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Abstract—We study a quantum switch serving a set of users.
The function of the switch is to create bi- or tripartite entangled
state among users at the highest possible rates at a fixed ratio. We
model a set of randomized switching policies. Discovering that
some are better than others, we present analytical results for the
case where the switch stores one qubit per user, and find that
the best policies outperform a time division multiplexing (TDM)
policy for sharing the switch between bipartite and tripartite
state generation. This performance improvement decreases as
the number of users grows. The model is easily augmented to
study the capacity region in the presence of qubit decoherence,
obtaining similar results. Moreover, decoherence appears to have
little effect on capacity. We also study a smaller class of policies
when the switch stores two qubits per user.

I. INTRODUCTION

Multi-qubit entangled states are fundamental building
blocks for quantum computation, sensing, and security. Conse-
quently there is a need for a quantum network that can generate
such entanglement on demand between pairs and groups of
users [1]–[3]. In this paper, we study the performance of the
simplest multi-user network, a star-topology quantum switch
connecting k users, where each user is connected to the switch
via a separate link. Bipartite, two-qubit maximally-entangled
states, i.e., Bell pairs (or EPR states) are generated at a
constant rate across each link, with the qubits getting stored
at local quantum memories at each end of the links. As these
link entanglements start appearing, the switch uses two-qubit
Bell-state measurement (BSM) between pairs of locally-held
qubits and three-qubit Greenberger-Horne-Zeilinger (GHZ)
basis measurements between triples of locally-held qubits to
provide two-qubit and three-qubit entanglements to pairs and
triples of users, respectively [4]. The capacity of such a switch
to provide these two types of entanglements to the users
depends on the switching mechanism, the number of quantum
memories and their decoherence rates, and the number of links.

In this paper, we study the capacity region when the switch
can store either B = 1 or B = 2 qubits for each link at
any given time. We consider a simple time division multiplex-
ing (TDM) policy between the two types of entanglements,
along with a class of randomized policies. When properly
configured, the latter outperform TDM. However the relative
difference between the two policies goes to zero as k → ∞.
We also observe that increasing the number of memories from
one to two increases capacity but that the increase diminishes

as k gets large. We also explore the effect that decoherence—
the locally stored qubits at each end of the link being subject
to a noise process that reduces the entanglement between the
two qubits—has on capacity. In the cases of B = 1 with and
without decoherence, we have simple closed form expressions
for capacity whereas for the case of B = 2, our results are
numerical.

The remainder of this paper is organized as follows: in
Section II, we formulate the problem and propose a method of
solving it. In Section III, we present the case where the system
has a per-link buffer of size one, and provide analytical and
numerical results. In Section IV, we present numerical results
for the case where the system has a per-link buffer of size
two and observe similar behavior to the buffer size one case.
In section V, we introduce a simple technique for modeling
decoherence and use both the buffer size one and two systems
to illustrate it. For the former, we also have analytical results.
We make concluding remarks in Section VI.

II. SYSTEM DESCRIPTION AND ASSUMPTIONS

We consider a switch that connects k users over k separate
links. The creation of an end-to-end entanglement requires
two steps. First two-qubit Bell states are generated pairwise
between a qubit stored locally at the switch and a qubit
owned by a user. Once such link-level two-qubit entangled
states have been created, the switch performs joint (entan-
gling) measurements (over j ≥ 2 locally-held qubits that
are entangled with qubits held by j distinct users), which,
if successful, produces a j-qubit maximally-entangled state
between the corresponding j users. Link-level entanglement
generation, as well as entangling measurements, when realized
with practical systems, are inherently probabilistic [5]. We
assume that only two-user (two-qubit) and three-user (three-
qubit) entanglements are created, i.e., BSMs and 3-qubit GHZ
basis measurements are done at the switch. For simplicity, we
will assume that these j = 2 or 3 qubit measurements at the
switch take negligible time and always succeed.

