use the widely-used ADVISOR simulator [14] to
collect fuel consumption data.

Heavy-Duty Truck: Fuel consumption highly depen-
dents on which truck is used. Another benefit of using
ADVISOR is that it also provides some heavy-duty truck
profiles. In this simulation, we use the Kenworth T800 Ve-
hicle [3], a Class 8 heavy-duty truck. It is defaulted speci-
fied in files VEH_KENT800Trailer.m and HeavyTruck_in.m in
ADVISOR with the following parameters in Tab. 1.

Table 1: Truck Parameters (Kenworth T800).

Drag Coefficient

cd

Frontal area

Af

Glider

Mass

Cargo

Mass

0.7 8.5502 m2 2,552kg 33,234kg

Preprocessing Network: In the original NHS graph
from CHM [2], a lot of road segments are very short. To be
added...

Table 2: Network Statistics. “O” is the original net-
work and “E” is the “eastern” US with longitude ≥
−1000 and “M” is the graph after merging. θ is the
grade.

G n m
avg De

(mile)

avg Rlb
e

(mph)

avg Rlb
e

(mph)

avg |θ|
(%)

O 84504 178238 2.08 37.4 55.97 0.64

E 65520 137521 1.97 37.3 55.55 0.58

M 38213 82781 3.26 36.43 54.19 0.82

 120 ° W
 110° W 100° W 90° W 80

° W
 70

° W

 25 ° N

 30 ° N

 35 ° N

 40 ° N

 45 ° N

 50 ° N

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Figure 4: USA map and 22 regions.

7.2 Fuel-Rate-Speed Function Modeling
We will use the following fuel-rate-speed function model,

fe(x) = aex
3 + bex

2 + cex+ de, ∀e ∈ E (22)

which can capture most cases in [8–10,15] and also our physi-
cal interpretation in Appendix A. Here x is the speed in unit
of mph and fe(x) is the fuel rate consumption in unit of gph
(gallons per hour). Although our model (22) can capture
any road-dependent features, e.g., grade, rolling resistance,
and air density, etc., in this simulation, we only consider the
road grade. This is because that grade is a major factor for
truck fuel consumption [?].
Collecting Data from ADVISOR: To learn the pa-

rameters ae, be, ce, de in (22), we collection data from ADVI-
SOR [14]. We use the ADVISOR without the GUI by invok-
ing function adv_no_gui(action,input) where we specify
action=drive_cycle to run a driving cycle test, see ADVI-
SOR document [1, Ch. 2.3].

As mentioned in Sec. 7.1, we choose the default vehicle
file HeavyTruck_in where we use vehicle type VEH_KENT800.
This specifies all parameters for the class 8 heavy-duty truck,
Kenworth T800.

Next we need to specify the driving cycle. We generate a
driving cycle file for our purpose where we specify a constant
speed (say x) profile over a total of 4 hours and a constant
grade/slope (say θ) over the whole speed profile. Then after
running ADVISOR, we can get total fuel consumption w
(gallons) over a 4-hour driving time with speed x and over
a road with grade θ. Since almost all the time the truck will
running with constant speed x, we can get the corresponding
fuel-rate consumption as w/4 (gph).

By enumerating x from 10mph to 70mph with a step of
0.2mph, and enumerating θ from -10.0% to 10.0% with a
step of 0.1%, we collection many (x, θ, w/4) data points.
Fitting: For each grade θ from 10.0% to 10.0% with a

step of 0.1%, we use all (x,w/4) points to fit the model
(22) by using MATLAB’s fit function. We sampled several
grade points in Tab. 3, where we also put the convex region
for the fitted fuel-rate-speed function fe(x). As we can see,
the fuel-rate-speed function fe(x) is convex in reasonable re-
alistic scenarios. For example, when grade is 0 (a flat road),
the fuel-rate-consumption function is convex if the speed is
larger than 16.78mph, which holds generally in reality. This

Fig. 4. U.S. map and 22 regions.

network graph file is specified in [55], which consists of 84504
nodes (waypoints) and 89119 (one-direction) edges.

Elevation: In this paper, we consider the grade/slope effect
when modeling the road-dependent fuel-rate-speed function.
To obtain the road grades, we use the Elevation Point Query
Service [56] provided by the U.S. Geological Survey (USGS)
to query elevations of all nodes in the NHS graph.

Speed Limits: We use the historical average speed as
the maximum speed Rub

e for each road e. HERE map [57]
has put speed detectors over many countries including U.S.,
and it provides APIs to query location-based real-time speed
information. We collect the real-time speed information from
HERE map [57] for two weeks and use the average as Rub

e

for each road e in the NHS graph5. For the minimum speed
limit Rlb

e , we manually set it to be Rlb
e = min{30, Rub

e }.
Fuel Consumption Data: It is hard for us to get suitable

real-world fuel consumption data. In this paper, we instead
leverage the widely-used ADVISOR simulator [58] to collect
fuel consumption data (see Sec. V-B).

Heavy-Duty Truck: Fuel consumption highly depends on
the truck type. Another benefit of using ADVISOR is that it
also provides some heavy-duty truck configurations. In this
simulation, we use the Kenworth T800 Vehicle [59], a Class 8
heavy-duty truck, with 36-ton full load. It is specified in files
VEH_KENT800Trailer.m and HeavyTruck_in.m6 in
ADVISOR with the following parameters in Tab. III.

TABLE III
TRUCK PARAMETERS (KENWORTH T800).

Drag Coefficient
cd

Frontal area
Af

Glider
Mass

Cargo
Mass

0.7 8.5502 m2 2,552kg 33,234kg

Preprocessing Highway Network: In the original NHS
graph from CHM [55], we observe that: (i) most roads are
in the “eastern” U.S., and (ii) many roads are very short
with degree-1 endpoints (non-intersection roads). To create a
network with more diverse paths, we first cut the whole NHS
graph to the “eastern” part with longitude to the east of 100◦W
(see Fig. 4). We further merge the non-intersection roads with

5Due to the truck’s gradeability, it may not achieve the average speed and
thus later we also update Rub

e based on the maximum speed that the truck
can achieve at road e’s grade.

6We replace vinf.vehicle.name by VEH_KENT800Trailer.

TABLE IV
NETWORK STATISTICS. “O” IS THE ORIGINAL NHS GRAPH, “E” IS THE

“EASTERN” GRAPH (TO THE EAST OF 100◦W), AND “M” IS THE MERGED
ONE. θ IS THE GRADE.

G n m
avg De

(mile)
avg Rlb

e

(mph)
avg Rub

e

(mph)
avg |θ|

(%)
O 84504 178238 2.08 37.4 55.97 0.64
E 65520 137521 1.97 37.3 55.55 0.58
M 38213 82781 3.26 36.43 54.19 0.82

the same level of grades7 into a single road. Some network
statistics after these two kinds of preprocessing are shown in
Tab. IV. Note that since the average distance for each edge is
3.26 miles after preprocessing, it is reasonable to ignore the
speed transition over two adjacent edges, which justifies the
assumption in our fuel consumption model.

Moreover, to better visualize and evaluate the results, we
divide the major “eastern” U.S. into 22 regions, as shown in
Fig. 4. In each region i ∈ [1, 22], we find the node in the graph
which is nearest to the region’s center. We also call it node i
for convenience. Later on, we will use these 22 nodes as the
source and destination nodes.

