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Abstract

We study a quantum switch that distributes tripartite entangled states to sets of users. The entangle-
ment switching process requires two steps: first, each user attempts to generate bipartite entanglement
between itself and the switch; and second, the switch performs local operations and a measurement to
create multipartite entanglement for a set of three users. In this work, we study a simple variant of this
system, wherein the switch has infinite memory and the links that connect the users to the switch are
identical. This problem formulation is of interest to several distributed quantum applications, while
the technical aspects of this work result in new contributions within queueing theory. The state of
the system is modeled as continuous time Markov chain (CTMC) and performance metrics of interest
(probability of an empty system, switch capacity, expectation and variance of the number of qubit-pairs
stored) are computed via the solution of a two-dimensional functional equation obtained by reducing
it to a boundary value problem on a closed curve. This work is a follow up of [29] where a switch
distributing entangled multipartite states to sets of users was studied but only the switch capacity and
the expected number of stored qubits were derived.

Keywords: Quantum switch; Markov process; Queueing; Boundary value problem.

1 Introduction

Entanglement is an essential component of quantum computation, information, and communication. Its
applications include quantum cryptography (e.g., [3, 4, 12]), distributed quantum computing (e.g., [9, 22]),
and quantum sensing (e.g., multipartite entanglement for quantum metrology [18] and spectroscopy [25]).
These applications drive the increasing need for a quantum switching network that can supply end-to-end
entanglement to groups of endpoints that request them [31, 34, 36]. To realize such quantum systems,
several architectures have been proposed to support high entanglement generation rates, high fidelity, and
long coherence times [1, 5, 19, 20, 24, 26]. In this paper, we focus on the most basic and fundamental
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component of a quantum network – a single quantum switch that serves k users in a star topology. Each
user has a dedicated link connected to the switch as shown in Figure 1 (a detailed description of this
figure is provided below). In the most general case, the switch serves n-partite entangled states to sets
of users according to incoming requests, where n ≤ k. To achieve this, link-level entangled states are
generated at a constant rate across each link, resulting in two-qubit maximally-entangled states (i.e., Bell
pairs or EPR states). These qubits are stored at local quantum memories: one from each Bell pair at the
user and the other one at the switch. We consider the algorithm where the switch performs multi-qubit
measurements to provide end-to-end entanglement to user groups of size n when enough of these bipartite
states are accrued (at least n of them). When n = 2, the switch uses Bell-state measurements (BSMs) and
when n ≥ 3, it uses n-qubit Greenberger-Horne-Zeilinger (GHZ) basis measurements [30]. For additional
background on quantum switches the interested reader is referred to [37, Section 2] and [38, Section II].

Figure 1 depicts a quantum switch serving k users in a star topology. Each user is connected to
the switch via a dedicated connection or link (e.g., optical fiber). All nodes (including the switch) are
assumed to have quantum memories, or buffers. When bipartite entanglement is successfully generated
on a link, a user’s qubit becomes entangled with a qubit located at the switch (represented with black
dashed line in the figure). When entanglement is generated between the switch and a second user, the
switch may perform a Bell state measurement (BSM) on its two locally-held entangled qubits; as a result,
the two user’s qubits become entangled up to local Pauli corrections. This process can be generalized to
three or more users, with the modification of a GHZ-basis measurement instead of a BSM at the switch.
The result is a GHZ state entangling the users. In this paper we consider the situation when three user’s
qubits are entangled (i.e., n = 3), links are homogeneous, and all buffers are infinite. The situation when
n = 2 was studied in [38] under a variety of assumptions.

Let us now introduce the problem in abstract, mathematical terms. As we shall see, while the problem
considered in this work was initially motivated by its application to entanglement switching, its relevance
reaches far beyond this example, and it is of interest to queueing theory in general. Consider a server and
k clients in a star topology like in Figure 1. Each client has a dedicated link to the server; one may think
of these links either as communication channels or physical paths that may be used for object delivery.
For instance, in the former scenario the clients may send data packets to the server for processing, and
in the latter, the central node may be an assembly plant that receives components of a product from
geographically distant manufacturing plants. (As soon as n components (or parts) from n distinct clients
arrive at the central node, they are processed (or assembled) and immediately leave the system.) We
assume that the processing/assembly step is instantaneous, but succeeds with probability q (the fact that
the assembly step can fail is important in the context of a quantum switch). Finally, assume that the
arrival process on link l (l = 1, . . . , k) is a Poisson process with a constant rate µ > 0 and that these k
arrival processes are mutually independent. Each link is equipped with an infinite buffer and so is the
switch.