Each link attempts two-qubit entanglements in each time
slot of length τ seconds, and with probability p, establishes one
entangled pair successfully. For simplicity, we model the time
to successfully create a link entanglement as an exponential
random variable with mean 1/µ = τ/p. We assume that
each link can store B = 1, 2, . . . qubits. We also assume



that qubits at the switch can decohere and model decoherence
time as an exponential r.v. with mean 1/α. We assume a step-
function decoherence model where the two-qubit entanglement
goes from a maximally-entangled qubit pair (one ebit) to zero
entanglement. In this paper, we only consider B = 1, 2. Last,
when a qubit is stored at the switch, with its entangled pair
stored at a user, we refer to this as a stored link entanglement.

We assume that all possible bipartite and tripartite user
entanglements are of interest and consider two classes of
probabilistic policies, one for B = 1 and the second for
B = 2, that provide the flexibility to generate both types
of entanglements with arbitrary rates. Policies in both classes
incorporate the oldest link entanglement first (OLEF) rule
whereby when a link entanglement is created it is always
matched up with stored link entanglements when possible
rather than be stored. This has the nice consequence, when
coupled with the assumption that links are homogeneous but
statistically independent, that the system can be modeled by a
continuous time Markov chain (CTMC) where the state simply
tracks the number of stored entanglements for two users. The
next section describes the class of policies for B = 1 and
Section IV for the class of B = 2 policies.

III. SYSTEM WITH PER-LINK BUFFER SIZE ONE

In this section, we assume that each link can store one
qubit in the buffer, so that the per-link buffer size B = 1.
We model this system using a CTMC, and by obtaining its
stationary distribution, we are able to compute the capacities
of bi- and tripartite entanglements. By studying the entire
capacity region of this system, we discover that it is always
possible to configure the randomized policy to be better than
TDM, although as the number of links grows, the advantage
of choosing such a policy diminishes.

A. Description

In a system where the switch can make tripartite measure-
ments, we must keep track of two variables for each state
of the CTMC: each representing a link with a stored qubit.
Hence, (1, 1) represents the state where two of the k links
have a qubit stored, one each. Note that we do not need to
keep track of all links individually due to the OLEF rule and
link homogeneity assumption. States (1, 0) and (0, 0) represent
cases where only one link has a stored qubit or no link has a
qubit, respectively.

The system is fully described in Figure 1. For a variable
x ∈ [0, 1], we use the notation x̄ ≡ 1−x. When the system is
in state (0, 0), new entanglements are generated with rate kµ;
this is the rate of transitioning from (0, 0) to (1, 0). When the
system is in state (1, 0), any new entanglements generated on
the link that already has one stored qubit causes the switch
to drop one of the qubits. New entanglements on other links
are generated with rate (k − 1)µ, and the switch must decide
whether to immediately use the two qubits for a BSM or keep
both and wait for a new link entanglement. To generalize the
policy as much as possible, we add a policy parameter, r1 ∈
[0, 1], that specifies the fraction of time the switch performs

Fig. 1: CTMC for a system with at least three links and buffer
size one for each link. k is the number of links, µ is the rate
of entanglement generation, and r1, r2, and r3 are parameters
that specify the scheduling policy.

a BSM. Note that r1 = 1 corresponds to the policy of always
using qubits for BSMs. While this maximizes C2, it also means
that C3 = 0.

Now, suppose that the system is in state (1, 1) and a third
link generates an entanglement. This event occurs with rate
(k − 2)µ. The switch has two choices: either use all three
qubits for a tripartite measurement, or choose two of them
for a BSM. We add another policy parameter, r2 ∈ [0, 1],
that specifies fractions of times the switch performs a BSM
and tripartite measurements in the event of three qubits on
three different links. Another event that can occur in the (1, 1)
state is the generation of an entanglement on either of the
two links that already have stored entanglements. This event
occurs with rate 2µ. Since B = 1, the switch cannot store
the new entanglement. A decision must be made: to either
discard one of the link entanglements (and remain in state
(1, 1)) or perform a BSM on two of them and keep the third
(and transition to state (1, 0)). Since it is not clear which policy
is most advantageous, we add another parameter, r3 ∈ [0, 1],
which specifies the fraction of time that the switch performs
a BSM.

B. Numerical Results

We plot the capacity region for the switch with B = 1
for all values of r1, r2, r3 ∈ [0, 1] and compare it against
TDM. The entanglement generation rate µ simply scales the
capacities, so we set it equal to one. In Figure 2, the number
of links is three, and the TDM line is shown in red. Clearly,
it is possible to design a policy that yields better performance
than TDM: the triangular blue region above TDM represents
the maximum capacities of the set of such policies.