B. Model Fuel-Rate-Speed Function

We model the fuel-rate-speed function as

fe(x) = aex
3 + bex

2 + cex+ de,∀e ∈ E (17)

Here x is the speed (unit: mph) and fe(x) is the fuel rate
consumption (unit: gph (gallons per hour)). Although our
model (17) can capture any road-dependent features/factors,
e.g., grade, rolling resistance, and air density, etc., we only
consider the road grade θ in this simulation, which is the major
factor for truck fuel consumption [43].

To learn the parameters ae, be, ce and de in (17) in
terms of functions of θ, we use ADVISOR by invoking
function adv_no_gui(action,input) where we specify
action=drive_cycle to run a driving cycle test [60,
Ch. 2.3]. As mentioned in Sec. V-A, we choose the default
vehicle file HeavyTruck_in where we use vehicle type
VEH_KENT800, which specifies Kenworth T800 in Tab. III.
For our purpose, we generate a driving cycle file where we
use a constant speed (say x (mph)) profile over a total of
4 hours and a constant grade (say θ) over the whole speed
profile. Then after running ADVISOR, we can get the total
fuel consumption (say w (gallons)) over a 4-hour driving time
with speed x over a grade-θ road. Since almost all the time the
truck runs with constant speed x, we can get the corresponding
fuel-rate consumption as w/4 (gph). By enumerating x from
10 mph to 70 mph with a step of 0.2 mph, and enumerating θ
from -10.0% to 10.0% with a step of 0.1%, we collect many
(x, θ, w/4) data points.

For each grade θ from −10.0% to 10.0% with a step of
0.1%, we use all (x,w/4) points to fit the model (17) by
invoking MATLAB’s fit function. We sample several grade
points in Tab. V, where we also put the strictly convex region
for the fitted fuel-rate-speed function fe(x). As we can see, all

7In this simulation, we use 0.4% as the span of a grade level.

11

fuel-rate-speed functions fe(·) are strictly convex in reasonable
speed limit regions. For example, when grade is 0 (a flat road),
fe(·) is strictly convex if the speed is larger than 14.22 mph,
which holds generally in reality. This justifies our assumption
that the fuel-rate-speed function is polynomial and strictly
convex over the speed limit region.

TABLE V
FITTING PARAMETERS. FOR THE CONVEX REGION, ≤ x IS THE INTERVAL

[0, x] AND ≥ x IS THE INTERVAL [x,∞).

Grade
(%)

ae be ce de
Convex
Region

-2.0 5.5679e-06 -1.0839e-04 -0.0064 1.0655 ≥6.49
-1.0 1.0778e-05 1.2960e-03 -0.0456 1.2879 ≥0.00
0.0 3.3057e-05 -1.4102e-03 0.1476 0.5985 ≥14.22
1.0 4.9559e-05 -2.3563e-03 0.2583 0.6624 ≥15.85
2.0 5.9418e-05 -2.2194e-03 0.3404 0.8741 ≥12.45

More concretely, we visualize the fuel-rate-speed function
fe(x) and fuel-time function ce(te) for three sampled grades,
−1.0%, 0.0%, and 1.0%, as shown in Fig. 5. We can see that
both of them are strictly convex in reasonable regions. We also
verify that ce(te) will first strictly decrease and then strictly
increasing and thus we only need to focus on the decreasing
interval without loss of optimality, as discussed in Sec. II-B.
From Fig. 5(b), we also observe that the fuel-time curve is not
smooth but has some glitches. This is due to the gear switch
of the truck.

20 40 60
0

5

10

15

speed (mph)

fu
e

l−
ra

te
−

s
p

e
e

d
 f

u
n

c
ti
o

n
 (

g
p

h
)

data (−1%)

fitted (−1%)

data (0%)

fitted (0%)

data (1%)

fitted (1%)

(a) Fuel-rate-speed function fe(x).

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

time (hours)

fu
e

l−
ti
m

e
 f

u
n

c
ti
o

n
 (

g
a

llo
n

s
)

data (−1%)

fitted (−1%)

data (0%)

fitted (0%)

data (1%)

fitted (1%)

(b) Fuel-time function ce(te) over a
100-mile road.

Fig. 5. Fit curve v.s. data for grades 0%, ±1%.

C. Evaluate/Compare FPTAS and Heuristic

We implement our algorithms with C++ where we use the
SNAP graph structure [61]. We evaluate on a server with an
8-core Intel Core-i7 3770 3.4 Ghz CPU and 16 GB memory,
running CentOS 6.4. To evaluate and compare our FPTAS
(Algorithm 3) and heuristic scheme (Algorithm 4), we consider
4 different settings, S1, S2, S3, and S4, as shown in Tab. VI.
Note that since we aim to compare them, we use LB = 1 and
UB = 1000 in Step 1 of Algorithm 3.

In terms of the minimized fuel cost of the algorithms,
Tab. VI shows that the heuristic scheme always outputs the
optimal solution (LB = UB, hence LB = UB = OPT),
and the FPTAS also outputs a near-optimal solution (e.g., in
S1, 74.812 is only a little bit larger than OPT = 74.811).
This demonstrates that both FPTAS and the heuristic scheme
have good performance. However, in terms of time/space

0 5 10 15
35

40

45

50

55

(4.48,40)

λ

δ
(λ
)

11 11.5 12
37.6

37.7

37.8

37.9

Fig. 6. An example for δ(λ) when
(s, d) = (4, 22).

36 38 40 42 44 46
280

300

320

340

Deadline (hours)

F
ue

l c
on

su
m

ed
 (

ga
llo

n) F
F−SO
S
S−SO
OPT−UB
OPT−LB

Fig. 7. The delay effect when
(s, d) = (9, 22).

complexity, the heuristic scheme is much better than FPTAS.
As we can see, the FPTAS only works fine for the small-
scale settings (S1 and S4), where the transportation network
in regions 1 and 2 in Fig. 4 is considered, with only 1185 nodes
and 2568 edges. When we use a little bit larger scale setting
S2, it runs for nearly 1 hour and consumes 14.76 GB memory
(out of 16 GB in total). Our server cannot run any other setting
whose scale is larger than S2. We also note that the complexity
of the FPTAS increases significantly as we decrease ε from 0.1
to 0.05, as shown in settings S1&S4. Contrarily, our heuristic
scheme can handle all 22 regions (setting S3) with 38213
nodes and 82781 edges easily with low time/space complexity.

Tab. VI verifies that the FPTAS is not necessarily scalable
to practical large-scale highway networks, but our heuristic
scheme works very well in terms of both performance and
complexity. To see why the heuristic scheme performs well,
we examine an example source-destination pair in the setting
S3, (s, d) = (4, 22), and plot its δ(λ) function (the total
travel time of the shortest-generalized-cost path, see (16)) in
Fig. 6. We observe that function δ(λ) is non-increasing, which
verifies Theorem 3. Moreover, δ(λ) has only a few small
non-continuous jumps (e.g., a jump at point λ = 11.47 from
37.83 to 37.62). Whenever a (feasible) delay is not within such
jump regions, we can always find a λ0 such that δ(λ0) = T .
According to Theorem 4, the output solution must be optimal.
For example, when T = 40, we can find λ0 = 4.48 such
that δ(λ0) = 40, as shown in Fig. 6. The optimal solution
can be derived as (p∗(λ0), {t∗e(λ0)}). Even when T is within
one of such jump regions (e.g., T ∈ (37.62, 37.83)), since the
length of the deadline region (e.g., (37.62, 37.83) has a length
of 0.21 hours) is often negligible as compared to a nearly
40-hour travel, the output LB and UB would be very close.
Hence, our heuristic scheme outputs an optimal (at least near-
optimal) solution for any input T . We will further justify this
observation with more instances in Sec. V-D.