If we denote by Ql(t) the number of entangled qubit-pairs stored by link l at time t, the process
{(Q1(t), . . . , Qk(t))}t is a continuous-time Markov chain (CTMC). As a consequence of the algorithm
described above, when n = 2, at most one component of the vector (Q1(t), . . . , Qk(t)) is non-zero. Ex-
ploiting this property, the state of the switch can be represented by a birth and death process thereby
yielding the stationary distribution – and from it the main performance measures of interest – explicitly
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or in closed-form both when the switch has a finite or infinite memory [38]. When the memory is infinite
it is shown in [38] that the system is stable when k > 2 and, among other results, that the system capacity
– defined as the maximum achievable number of successful assemblies per time unit – is q

∑k
l=1 µl/2 when

the switch has an infinite memory. Results are also obtained in [38] when quantum state decoherence and
an associated cut-off policy are added to the model, which amounts to assuming that stored entanglements
have an exponential lifetime with a constant rate.

Getting explicit/closed-form results for n ≥ 3 when link rates are arbitrary is very challenging. Even
when all links are identical, say µ := µl for l = 1, . . . , k, and the switch has infinite memory, the problem
becomes significantly more difficult to analyze when n ≥ 3. In particular, the stability analysis requires
the introduction of a Markov chain embedded in the original Markov chain. Via a careful choice of a
Lyapunov function and application of Foster’s theorem, the ergodicity condition of the embedded Markov
chain, yielding the ergodicity condition of the original one, is found to be k > n in [29]. In [29] the switch
capacity and the expected number of stored qubits at the switch are also derived and are given by qµk

n

and k(n−1)
2(k−n) , respectively. The latter results are obtained by setting the drift of appropriate Lyapounov

functions to zero. These are all first-order moment properties. The objective of this work is to get higher-
order moment properties and, in particular, the variance of the number of stored qubits when n = 3. In
the setting of entanglement switching, the case n = 3 is referred to as tripartite entanglement distribution.
With a slight abuse of notation, the number of stored qubits will refer to the number of qubits located in
the switch memory.

As noted above this model extends far beyond entanglement switching. In general, one may view the
system as a stochastic assembly-like queue, or a “kitting” process, e.g., as in [21, 23, 32, 35], since in a
sense, the switch “assembles” multipartite entangled states from bipartite ones, whose “arrival” into the
system is driven by a stochastic process. Interestingly, none of these similar problem formulations found
in literature have a direct correspondence to our problem, as in our case the number of links or users
being serviced by the central node is allowed to be, in theory, infinite, and our goal is to derive exact
results, as opposed to approximate ones, or bounds. Hence, the problem studied here is novel, and the
results derived in this work are of independent interest to queueing theory.

The paper is organized as follows: in Section 2 we identify a two-dimensional CTMC that models the
state of the switch when n = 3 and write a two-dimensional functional equation satisfied by its generating
function. The main performance metrics are expressed in Section 3 either in explicit form (we retrieve the
capacity and expected number of stored entangled qubits found in [29] and reported above) or in terms
of the generating function (variance). In Section 4 we solve the functional equation when the number of
users is infinite (i.e., k = ∞) and derive the variance of the number of stored qubits. For finite k the
functional equation is solved in Section 5 by reducing it to the solution of a boundary value problem
(BVP) on a closed curve. From it, we derive in Section 6 the variance of the number of stored qubits.
Formulas obtained for the probability that the system is empty and for the variance of the number of
stored qubits are amenable to numerical evaluation as shown in Section 7. The paper is concluded in
Section 9.

A word on the notation. Let N = {0, 1, 2, . . .} denote the set of nonnegative integers and el the unit
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vector in Nk whose entries all equal zero except for the lth one that equals one. The first, second, and
third derivatives at point x, when they exist, of a function ϕ are denoted by ϕ′(x), ϕ′′(x), and ϕ′′′(x),
respectively.

Figure 1: A quantum switch serving k users in a star topology.

2 The model

Throughout the paper we assume that the stability condition k > 3 holds [29].
Let Ql(t) denote the number of entangled qubits stored by link l = 1, . . . , k. At time t, the state of

the switch can be represented by the vector (Q1(t), . . . , Qk(t)), whose state-space is S = {iel + jel′ : i, j ∈
N, l, l′ ∈ {1, 2, . . . , k}, l 6= l′} since at most two links can store qubit-pairs at the same time. The latter
constraint suggests that a more compact representation can found, which we now describe.