Recall that TDM connects points (0, C∗2 ) and (C∗3 , 0), where
C∗2 and C∗3 are the maximum achievable capacities for bi- and
tripartite measurements, respectively. The point farthest from
and above TDM (the vertex of the triangular region above the
line, shown in green in Figure 2) is achieved by setting r1 = 0
and r2 = r3 = 1. In other words, the most efficient policy is
the following: (i) never perform BSMs in state (1, 0); and (ii)
when in state (1, 1) and a third entanglement is generated on
a different link, always use it in a tripartite measurement, but



Fig. 2: Capacity region for a system of buffer size one and
three links. The red line represents the set of TDM policies.

when a third entanglement is generated on one of the links that
already has a stored qubit, always perform a BSM. Note that
the latter rule directs the switch to not waste an entanglement
whenever it is possible to use it in a measurement.

(a) k = 10 (b) k = 50

Fig. 3: Capacity region for a system of buffer size one and
varying number of links. The red line represents the set of
TDM policies.

The capacity regions for k = 10 and 50 are shown in
Figure 3. Note that as the number of links increases, the
differences between TDM and the more efficient random
policies diminish. In the next section, we provide an analytical
proof of this phenomenon.

C. Analysis

Let π(0, 0), π(1, 0), and π(1, 1) represent the stationary
distribution of the CTMC in Figure 1. The balance equations
(excluding µ, as it cancels out due to every transition rate
being its multiple), are:

π(0, 0)k = π(1, 0)(k − 1)r1 + π(1, 1)(k − 2)r2,

π(1, 1)((k − 2)r2 + (k − 2)r̄2 + 2r3) = π(1, 0)(k − 1)r̄1,

π(0, 0) + π(1, 0) + π(1, 1) = 1.

Solving these equations, we obtain

π(1, 1) =
k(k − 1)r̄1

D
,

π(1, 0) =
k(k − 2 + 2r3)

D
, where

D = (k − 2 + 2r3)((k − 1)r1 + k) + (k − 1)r̄1((k − 2)r2 + k).

Then the bi- and tripartite capacities for this system, C2 ≡
C2(r1, r2, r3) and C3 ≡ C3(r1, r2, r3), are

C2 = π(1, 0)(k − 1)µr1 + π(1, 1)((k − 2)µr̄2 + 2µr3)

=
k(k − 1)µ(k − 2 + 2r3 − (k − 2)r2r̄1)

(k − 2 + 2r3)((k − 1)r1 + k) + (k − 1)r̄1((k − 2)r2 + k)
,

C3 = π(1, 1)(k − 2)µr2

=
k(k − 1)(k − 2)µr2r̄1

(k − 2 + 2r3)((k − 1)r1 + k) + (k − 1)r̄1((k − 2)r2 + k)
.

Claim 1: C2(r1, 0, 1) = C2(1, 0, r3) and C3(0, 1, 0) are the
maxima for C2 and C3, i.e. they are C∗2 and C∗3 .

Proof: We start by proving this for C2. First, note that to
maximize C2’s numerator and minimize its denominator, r2

must be set to 0. This yields

C2(r1, 0, r3) =
k(k − 1)µ(k − 2 + 2r3)

(k − 2 + 2r3)((k − 1)r1 + k) + k(k − 1)r̄1

=
k(k − 1)µ

(k − 1)r1 + k + k(k−1)r̄1
k−2+2r3

.

To minimize the denominator above, we should set r3 = 1,
which yields

C2(r1, 0, 1) =
k(k − 1)µ

(k − 1)r1 + k + (k − 1)r̄1
=
k(k − 1)µ

2k − 1
.

Note that C2(1, 0, r3) yields the same expression as
C2(r1, 0, 1). Next, consider the expression for C3. To min-
imize the denominator, we should set r3 = 0. This yields

C3(r1, r2, 0) =
k(k − 1)(k − 2)µr2r̄1

(k − 2)((k − 1)r1 + k) + (k − 1)r̄1((k − 2)r2 + k)

=
k(k − 1)(k − 2)µr2r̄1

(k − 1)r1((k − 2)r̄2 − k) + k(k − 2) + (k − 1)((k − 2)r2 + k)
.