D. Compare Performance with Baselines

In this section, we compare the performance of our heuristic
scheme with four baseline algorithms. Let us first define the
fastest path and the shortest path. The fastest path is the output
path of any shortest path algorithm to the graph with edge-e
cost tlbe (=

De

Rub
e
) and the shortest path is the output path of

any shortest path algorithm to the graph with edge-e cost De.
Then the four baseline algorithms are as follows:

12

TABLE VI
COMPARISONS OF FPTAS AND HEURISTIC. HERE AN INSTANCE IS THE TUPLE (SOURCE, DESTINATION, DEADLINE), I.E., (s, d, T). FOR EXAMPLE, IN
S1, (1,2,8) MEANS THAT THE SOURCE (RESP. DESTINATION) NODE IS 1 (RESP. 2), WHICH IS THE NEAREST NODE TO THE CENTER OF REGION 1 (RESP.

REGION 2) IN FIG. 4, AND THE DEADLINE IS 8 HOURS.

No. Network Input Performance (gallon) Time (second) Memory (GB)
Reg. n m Instance ε Heuri. LB/UB FPTAS Heuri. FPTAS Heuri. FPTAS

S1 1&2 1185 2568 (1,2,8) 0.1 74.811/74.811 74.812 1 50 0.29 2.73
S2 17&18 3274 7465 (18,17,10) 0.1 60.2795/60.2795 60.2798 2 3511 0.29 14.76
S3 1-22 38213 82781 (4,22,40) 0.1 290.744/290.744 - 365 - 0.29 -
S4 1&2 1185 2568 (1,2,8) 0.05 74.811/74.811 74.812 1 126 0.29 6.84

TABLE VII
DESCRIPTION OF 6 SOLUTIONS.

Solution Description Benchmark
F Sol. of fastest path with maximum speed Time

F-SO Sol. of fastest path with optimal speed -
S Sol. of shortest path with maximum speed Distance

S-SO Sol. of shortest path with optimal speed Distance
OPT-LB Sol. of LB of our heuristic scheme Fuel
OPT-UB Sol. of UB of our heuristic scheme -

(i) Fastest path algorithm with maximum speed: the path
is the fastest path and the speed in each edge is the
maximum speed.

(ii) Fastest path algorithm with optimal speed: the path is the
fastest path and we further do speed optimization over
the fastest path.

(iii) Shortest path algorithm with maximum speed: the path
is the shortest path and the speed in each edge is the
maximum speed.

(iv) Shortest path algorithm with optimal speed: the path is
the shortest path and we further do speed optimization
over the shortest path.

Each of them outputs one solution for PASO. Since our
heuristic scheme outputs two solutions respectively corre-
sponding to the LB and UB, we have 6 solutions in total,
as summarized in Tab. VII.

In later comparison, since the travel time of F is the
minimum time for any feasible solution of PASO, we will
use it as the time benchmark. For example, a solution SOL
(e.g., SOL could be OPT-UB) with time increment 10% means
that Travel time of SOL−Travel time of F

Travel time of F = 10%. Similarly, we use the
travel distance of S/S-SO as the distance benchmark, and use
the fuel consumption of OPT-LB as the fuel benchmark.

In our simulation, we evaluate in total 2704 different
(s, d, T) tuples. The source node s and the destination node
d could range from 1 to 22 (see the 22 regions in Fig. 4).
For any (s, d) pair, the deadlines T could range from dT fe to
dT fe+9 where T f is the smallest travel time from s to d, i.e.,
the travel time computed by baseline algorithm (i).

A Single Instance: We first consider one instance
(s, d, T) = (9, 22, 40). Tab. VIII compares the 6 solutions. As
we can see, our heuristic scheme again outputs the optimal
solution. It consumes 300.1 gallons of fuel, runs 10.76%
slower than the time benchmark (F), and 0.3% longer than the
distance benchmark (S/S-SO). Also, without speed optimiza-
tion, the fastest path (F) consumes 32 more gallons (10.67%)
and the shortest path (S) consumers 18 more gallons (5.99%).

TABLE VIII
PERFORMANCE OF INSTANCE (s, d, T) = (9, 22, 40).

Sol.
Time

(hour)
Incre.
(%)

Dist.
(mile)

Incre.
(%)

Fuel
(gal.)

Incre.
(%)

F 36.11 - 1821 2.71 332.1 10.67
F-SO 40 10.76 1821 2.71 308.3 2.73

S 38.58 6.85 1773 - 318.0 5.99
S-SO 40 10.76 1773 - 307.0 2.30

OPT-LB 40 10.76 1778 0.30 300.1 -
OPT-UB 40 10.76 1778 0.30 300.1 0

But with speed optimization, both fastest path and shortest
path have near-optimal performance.

For (s, d) = (9, 22), we also evaluate the effect of input
deadline T as shown in Fig. 7. Considering speed optimization,
when the input deadline T ∈ [36.11, 38.58), the shortest path
is infeasible, which shows that fastest path outperforms short-
est path. The shortest path becomes feasible when T ≥ 38.58,
and it outperforms the fastest path when T > 39. This figure
thus shows that the shortest path becomes better and better
as the deadline constraint increases. Intuitively, when the hard
deadline constraint can be satisfied, the travel distance would
be critical for the total fuel consumption.

The OPT-UB curve in Fig. 7 is the energy-deadline tradeoff
of (s, d) = (9, 22). We see that increasing deadline can save
fuel consumption, and the saving has a “diminishing return”
property. For example, the truck can save 6.6 gallons of fuel
if it increases its deadline from 37 to 38 hours, but the saving
reduces to 1.46 gallons if its deadline is relaxed from 45 to
46 hours. A more comprehensive study on energy-deadline
tradeoff is shown in Sec. V-E.

All Instances: Similar to Tab. VIII, we can get the time,
distance, and fuel of the 6 solutions for all source-sink pairs.
We evaluate the average performance of all running instances
in terms of time/distance/fuel increments compared to the
benchmark numbers, as summarized in Tab. IX. Note that in
4.84% of instances, shortest path is infeasible. Tab. IX only has
the average performance over the instances where the shortest
path is feasible.

Tab. IX shows that on average OPT-UB only consumes
0.02% of more fuels than the fuel benchmark (OPT-LB). This
again shows that our heuristic scheme outputs a near-optimal
solution in all instances.

For the baseline algorithms, Tab. IX shows that the fastest
path (resp. shortest path) algorithm without speed optimization
consumes 20.14% (resp. 16.40%) of more fuels than our so-
lution. In other words, our heuristic solution achieves 16.76%

13

TABLE IX
AVERAGE PERFORMANCE OF ALL 2704 INSTANCES.

Sol.
Avg Time
Incre.(%)

Avg Dist.
Incre.(%)

Avg Fuel
Incre.(%)

Avg Fuel
Econ.(mpg)

F - 1.71 20.14 5.05
F-SO 32.80 1.71 2.00 5.94

S 2.82 - 16.40 5.13
S-SO 32.80 - 0.31 5.94

OPT-LB 32.95 0.17 - 5.96
OPT-UB 32.89 0.18 0.02 5.96

(resp. 14.09%) fuel consumption reduction, as compared to
the fastest path (resp. shortest path) algorithm. Our heuristic
solution also improves the 36-ton-truck’s fuel economy from
5.05 for the fastest path and 5.13 for the shortest path to 5.96.
Considering its significant portion of energy consumption, our
solution can indeed save much fuel cost for the long-haul
heavy-duty trucks.