The state of the switch will be represented by the two-dimensional irreducible continuous-time Markov
chain (CTMC) {(X(t), Y (t)), t ≥ 0} on N2, whose non-zero transitions are displayed in Figure 2. In this
representation, states (i, j) and (j, i), for i, j ∈ N are equivalent. We choose to differentiate between them
because it simplifies the analysis of the model, despite increasing the number of total states in the CTMC.
Consider state (0, 0) when no qubit-pairs are stored at the links – referred to as the empty system. From
there, an entanglement is generated on one of the k links at rate kµ; hence, we split this rate in half among
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the states (0, 1) and (1, 0). The state (i, 0) (resp. (0, i)) corresponds to the situation where one link stores
i qubit-pairs and the k− 1 other links do not store anything. From there, the system may evolve to state
(i+ 1, 0) at rate µ if an additional entanglement is generated on the busy link, and to state (i, 1) at rate
(k − 1)µ if an entanglement is generated on of the k − 1 non-busy links. Finally, state (i, j) ∈ {1, 2, . . .}2
(resp. (j, i) ∈ {1, 2, . . .}2) describes the situation where two links are storing qubit-pairs, one is storing i
qubit-pairs and the other one is storing j qubit-pairs. From this state, the system may join state (0, 0)
if an entanglement appears on one of the k − 2 empty links, which occurs at rate (k − 2)µ, or join state
(i + 1, j) (resp (i, j + 1)) if an additional entanglement is generated, at rate µ, at one of the two busy
links.

For convenience we temporarily introduce the rates λ = µ and ν = (k − 2)µ. These rates can be
interpreted as arrival and departure rates, respectively. The non-zero transition rates of the CTMC
{(X(t), Y (t)), t ≥ 0} (see Figure 2) are

(0, 0)→ (1, 0) with rate
2λ+ ν

2
,

(0, 0)→ (0, 1) with rate
2λ+ ν

2
,

For i ≥ 1 : (i, 0)→ (i, 1) with rate λ+ ν,

For j ≥ 1 : (0, j)→ (1, j) with rate λ+ ν,

For i ≥ 1 : (i, 0)→ (i+ 1, 0) with rate λ,

For j ≥ 1 : (0, j)→ (0, j + 1) with rate λ,

For i ≥ 1, j ≥ 1 : (i, j)→ (i, j + 1) with rate λ,

For i ≥ 1, j ≥ 1 : (i, j)→ (i+ 1, j) with rate λ,

For i ≥ 1, j ≥ 1 : (i, j)→ (i− 1, j − 1) with rate ν.

Let π(i, j) be the steady-state probability that the chain is in state (i, j). The balance equations read

(2λ+ ν)π(0, 0) = νπ(1, 1), (1)

(2λ+ ν)π(1, 0) =
(2λ+ ν)

2
π(0, 0) + νπ(2, 1), (2)

(2λ+ ν)π(0, 1) =
(2λ+ ν)

2
π(0, 0) + νπ(1, 2), (3)

(2λ+ ν)π(1, 1) = νπ(2, 2) + (λ+ ν)π(1, 0) + (λ+ ν)π(0, 1), (4)

(2λ+ ν)π(i, 0) = νπ(i+ 1, 1) + λπ(i− 1, 0), i ≥ 2, (5)

(2λ+ ν)π(0, j) = νπ(1, j + 1) + λπ(0, j − 1), j ≥ 2, (6)

(2λ+ ν)π(i, 1) = νπ(i+ 1, 2) + λπ(i− 1, 1) + (λ+ ν)π(i, 0), i ≥ 2, (7)

(2λ+ ν)π(1, j) = νπ(2, j + 1) + (λ+ ν)π(0, j) + λπ(1, j − 1), j ≥ 2, (8)

(2λ+ ν)π(i, j) = νπ(i+ 1, j + 1) + λπ(i− 1, j) + λπ(i, j − 1), i ≥ 2, j ≥ 2. (9)

5



0,0 1,0 2,0

kμ

2 μ μ

0,1

kμ

2

1,1

(k
−

1
)
μ

0,2

μ

μ

2,1

1,2

(k
−

1
)
μ

(k − 1)μ

(k − 1)μ

μ μ

μ
μ

2,2

μ

μ μ

μ

(k
−

2)μ

(k
−

2)μ

(k
−

2)μ

(k
−

2)μ

(k
−

2)μ

(k
−

2)μ

(k
−

2)μ

(k
−

2)μ

(k
−

2)μ

Figure 2: CTMC for a system with k homogeneous links and a switch that has infinite buffer and serves
only tripartite entanglement. µ is the entanglement generation rate at the link level.