It is clear that r1 must be 0, which yields

C3(0, r2, 0) =
k(k − 1)(k − 2)µr2

k(k − 2) + (k − 1)((k − 2)r2 + k)

=
k(k − 1)(k − 2)µr2

k(2k − 3) + (k − 1)(k − 2)r2

=
k(k − 1)(k − 2)µ

k(2k−3)
r2

+ (k − 1)(k − 2)
.

From above, we can see that r2 must be 1, so the maximum
is at C3(0, 1, 0).

For brevity, let (C3(0, 1, 1), C2(0, 1, 1)) ≡ (Ĉ3, Ĉ2); this is
the point farthest above the TDM line within the achievable
capacity region (e.g. the green point in Figure 2). We prove
this as part of the proof of the claim below.

Claim 2: Any point (C3, C2) in the achievable capacity
region satisfies the following constraints:

C2 ≤ −
3k − 2

2k − 1
C3 +

µk(k − 1)

2k − 1
and (1)

C2 ≤ −
k(k − 2) + 2(k − 1)2

k(k − 2)
C3 + µ(k − 1). (2)



Moreover (1) and (2) define a tight upper bound on the
achievable capacity region.

Proof: First, we must show that the point (Ĉ3, Ĉ2) is indeed
the farthest from the TDM line. To do so, let us find a point
(C3, C2) on the plane such that the (negative) slope of the
line that passes through it and (0, C∗2 ) is maximized. This is
equivalent to minimizing the quantity

C∗2 − Ĉ2

Ĉ3

=
(3k − 2)(k − 2)r2 + 2(k − 1)(1− r3)

r2(2k − 1)(k − 2)
.

To do so, we must set r3 = 1. Next, note that the TDM
line is given by the equation f(x, y) = y − C∗2 (1 − x/C∗3 ),
and the distance between it and any point (C3, C2) is given
by |f(C3, C2)|/

√
1 + (C∗2/C

∗
3 )2. Hence, it is sufficient to

maximize |f(C3(r1, r2, 1), C2(r1, r2, 1))|, given by

2µk(k − 1)

(2k − 1)
(
k − 2 + 2k2−k

(k−1)r2(1−r1)

) .
It is clear that we must set r2 = 1 and r1 = 0, yielding
(Ĉ3, Ĉ2) as the point farthest from the TDM line, as expected.

Next, consider the line passing through (0, C∗2 ) and
(Ĉ3, Ĉ2):

y1 = −3k − 2

2k − 1
x1 +

µk(k − 1)

2k − 1
, (3)

and the line passing through (Ĉ3, Ĉ2) and (C∗3 , 0):

y2 = −k(k − 2) + 2(k − 1)2

k(k − 2)
x2 + µ(k − 1). (4)

It is not hard to show that for any point (C3, C2), (1) and
(2) are satisfied. In other words, all points in the achievable
capacity region fall on or below these two lines. To prove that
this upper bound is tight, it remains to show that all points on
lines (3) and (4) are achievable. To see this, let r1 = 0 and
r3 = 1:

C2(0, r2, 1) =
(k − (k − 2)r2)k(k − 1)µ

k2 + (k − 1)(k + (k − 2)r2)
,

C3(0, r2, 1) =
(k − 2)r2k(k − 1)µ

k2 + (k − 1)(k + (k − 2)r2)
.

Note that any point (C3(0, r2, 1), C2(0, r2, 1)) is on line
(3), and these two functions are continuous in r2 ∈ [0, 1].
Similarly, letting r1 = 0 and r2 = 1, we have

C2(0, 1, r3) =
2r3k(k − 1)µ

k(k − 2 + 2r3) + 2(k − 1)2
,

C3(0, 1, r3) =
k(k − 1)(k − 2)µ

k(k − 2 + 2r3) + 2(k − 1)2
.

Any point (C3(0, 1, r3), C2(0, 1, r3)) is on line (4), and these
two functions are continuous in r3 ∈ [0, 1]. Using these facts,
we conclude that all points on (3) and (4) are achievable.

Claim 3: As k →∞, the benefit of using an alternate policy
(one that lies above TDM) diminishes.