When we allow speed optimization for the fastest path
and the shortest path, we find that on average both of them
are close to the optimal solution. More specifically, F-SO
consumes 2.00% of more fuels and S-SO only consumes
0.31% of more fuels than OPT-LB. This apparently suggests
that in the U.S., it is good enough to first choose the shortest
or fastest path and then do speed optimization. However, in
our simulation, the shortest path is infeasible among 4.84%
of all instances, and the fastest path with speed optimization
can consume 21.32% of more fuels in the worst instance. As
opposed to them, our PASO solution is robust in the sense
that it always output a solution that is both feasible and near-
optimal. We also leave it as a future work to understand
under which conditions the fastest/shortest path with speed
optimization is close to the optimal solution.

E. Energy-Deadline Tradeoff

In this subsection, we evaluate all (s, d) pairs where s
and d range from 1 to 22. For each (s, d) pair, we first
get the smallest travel time T f, i.e., the travel time com-
puted by baseline algorithm (i) in Sec. V-D, and get the
corresponding fuel consumption C f. Now we increase the
deadline by x% and evaluate the fuel consumption C(x%)
when T = (1+x%)T f, and get the fuel consumption reduction
C f−C(x%)

C f . By changing the percentage of delay increase, i.e.,
x, we get different percentages of fuel consumption reduction.
The energy-deadline tradeoff performance among all (s, d)
pairs is shown in Fig. 8.

As we can see, the fuel consumption reduction has a
“diminishing return” property. As compared to the fastest
travel time, if we increase the hard deadline by 10%, we can
reduce the fuel consumption by about 10% on average. If we
increase the hard deadline by 50%, we can reduce the fuel
consumption by about 20% on average. If we further increase
the hard deadline after 70%, there is little extra benefit. This is
because the optimal running speed over most edges becomes
the minimum speed and there is little room to do further speed
optimization if we increase the deadline more than 70%.

0

5

10

15

20

25

30

 0 10 20 30 40 50 60 70 80 90100
Deadline Increase (%)

F
u

e
l
R

e
d

u
c
ti
o

n
 (

%
)

Fig. 8. The energy-deadline tradeoff.

VI. CONCLUSION AND FUTURE WORK

Provisioning both energy-efficient and timely delivery is of
great importance for logistic operators. This paper presents
a first step to study the energy-efficient timely transportation
problem with an emphasis for long-haul heavy-duty trucks.
We propose two algorithms: the first one is an FPTAS and the
second one is a heuristic with lower complexity and near-
optimal empirical performance. Our real-world data-driven
simulations show that our solution guarantees timely delivery
and can save up to 17% of fuel consumption as compared
to a fastest/shortest path algorithm adapted from common
practice. An interesting and important future direction is to
generalize our results beyond the highway setting to cover
more sophisticated local driving scenarios.

REFERENCES

[1] L. Deng, M. H. Hajiesmaili, M. Chen, and H. Zeng, “Energy-efficient
timely transportation of long-haul heavy-duty trucks,” in Proc. ACM
e-Energy, 2016.

[2] Improving the fuel efficiency of American trucks, 2014. https://www.
whitehouse.gov/the-press-office/2014/02/18/fact-sheet-opportunity-
all-improving-fuel-efficiency-american-trucks-bol.

[3] S. C. Davis, S. W. Diegel, and R. G. Boundy, Transportation Energy
Data Book: Edition 34. U.S. Department of Energy, 2015.

[4] Transportation overview. http://www.c2es.org/energy/use/transportation.
[5] W. Ford Torrey and D. Murray, “An analysis of the operational costs of

trucking: A 2015 update,” 2015.
[6] W. Harrington and A. Krupnick, “Improving fuel economy in heavy-duty

vehicles,” Resources for the Future DP, 2012.
[7] Z. Mohamed-Kassim and A. Filippone, “Fuel savings on a heavy

vehicle via aerodynamic drag reduction,” Transportation Research Part
D: Transport and Environment, 2010.

[8] Supertruck team achieves 115% freight efficiency improvement in
Class 8 long-haul truck, 2015. http://energy.gov/eere/vehicles/articles/
supertruck-team-achieves-115-freight-efficiency-improvement-class-8-
long-haul.

[9] Keeping your vehicle in shape. https://www.fueleconomy.gov/feg/
maintain.jsp.

[10] F. Stodolsky, L. Gaines, and A. Vyas, “Analysis of technology options
to reduce the fuel consumption of idling trucks,” Argonne National Lab,
Tech. Rep., 2000.

[11] A. A. Alam, A. Gattami, and K. H. Johansson, “An experimental study
on the fuel reduction potential of heavy duty vehicle platooning,” in
Prof. IEEE ITSC, 2010.

[12] J. Larson, K.-Y. Liang, and K. H. Johansson, “A distributed framework
for coordinated heavy-duty vehicle platooning,” IEEE Transactions on
Intelligent Transportation Systems, 2015.

[13] E. Demir, T. Bektaş, and G. Laporte, “A review of recent research
on green road freight transportation,” European Journal of Operational
Research, 2014.

14

[14] Y. Suzuki, “A new truck-routing approach for reducing fuel consumption
and pollutants emission,” Transportation Research Part D: Transport
and Environment, 2011.

[15] M. Tunnell, “Estimating truck-related fuel consumption and emissions
in maine: A comparative analysis for six-axle, 100,000 pound vehicle
configuration,” in Proc. TRB Annual Meeting, 2011.

[16] E. Hellström, M. Ivarsson, J. Åslund, and L. Nielsen, “Look-ahead
control for heavy trucks to minimize trip time and fuel consumption,”
Control Engineering Practice, 2009.

[17] E. Hellström, J. Åslund, and L. Nielsen, “Design of an efficient algorith-
m for fuel-optimal look-ahead control,” Control Engineering Practice,
2010.

[18] Smarter trucking saves fuel over the long haul, 2011.
http://news.nationalgeographic.com/news/energy/2011/09/110923-
fuel-economy-for-trucks/.

[19] Fuel economy at various driving speeds. http://www.afdc.energy.gov/
data/10312.

[20] W. Mallett, Freight Performance Measurement: Travel Time in Freight-
Significant Corridors. U.S. Federal Highway Administration, 2006.

[21] Transportation logistics enhances your business efficiency, 2014. http:
//www.readytrucking.com/transportation-logistics-business-efficiency/.

[22] B. H. Ashby, Protecting Perishable Foods during Transport by Truck.
U.S. Department of Agriculture, 2006.

[23] Place an order with guaranteed delivery. https://www.amazon.com/
gp/help/customer/display.html/ref=hp left v4 sib?ie=UTF8&nodeId=
201117390.

[24] R. Hassin, “Approximation schemes for the restricted shortest path
problem,” Mathematics of Operations Research, 1992.

[25] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, 1979.

[26] A. Jüttner, B. Szviatovski, I. Mécs, and Z. Rajkó, “Lagrange relaxation
based method for the QoS routing problem,” in Proc. IEEE INFOCOM,
2001.

[27] M. W. Savelsbergh, “Local search in routing problems with time
windows,” Annals of Operations research, vol. 4, no. 1, pp. 285–305,
1985.

[28] L. M. Gambardella, É. Taillard, and G. Agazzi, “Macs-vrptw: A multiple
ant colony system for vehicle routing problems with time windows,”
1999.

[29] J.-F. Cordeau, G. Laporte, and A. Mercier, “A unified tabu search
heuristic for vehicle routing problems with time windows,” Journal of
the Operational research society, vol. 52, no. 8, pp. 928–936, 2001.