Proof: We prove this by showing that as k →∞, the ratio
of the achievable area above the TDM line, which we call A4

(because this area has the shape of a triangle) to the total area
below the capacity region, which we call AT , goes to zero. For
A4, the length of the base of the triangle is simply the distance
between the points (0, C∗2 ) and (C∗3 , 0), or

√
(C∗2 )2 + (C∗3 )2.

The height is given by |f(Ĉ3, Ĉ2)|/
√

1 + (C∗2/C
∗
3 )2. Then

A4 =
|f(Ĉ3, Ĉ2)|C∗3

2
.

Then, the area below the TDM line is given by

ATDM =
(C∗2 )2 + (C∗3 )2

4
, so the total area is

AT = A4 +ATDM =
2|f(Ĉ3, Ĉ2)|C∗3 + (C∗2 )2 + (C∗3 )2

4
.

Then the ratio of the area above the TDM to the total area is

A4
AT

=
2|f(Ĉ3, Ĉ2)|C∗3

2|f(Ĉ3, Ĉ2)|C∗3 + (C∗2 )2 + (C∗3 )2
=

1

1 +
(C∗

2
)2+(C∗

3
)2

2|f(Ĉ3,Ĉ2)|C∗
3

.

To prove that this ratio goes to zero with k, it suffices to show
that the second term in the denominator goes to ∞. It can be
shown that ((C∗2 )2 + (C∗3 )2)/2|f(Ĉ3, Ĉ2)|C∗3 simplifies to

39k6 − 220k5 + 493k4 − 568k3 + 362k2 − 120k + 16

4(6k5 − 33k4 + 67k3 − 62k2 + 26k − 4)

k→∞−→ ∞.

IV. SYSTEM WITH PER-LINK BUFFER SIZE TWO

In a system with per-link buffer size two, there are three
additional states, as shown in Figure 4. The goal of this part
of the study is to show the existence of better policies than
TDM, rather than to find the optimal policy. Hence, the design
in Figure 4 does not encapsulate all possible policies: for
instance, there is no r1 parameter here, since our exhaustive
search over the entire parameter space for the system with
B = 1 revealed that r1 is best set to zero. In addition, note
that if the system is in state (1, 1) and another entanglement is
generated on one of the links that already has a stored qubit,
the system is not allowed to use two of the qubits for a BSM.
The reasoning is that since B = 2, there is enough space to
keep the new qubit. Similarly, when the system is in state
(2, 1) a BSM is only allowed if (i) another entanglement is
generated on one of the k − 2 links that does not have a
stored qubit, or (ii) another entanglement is generated on the
link that already has two qubits stored. In the latter scenario,
not performing a BSM would cause a qubit to be discarded.
While this design does not grant the switch access to the full
range of policies, it does enable us to find a class of policies
that are more efficient than TDM.

Figure 5 shows capacity regions for B = 2 with number of
links k = 3 and 10. We observe that policies more efficient
than TDM can be found, but as the number of links grows,
the advantage of such policies relative to TDM diminishes.
This phenomenon mimics that of the B = 1 switch. Figure
6 shows a comparison of B = 1 and B = 2 switches for
three and ten links. We observe that while there is a clear
benefit to extra buffer space for a small number of users,
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Fig. 4: CTMC for a system with at least three links and buffer
size two for each link. k is the number of links, µ is the rate
of entanglement generation, and r2 and r3 are parameters that
specify the scheduling policy.

(a) k = 3 (b) k = 10

Fig. 5: Capacity region for per-link buffer size B = 2, for k =
3, 10 links. The red line represents the set of TDM policies.

the advantage becomes less apparent as the number of users
grows. In addition, it appears that C3 benefits more from the
extra buffer space than C2.

V. MODELING DECOHERENCE

In this section, we present a simple way to augment the
model of Section III to account for the decoherence of
quantum states. We also present numerical results of adding
decoherence to the system from Section IV. Our decoherence
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Fig. 6: Comparison of capacity regions for systems of buffer
sizes one and two with varying number of links k, and
entanglement generation rate µ = 1.

model is described in Section II. For B = 1, the resulting
CTMC is illustrated in Figure 7.