[30] K. C. Tan, L. H. Lee, Q. Zhu, and K. Ou, “Heuristic methods for
vehicle routing problem with time windows,” Artificial intelligence in
Engineering, vol. 15, no. 3, pp. 281–295, 2001.

[31] J. Qian and R. Eglese, “Fuel emissions optimization in vehicle routing
problems with time-varying speeds,” European Journal of Operational
Research, vol. 248, no. 3, pp. 840–848, 2016.

[32] I. Norstad, K. Fagerholt, and G. Laporte, “Tramp ship routing and
scheduling with speed optimization,” Transportation Research Part C:
Emerging Technologies, vol. 19, no. 5, pp. 853–865, 2011.

[33] P. Serafini, “Some considerations about computational complexity for
multi objective combinatorial problems,” in Recent advances and histor-
ical development of vector optimization. Springer, 1987, pp. 222–232.

[34] G. Tsaggouris and C. Zaroliagis, “Multiobjective optimization: Improved
fptas for shortest paths and non-linear objectives with applications,”
Theory of Computing Systems, vol. 45, no. 1, pp. 162–186, 2009.

[35] T. Breugem, T. Dollevoet, and W. van den Heuvel, “Analysis of fptases
for the multi-objective shortest path problem,” Computers & Operations
Research, vol. 78, pp. 44–58, 2017.

[36] K. Ghoseiri and B. Nadjari, “An ant colony optimization algorithm for
the bi-objective shortest path problem,” Applied Soft Computing, vol. 10,
no. 4, pp. 1237–1246, 2010.

[37] G. Scora, K. Boriboonsomsin, and M. Barth, “Value of eco-friendly route
choice for heavy-duty trucks,” Research in Transportation Economics,
vol. 52, pp. 3–14, 2015.

[38] Energy consumption estimates by end-use sector, ranked by s-
tate, 2013. http://www.eia.gov/state/seds/data.cfm?incfile=/state/seds/
sep sum/html/rank use.html&sid=US.

[39] N. T. Moungla, L. Létocart, and A. Nagih, “Solutions diversification in a
column generation algorithm,” Algorithmic Operations Research, vol. 5,
no. 2, pp. 86–95, 2010.

[40] F. Vanderbeck, “Computational study of a column generation algorithm
for bin packing and cutting stock problems,” Mathematical Program-
ming, vol. 86, no. 3, pp. 565–594, 1999.

[41] N. Ulder, E. Aarts, H.-J. Bandelt, P. van Laarhoven, and E. Pesch,
“Genetic local search algorithms for the traveling salesman problem,”
Parallel Problem Solving from Nature, pp. 109–116, 1991.

[42] E. Demir, T. Bektaş, and G. Laporte, “A comparative analysis of several
vehicle emission models for road freight transportation,” Transportation
Research Part D: Transport and Environment, 2011.

[43] K. Ahn, “Microscopic fuel consumption and emission modeling,” Mas-
ter’s thesis, Virginia Polytechnic Institute and State University, 1998.

[44] D. J. Chang and E. K. Morlok, “Vehicle speed profiles to minimize work
and fuel consumption,” Journal of Transportation Engineering, vol. 131,
no. 3, pp. 173–182, 2005.

[45] A. Fröberg, E. Hellström, and L. Nielsen, “Explicit fuel optimal speed
profiles for heavy trucks on a set of topographic road profiles,” SAE
Technical Paper, Tech. Rep., 2006.

[46] G. Yang, H. Xu, Z. Wang, and Z. Tian, “Truck acceleration behavior
study and acceleration lane length recommendations for metered on-
ramps,” International Journal of Transportation Science and Technology,
vol. 5, no. 2, pp. 93–102, 2016.

[47] S. Ardekani, E. Hauer, and B. Jamei, “Traffic impact models,” Chapter
7 in Traffic Flow Theory, Oak Bridge National Laboratory Report, 1992.

[48] F. An and M. Ross, “Model of fuel economy with applications to driving
cycles and traffic management,” Transportation Research Record, 1993.

[49] E. K. Nam and R. Giannelli, “Fuel consumption modeling of conven-
tional and advanced technology vehicles in the physical emission rate
estimator (PERE),” U.S. Environmental Protection Agency, 2005.

[50] I. M. Berry, “The effects of driving style and vehicle performance on
the real-world fuel consumption of U.S. light-duty vehicles,” Master’s
thesis, Massachusetts Institute of Technology, 2010.

[51] D. H. Lorenz and D. Raz, “A simple efficient approximation scheme
for the restricted shortest path problem,” Operations Research Letters,
2001.

[52] D. P. Bertsekas, Nonlinear Programming. Athena scientific, 1999.
[53] Dijkstra’s algorithm. https://en.wikipedia.org/wiki/Dijkstra%27s

algorithm.
[54] J. D. Teresco. The Clinched Highway Mapping (CHM) project. http:

//cmap.m-plex.com/.
[55] CHM U.S. national highway systems. http://courses.teresco.org/chm/

graphs/usa-national.gra.
[56] USGS elevation point query service. http://nationalmap.gov/epqs/.
[57] Traffic flow using corridor in HERE maps. https://developer.here.com/

api-explorer/rest/traffic/flow-using-corridor.
[58] T. Markel, A. Brooker, T. Hendricks, V. Johnson, K. Kelly, B. Kramer,

M. O’Keefe, S. Sprik, and K. Wipke, “ADVISOR: a systems analysis
tool for advanced vehicle modeling,” Journal of Power Sources, 2002.

[59] Kenworth T800 vehicle. http://www.kenworth.com/trucks/t800.
[60] ADVISOR documentation. http://adv-vehicle-sim.sourceforge.net/

advisor doc.html.
[61] J. Leskovec and R. Sosič. SNAP: A general purpose network analysis

and graph mining library in C++, 2014. http://snap.stanford.edu/snap.
[62] F. Mannering, W. Kilareski, and S. Washburn, Principles of Highway

Engineering and Traffic Analysis. John Wiley & Sons, 2007.
[63] A. Jeffrey and D. Zwillinger, Table of Integrals, Series, and Products,

Seventh Edition. Academic Press, 2007.

Lei Deng received his B.Eng. degree from the De-
partment of Electronic Engineering, Shanghai Jiao
Tong University, Shanghai, China in 2012 and his
Ph.D. degree from the Department of Information
Engineering, the Chinese University of Hong Kong,
Hong Kong, China in 2017. From May 2015 to
October 2015, he was a visiting scholar in School
of Electrical and Computer Engineering, Purdue
University, West Lafayette, IN, USA. His research
interests are timely network communications, energy
efficient timely transportation, and spectral-energy

efficiency in wireless networks.

15

Mohammad H. Hajiesmaili received his B.Sc.
degree in Computer Engineering from the Depart-
ment of Computer Engineering, Sharif University
of Technology, Iran, in 2007, and his M.Sc. and
Ph.D. degrees in Computer Engineering from the
Electrical and Computer Engineering Department,
University of Tehran, Iran, in 2009 and 2014, re-
spectively. He was a Postdoctoral Fellow with the
Department of Information Engineering, the Chinese
University of Hong Kong, from 2014 to 2016. He is
currently a Postdoctoral Fellow with the Department

of Electrical and Computer Engineering, Johns Hopkins University. His
research interests include optimization, algorithm, and mechanism design in
communication, energy, and transportation networks.

Minghua Chen (S’04 M’06 SM’13) received his
B.Eng. and M.S. degrees from the Dept. of Elec-
tronic Engineering at Tsinghua University in 1999
and 2001, respectively. He received his Ph.D. de-
gree from the Dept. of Electrical Engineering and
Computer Sciences at University of California at
Berkeley in 2006. He spent one year visiting Mi-
crosoft Research Redmond as a Postdoc Researcher.
He joined the Dept. of Information Engineering, the
Chinese University of Hong Kong in 2007, where
he is currently an Associate Professor. He is also an

Adjunct Associate Professor in Institute of Interdisciplinary Information Sci-
ences, Tsinghua University. He received the Eli Jury award from UC Berkeley
in 2007 (presented to a graduate student or recent alumnus for outstanding
achievement in the area of Systems, Communications, Control, or Signal
Processing) and The Chinese University of Hong Kong Young Researcher
Award in 2013. He also received several best paper awards, including the
IEEE ICME Best Paper Award in 2009, the IEEE Transactions on Multimedia
Prize Paper Award in 2009, and the ACM Multimedia Best Paper Award in
2012. He is currently an Associate Editor of the IEEE/ACM Transactions on
Networking. He serves as TPC Co-Chair of ACM e-Energy 2016 and General
Chair of ACM e-Energy 2017. He receives the ACM Recognition of Service
Award in 2017 for service contribution to the research community. His current
research interests include energy systems (e.g., smart power grids and energy-
efficient datacenters), intelligent transportation system, wireless networking,
multimedia networking, online competitive optimization, distributed optimiza-
tion, and delay-constrained network information flow.

Haibo Zeng is currently an Assistant Professor
at Virginia Tech, USA. He received his Ph.D. in
Electrical Engineering and Computer Sciences from
University of California at Berkeley. He was a senior
researcher at General Motors R&D until October
2011, and an assistant professor at McGill University
until August 2014. His research interests are design
methodology, analysis, and optimization for embed-
ded systems, cyber-physical systems, and real-time
systems. He earned three best paper citations in the
above fields.

16

Supplementary Materials

APPENDIX A
PHYSICAL INTERPRETATION OF FUEL-RATE-SPEED

FUNCTION

A truck running on a road with grade/slope θ (positive
if moving up and negative if moving down) faces three
resistances: aerodynamic (air) resistance, rolling resistance and
grade resistance [62]. The air resistance is the friction of air,
which is modeled as

Fa(v) =
1

2
ρAfcdv

2, (18)

where ρ is the air density and Af the frontal area of the truck
and cd is drag coefficient of the truck (see Tab. III for cd and
Af) and v is the speed of the truck. The rolling resistance is
the friction between the tires and the ground, which is modeled
as

Fr = crmg cos θ, (19)

where cr is the coefficient of rolling resistance (friction
coefficient) between the tires and the ground, m is the truck
mass and g is gravitational acceleration. The grade resistance
is the force of the gravity on the opposite direction of truck
movement, i.e.,

Fg = mg sin θ. (20)

Then the tractive force is

Ft(v) = Fa(v) + Fr + Fg, (21)

which yields to the power consumption

Pf (v) = Ft(v)·v =
1

2
ρAfcdv

3+(cr cos θ+sin θ)mgv. (22)

We can regard Pf (v) as the power demand to move the
truck on the road with constant speed v. To provision such
power demand, the internal combustion engine (ICE) needs to
convert fuel into mechanical energy. There are a substantial
number of models for ICE [49]. For the purpose of this
physical interpretation, we use the following relationship (see
[49, Equation 10]),

Pf = f(v) · LHV · η, (23)

where f(v) is the fuel rate consumption (unit: gallon per hour),
LHV is the lower heating value of the fuel (unit: KJ per gallon),
and η is the fuel efficiency8. Eq. (23) gives the fuel-rate-speed
function f(v) as follows,

f(v) =
Pf

LHV · η =
1
2ρAfcdv

3 + (cr cos θ + sin θ)mgv

LHV · η ,

(24)
which shows that the fuel-rate-speed function is polynomial
with speed v and also strictly convex.

Therefore, such physical interpretation justifies our assump-
tion for the fuel-rate-speed function in Sec. II-A.

8The unit of power demand Pf would be KW. We can appropriately make
all units consistent.

APPENDIX B
PROOF OF LEMMA 1

We can prove this lemma by using the continuous Jensen’s
inequality. For any speed profile v : [0, te] → R+ over
road/edge e, the incurred fuel consumption is

∫ te
0
fe(v(t))dt,

and the travelled distance is
∫ te
0
v(t)dt. As we require that the

truck must pass edge e with exactly te hours, we must have∫ te

0

v(t)dt = De. (25)

Since fe(·) is convex, according to the continuous Jensen’s
inequality [63, Ch. 12.411], we have∫ te

0
fe(v(t))dt

te
≥ fe

(∫ te
0
v(t)dt

te

)
= fe

(
De

te

)
, (26)

which means ∫ te

0

fe(v(t))dt ≥ tefe
(
De

te

)
, (27)

with equality when v(t) = De

te
for all t ∈ [0, te].

The proof is completed.

APPENDIX C
PROOF OF LEMMA 2

Since the fuel-rate-speed function fe(v) is a polynomial
function (and thus twice differentiable) with respect to v,
we can thus obtain the first and second-order derivative of
ce(te) = tefe

(
De

te

)
with respect to te, i.e.,

c′e(te) = fe(
De

te
)− De

te
f ′e(

De

te
), (28)

and

c′′e (te) = f ′e(
De

te
)(−De

t2e
)

−[(−De

t2e
)f ′e(

De

te
) +

De

te
f ′′e (

De

te
)(−De

t2e
)]

=
D2
e

t3e
f ′′e (

De

te
). (29)

Since fe(·) is strictly convex over the speed limit region, we
have f ′′e (

De

te
) > 0 and thus we conclude that

c′′e (te) > 0, (30)

which proves that ce(·) is strictly convex with respect to te
over [tlbe , t

ub
e].

For the second part of this lemma, we first observe that
c′e(te) is a differentiable (and thus continuous) and strictly
increasing function. Thus we will consider the following three
cases.

Case 1 0 ≤ c′e(t
lb
e): In this case, we know that ce(te) is

strictly increasing over [tlbe , t
ub
e] and we can set t̂e = tlbe .

Case 2 0 ∈ (c′e(t
lb
e), c

′
e(t

ub
e)): In this case, we can find a t̂e ∈

(c′e(t
lb
e), c

′
e(t

ub
e)) such that c′e(t̂e) = 0 due to the continuity of

c′e(te).
Case 3 0 ≥ c′e(t

ub
e): In this case, we know that ce(te) is

strictly decreasing over [tlbe , t
ub
e] and we can set t̂e = tube .

17

In all three cases, we obtain that ce(te) is first strictly de-
creasing over [tlbe , t̂e] and then strictly increasing over [t̂e, tube].
Note that t̂e could be on the boundary of [tlbe , t

ub
e], as shown

in Case 1 and Case 3.
The proof is completed.

APPENDIX D
PROOF OF LEMMA 3

First, since p and tp is a feasible solution to PASO, we
have OPT ≤ c(p, tp).

Second, since Algorithm 2 returns in line 13, the path cost
will be no greater than some c ≤ N , thus we have

c̃(p, tp) ,
∑
e∈p

c̃e(te) =
∑
e∈p

min{bce(te)
V
c+ 1, N + 1} ≤ N,

which clearly implies that

c̃e(te) = b
ce(te)

V
c+ 1,∀e ∈ p.