0,0 1,0

kμ

(k − 1)μ + αr1

(k − 1)μr̄1

1,1
(k − 2)μr2

(k − 2)μ + 2μ + 2αr̄2 r3

Fig. 7: CTMC for a system with at least three links and
buffer size one. k is the number of links, µ is the rate of
entanglement generation, α is the decoherence rate, and r1,
r2, r3 are parameters that specify the scheduling policy.

The analysis of this model is almost identical to that of the
B = 1 system without decoherence. As with the latter, the
capacity region is bounded above by two lines:

y1 = −µ(3k − 2)(α+ (k − 2)µ) + 2α2

µ(k − 2)((2k − 1)µ+ α)
x1 +

k(k − 1)µ2

(2k − 1)µ+ α
,

y2 = −2(k − 1)2µ2 + (kµ+ α)((k − 2)µ+ 2α)

µ(k − 2)(kµ+ α)
x2 +

k(k − 1)µ2

kµ+ α
.

To avoid ambiguity, let C ′2 and C ′3 denote the bi- and tripartite
capacities of a system with decoherence. As with the previous
model, C ′2 is maximized at r1 = 1, r2 = r3 = 0; C ′3 is
maximized at r1 = r3 = 0, r2 = 1, and the point farthest from
TDM is obtained by setting r1 = 0, r2 = r3 = 1. The first
bounding line passes through the points (0, C ′2(1, 0, 0)) and
(C ′3(0, 1, 1), C ′2(0, 1, 1)); and the second line passes through
(C ′3(0, 1, 1), C ′2(0, 1, 1)) and (C ′3(0, 1, 0), 0). Moreover, all
points on the bounding lines are achievable, indicating that
the bound is tight.

The capacities are given by

C ′2 = (k(k − 1)µ2 (2(αr1 + µr3) + (k − 2)µ(1− r2r̄1)))/D,

C ′3 = (kµ3(k − 1)(k − 2)r̄1r2)/D, where
D = (k − 1)µr̄1((k − 2)µr2 + kµ)

+ (kµ+ (k − 1)µr1 + α)((k − 2 + 2r3)µ+ 2α).

Note that the denominator is quadratic in α. This causes both
C ′2 and C ′3 to tend to zero as α→∞.

Figure 8 shows a comparison of the capacity regions for
systems with B = 1, for three and ten number of links and
different decoherence rates. For all cases, µ is set to one: for
qualitative results, we only need to concern ourselves with
the value of α relative to µ. In real scenarios, we expect
α to be at least one order of magnitude less than µ. From
numerical results, we observe that the effect of decoherence on
the capacity region is not significant, especially as the number
of links grows. Analysis supports this observation, since we
can show that

lim
k→∞

C ′2
C2

= 1 and lim
k→∞

C ′3
C3

= 1.



(a) k = 3 (b) k = 10

Fig. 8: Capacity region for a system of buffer size one
and varying number of links k, decoherence rates α, and
entanglement generation rate µ = 1. The solid lines are the
upper boundaries of the capacity region, and the dashed are
TDM lines.
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Fig. 9: Capacity region for a system of buffer size two
and varying number of links k, decoherence rates α, and
entanglement generation rate µ = 1. The solid lines are the
upper boundaries of the capacity region, and the dashed are
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Figure 9 shows a comparison for systems with B = 2
and varying number of links and decoherence rates. Results
are consistent with that of the B = 1 case: the effects of
decoherence on capacity are less apparent for larger k values.

VI. CONCLUSION

In this work, we explore a set of policies for a quantum
switch that can store up to two qubits per link and whose
objective is to perform bi- and tripartite joint measurements
to distribute two and three qubit entanglement to pairs and
triples of users. We present analytical results for the case
where the per-link buffer has size one. By comparing against
TDM policies, we discover that better policies in terms of
achievable bi- and tripartite capacities exist, but that as the
number of links grows, the advantage of using such policies
diminishes. We also compare the capacity regions for systems
with different per-link buffer sizes and observe that systems
with fewer links benefit more from the extra storage space
than systems with a larger number of links. Finally, we model
decoherence for both types of systems and present analytical
results for the case with per-link buffer size one. Observations

and analysis show that as the number of links increases, the
effects of decoherence become less apparent on systems.
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