Then we have

c̃(p, tp) =
∑
e∈p

c̃e(te) =
∑
e∈p

[
bce(te)

V
c+ 1

]
≥

∑
e∈p

ce(te)

V
=
c(p, tp)

V
,

which yields to

c(p, tp) ≤ c̃(p, tp)V ≤ NV =

(
bU
V
c+ n+ 1

)
V

≤
(
U

V
+ n+ 1

)
V = U + (n+ 1)V = U + Lδ.

The proof is completed.

APPENDIX E
PROOF OF LEMMA 4

For PASO, let us denote (p∗, tp∗) as an optimal solution.
Namely, p∗ is an optimal path and tp∗ is the corresponding
optimal travel time set. For each edge e ∈ p∗, we must have

min{bce(te)
V
c+ 1, N + 1} = bce(te)

V
c+ 1.

Suppose not. Then

bce(te)
V
c+ 1 > N + 1,

which means

ce(te) ≥ V b
ce(te)

V
c > VN = V (bU

V
c+ n+1) > U ≥ OPT.

This is a contradiction to ce(te) ≤
∑
e∈p∗ ce(te) = OPT.

Then we have

c̃(p∗, tp∗) =
∑
e∈p∗

c̃e(te) =
∑
e∈p∗

min{bce(te)
V
c+ 1, N + 1}

=
∑
e∈p∗

[
bce(te)

V
c+ 1

]
≤
∑
e∈p∗

[
ce(te)

V
+ 1

]
≤ OPT

V
+ n ≤ U

V
+ n ≤ (bU

V
c+ 1) + n = N. (31)

Here is a critical step which is different from Lemma 3 in
[51] for RSP problem. For each edge e ∈ p∗, te may not be
a representative point in vector τ e. However, we can consider
the representative point t̃e = τ ie where i , c̃e(te), which incurs
the same fuel cost, i.e., c̃e(te) = c̃e(t̃e). Clearly, we also have
c̃(p∗, t̃p∗) ≤ N and t̃e ≤ te where t̃p∗ , {t̃e : e ∈ p∗}.

Therefore path p∗ and travel time t̃p∗ must be examined by
Algorithm 2, which completes the proof of the first part, i.e.,
Algorithm 2 must return a feasible path p and travel time tp.
Moreover, we have

c̃(p, tp) ≤ c̃(p∗, t̃p∗) = c̃(p∗, tp∗). (32)

From (31), we first note that

c̃(p∗, tp∗) ≤
OPT
V

+ n. (33)

Second, since Algorithm 2 returns in line 13, we must have

c̃(p, tp) ,
∑
e∈p

c̃e(te) =
∑
e∈p

min{bce(te)
V
c+ 1, N + 1} ≤ N,

which clearly implies that

c̃e(te) = b
ce(te)

V
c+ 1,∀e ∈ p.

We then note that

c̃(p, tp) =
∑
e∈p

ce(te) =
∑
e∈p

min{bce(te)
V
c+ 1, N + 1}

=
∑
e∈p

(
bce(te)

V
c+ 1

)
≥

∑
e∈p

(
ce(te)

V

)
=

c(p, tp)

V
. (34)

Inserting inequalities (33) and (34) into (32), we obtain

c(p, tp)

V
≤ OPT

V
+ n,

which means

c(p, tp) ≤ OPT + nV ≤ OPT + Lδ.

The proof is competed.

APPENDIX F
PROOF OF THEOREM 2

The first part of this theorem directly follow the analysis of
Steps 1-3 in Sec. III-C. Namely, Algorithm 3 returns a (1+ε)-
approximate solution for PASO in time

O((mn log ξ +mn2) log log
UB
LB

+
mn log ξ

ε
+
mn2

ε2
). (35)

Now we prove the second part of this theorem. Namely, if
we use LB = Clb and UB = nCub where Clb , mine∈E ce(t

ub
e)

and Cub , maxe∈E ce(t
lb
e), Algorithm 3 has time complexity

polynomial in the input size of the problem PASO and
therefore is an FPTAS. According to (35), we only need to
show log log UB

LB = log log nCub

Clb is polynomial in the input size.

18

Suppose that Cub , maxe∈E ce(t
lb
e) = ce1(t

lb
e1). For edge

e1, we should input all its properties, i.e., {De1 , R
lb
e1 , R

ub
e1 , fe1}

where fe1 is a polynomial function. Suppose that

fe1(x) = a1x
k1 + a2x

k2 + · · ·+ aqx
kq .

Then to input fuel-rate-speed function fe1 , we only need to
input a1, k1, a2, k2, · · · , aq, kq . Therefore, for edge e1, we
should input the following real numbers,

{De1 , R
lb
e1 , R

ub
e1 , a1, k1, a2, k2, · · · , aq, kq}.

The input size for edge e1 is

Ie1 ≥ log

(
De1 +Rlb

e1 +Rub
e1 + a1 + k1 + a2 + k2 + · · ·+ aq + kq

eps

)
,

where eps � 1 is the machine epsilon, i.e., the maximum
relative error of for rounding a real number to the nearest
floating point number that can be represented by a digital
machine. Now let us show that log log Cub

eps is polynomial in
Ie1 .

According to the definition of the fuel-time function ce1(·)
in (2), we get

log log

(
Cub

eps

)
= log log

(
ce1(t

lb
e1)

eps

)

= log log

 tlbe1 · fe1(De1

tlbe1
)

eps

 = log log

 De1

Rub
e1

· fe1(Rub
e1)

eps


= log

[
log

(
De1

Rub
e1

)
+ log

(
fe1(R

ub
e1)

eps

)]

= log

[
log

(
De1

eps

)
− log

(
Rub
e1

eps

)
+ log

(
fe1(R

ub
e1)

eps

)]

≤ log

[
Ie1 + log

(
fe1(R

ub
e1)

eps

)]
(Since Rub

e1 > 0 and thus Rub
e1 ≥ eps)

= log

[
Ie1 + log

(
a1(R

ub
e1)

k1 + · · ·+ aq(R
ub
e1)

kq

eps

)]

≤ log

[
Ie1 + log

(
qai(R

ub
e1)

ki

eps

)]
(

Define i ∈ arg max
j∈[1,q]

aj(R
ub
e1)

kj

)
= log

[
Ie1 + log q + log

(
ai

eps

)
+ log

(
(Rub

e1)
ki

epski
· epski

)]

≤ log

[
Ie1 + Ie1 + Ie1 + ki log

(
Rub
e1

eps

)]
(Since log eps < 0)

≤ log

[
Ie1 + Ie1 + Ie1 +

ki
eps

log

(
Rub
e1

eps

)]
(Since eps < 1)

≤ log

[
Ie1 + Ie1 + Ie1 +

ki
eps
· Ie1

]
≤ log

[
Ie1 + Ie1 + Ie1 + 2Ie1 · Ie1

]
= log Ie1 + log(3 + 2Ie1)

≤ log Ie1 + log(3 · 2Ie1 + 2Ie1)

= log Ie1 + Ie1 + 2 = O(Ie1),

which is thus polynomial in Ie1 .
Then

log log
nCub

Clb
= log log

nCub

eps
Clb

eps

≤ log log
nCub

eps

= log

(
log n+ log

Cub

eps

)
≤ 2max

{
log log n, log log

Cub

eps

}
= max{O(log log n), O(Ie1)}, (36)

which is polynomial in the input size of PASO because both
O(log log n) and O(Ie1) are polynomial in the input size of
PASO. We thus prove the second part of this theorem.

The proof is completed.

APPENDIX G
PROOF OF LEMMA 6

Define function h(te) = ce(te) + λte. Then we can get the
first derivative as

h′(te) = c′e(te) + λ. (37)

Since ce(te) is a strictly convex and strict decreasing function,
we know that c′e(te) (and also h′(te)) is a strictly increasing
function and c′e(te) < 0 at interval [tlbe , t

ub
e]. We then consider

the following three cases.
Case 1: If 0 ≤ λ < −c′e(tube), we get that c′e(t

ub
e) + λ < 0

and thus

h′(te) ≤ h′(tube) < 0,∀, t ∈ [tlbe , t
ub
e]. (38)

This shows that h(te) is strictly decreasing at [tlbe , t
ub
e] and the

minimal value is attained at t∗e(λ) = tube .
Case 2: If −c′e(tube) ≤ λ ≤ −c′e(tlbe), then we can get

that c′−1e (−λ) ∈ [tlbe , t
ub
e]. Clearly, the monotonic increasing

property of h′(te) implies that h′(te) < 0 at [tlbe , c
′−1
e (−λ))

and h′(te) > 0 at (c′−1e (−λ), tlbe]. This means that the minimal
value is attained at t∗e(λ) = c′−1e (−λ).

Case 3: If λ > −c′e(tlbe), we get that c′e(t
lb
e) + λ > 0 and

thus
h′(te) ≥ h′(tlbe) > 0,∀, t ∈ [tlbe , t

ub
e]. (39)

This shows that h(te) is strictly increasing at [tlbe , t
ub
e] and the

minimal value is attained at t∗e(λ) = tlbe .
The proof is completed.

19

APPENDIX H
PROOF OF THEOREM 3

Let us consider any two λ1, λ2 with 0 ≤ λ1 < λ2. We need
to prove δ(λ1) ≥ δ(λ2). Suppose that the optimal path at λ1
is p∗(λ1) = p1 and the optimal path at λ2 is p∗(λ2) = p2

9.
For any path p and any λ ≥ 0, we denote its (optimal)

generalized path cost as

Wp(λ) ,
∑
e∈p

we(λ) =
∑
e∈p

[ce(t
∗
e(λ)) + λt∗e(λ)] , (40)

and denote its corresponding path fuel cost as

Cp(λ) ,
∑
e∈p

ce(t
∗
e(λ)). (41)

and denote its corresponding path delay

Tp(λ) ,
∑
e∈p

t∗e(λ). (42)

Clearly, we have Wp(λ) = Cp(λ) + λTp(λ).
Based on such notations, we have δ(λ1) = Tp1(λ1) and

δ(λ2) = Tp2(λ2), and we need to prove Tp1(λ1) ≥ Tp2(λ2).
When λ = λ1, the optimal path is p1, which means that

Wp1(λ1) = Cp1(λ1) + λ1Tp1(λ1)

≤ Wp2(λ1) = Cp2(λ1) + λ1Tp2(λ1) (43)

Similarly, when λ = λ2, the optimal path is p2, which means
that

Wp2(λ2) = Cp2(λ2) + λ2Tp2(λ2)

≤ Wp1(λ2) = Cp1(λ2) + λ2Tp1(λ2) (44)

Now we will use the fact that t∗e(λ) minimizes we(λ), as
defined in (13). Since both t∗e(λ1) and t∗e(λ2) are feasible, i.e.,
in the interval [tlbe , t

ub
e], we get that

Wp2(λ1) = Cp2(λ1) + λ1Tp2(λ1)

=
∑
e∈p2

(ce(t
∗
e(λ1)) + λ1t

∗
e(λ1))

=
∑
e∈p2

min
tlbe≤te≤tube

(ce(te) + λ1te)

≤
∑
e∈p2

(ce(t
∗
e(λ2)) + λ1t

∗
e(λ2))

= Cp2(λ2) + λ1Tp2(λ2). (45)

Similarly, we have

Wp1(λ2) = Cp1(λ2) + λ2Tp1(λ2) ≤ Cp1(λ1) + λ2Tp1(λ1).
(46)

Inserting (45) into (43), we get that

Cp1(λ1) + λ1Tp1(λ1) ≤ Cp2(λ2) + λ1Tp2(λ2),

which implies that

λ1 [Tp1(λ1)− Tp2(λ2)] ≤ Cp2(λ2)− Cp1(λ1). (47)

Similarly, inserting (46) into (44), we get that

Cp2(λ2) + λ2Tp2(λ2) ≤ Cp1(λ1) + λ2Tp1(λ1),

9Paths p1 and p2 could be the same.

which implies that

−λ2 [Tp1(λ1)− Tp2(λ2)] ≤ Cp1(λ1)− Cp2(λ2). (48)

Summing (47) and (48), we get that

(λ1 − λ2) [Tp1(λ1)− Tp2(λ2)] ≤ 0. (49)

Since we assume that λ1 < λ2, we must have

Tp1(λ1) ≥ Tp2(λ2). (50)

The proof is completed.

APPENDIX I
PROOF OF THEOREM 4

At the point λ0, the dual function has value

D(λ0) = −λ0T +min
x∈X

∑
e∈E

xe · min
tlbe≤te≤tube

(ce(te) + λ0te)

= −λ0T +min
x∈X

∑
e∈E

xe · (ce(t∗e(λ0)) + λ0t
∗
e(λ0))

= −λ0T +
∑

e∈p∗(λ0)

[ce(t
∗
e(λ0)) + λ0t

∗
e(λ0)]

= −λ0T +
∑

e∈p∗(λ0)

ce(t
∗
e(λ0)) + λ0

∑
e∈p∗(λ0)

t∗e(λ0)

= −λ0T + λ0δ(λ0) +
∑

e∈p∗(λ0)

ce(t
∗
e(λ0))

= −λ0T + λ0T +
∑

e∈p∗(λ0)

ce(t
∗
e(λ0))

=
∑

e∈p∗(λ0)

ce(t
∗
e(λ0)). (51)

On one hand, we know that any dual function value will be a
lower bound of OPT according to the weak duality. Thus,

D(λ0) ≤ OPT. (52)

On the other hand, we know that p∗(λ0) is a feasible path and
{t∗e(λ0), e ∈ p∗(λ0)} satisfies∑

e∈p∗(λ0)

t∗e(λ0) = T. (53)

Here p∗(λ0) and {t∗e(λ0), e ∈ p∗(λ0)} is a feasible solution
to PASO with the objective value

∑
e∈p∗(λ0)

ce(t
∗
e(λ0)) =

D(λ0), which is an upper bound of OPT, i.e.,

D(λ0) ≥ OPT. (54)

Eq. (52) and (54) conclude that D(λ0) = OPT, and p∗(λ0)
and {t∗e(λ0), e ∈ p∗(λ0)} is an optimal solution to PASO.

The proof is completed.

APPENDIX J
PROOF OF THEOREM 5

First, if we let total travel delay be T ′ =∑
e∈p∗(λL) t

∗
e(λL) > T , we get a relaxed version

of PASO. According to Theorem 4, we know that
LB =

∑
e∈p∗(λL) ce(t

∗
e(λL)) is the optimal solution of

the relaxed version, and thus we have LB ≤ OPT.

20

Second, since
∑
e∈p∗(λU) t

∗
e(λU) < T , we know that

p∗(λU) and {t∗e(λU) : e ∈ p∗(λU)} is a feasible solution
to PASO. Thus, UB =

∑
e∈p∗(λL) ce(t

∗
e(λU)) ≥ OPT.

The proof is completed.