Define the generating function

F (x, y) =
∑
i,j≥0

π(i, j)xiyj , |x| ≤ 1, |y| ≤ 1.

It is shown in Appendix A that for |x| ≤ 1, |y| ≤ 1,(
λ(1− x) + λ(1− y) + ν

(
1− 1

xy

))
F (x, y) = ν

(
y − 1

xy

)
F (x, 0) + ν

(
x− 1

xy

)
F (0, y)

− ν
(
x+ y

2
− 1

xy

)
F (0, 0). (10)

Replacing λ by µ and ν by (k−2)µ in (10), and multiplying by −xy/µ both sides of the resulting equation,
yields

K(x, y)F (x, y) = (k − 2) [a(x, y)F (x, 0) + b(x, y)F (0, y) + c(x, y)F (0, 0)] , |x| ≤ 1, |y| ≤ 1, (11)

with

K(x, y) := x2y + xy2 − kxy + k − 2, (12)

a(x, y) := 1− xy2,

b(x, y) := 1− x2y,

c(x, y) :=
x2y + xy2

2
− 1.
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Notice that (11) exhibits the following symmetry

F (x, y) = F (y, x), (13)

for all |x| ≤ 1, |y| ≤ 1. When K(x, x) 6= 0 and x = y it follows from (11) that

F (x, x) = (k − 2)

(
a(x, x) + b(x, x)

K(x, x)
F (x, 0) +

c(x, x)

K(x, x)
F (0, 0)

)
, (14)

since F (x, 0) = F (0, x). Letting x→ 1 in (14), we get by noting that F (1, 1) = 1 and by using L’Hôpital’s
rule in the r.h.s. that

1 = (k − 2)

(
3

k − 3
F (1, 0)− 3

2(k − 3)
F (0, 0)

)
,

yielding

2F (1, 0)− F (0, 0) =
2(k − 3)

3(k − 2)
. (15)

3 Main performance metrics

Let N denote the total number of stored entangled qubits at the switch in steady state. Via a Lyapounov
function approach, the expectation of N has been computed in [29] in the general case where any com-

bination of n users out of the k users want to communicate, and was found to be E[N ] = k(n−1)
2(k−n) . When

n = 3 as in the present paper, then E[N ] = k
k−3 . We also obtained in [29] that the capacity C of the

switch, defined as the maximum achievable number of successful assemblies (or entanglement swappings)
per time unit, is given by C = µq kn , where q is the probability that an entanglement swapping succeeds.

For the sake of completeness we show in Sections 3.1 and 3.2 how, when n = 3, C and E[N ] can be
retrieved from the functional equation (11). Interestingly enough these calculations can be performed
without solving this equation. This is in contrast with the variance, which cannot be obtained without
solving (11), as discussed in Section 3.3.

3.1 Capacity

A GHZ measurement can be generated from any state (i, j) for i, j ≥ 1: this occurs with rate ν = (k−2)µ,
whenever a third link (not one of the two links that has a stored entanglement) generates an entanglement.
Hence, the system capacity C is

C = qν
∑
i≥1
j≥1

π(i, j) = qν(1− F (1, 0)− F (0, 1) + F (0, 0)) = qµ(k − 2)(1− 2F (1, 0) + F (0, 0)) = µq
k

3
,

(16)

by F (1, 0) = F (0, 1) from (13) and (15).
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3.2 Expectation

Since E[N ] = d
dxF (x, x)|x=1, let y = x in (11), differentiate both sides of the resulting equation with

respect to x and then set x = 1. This gives by using (15)

E[N ] =
k + 6(k − 2) d

dxF (x, 0)|x=1

2(k − 3)
. (17)

Let us calculate d
dxF (x, 0)|x=1.

It is shown in Lemma 2 in Appendix B that for fixed |x| = 1, K(x, y) defined in (12) has a unique
zero y = y(x) such that |y(x)| ≤ 1.

Since F (x, y) is well-defined for |x| ≤ 1, |y| ≤ 1, the l.h.s. of (11) must vanish when (x, y) = (x, y(x))
with |x| = 1. This gives for |x| = 1

0 = (xy(x)2 − 1)F (x, 0) + (x2y(x)− 1)F (0, y(x))−
(
x2y(x) + xy2(x)

2
− 1

)
F (0, 0). (18)

By twice differentiating (18) with respect to x, we obtain for |x| = 1

0 =
[
4y(x)y′(x) + 2xy′(x)2 + 2xy(x)y′′(x)

]
F (x, 0) + 2

[
y2(x) + 2xy(x)y(x)

] d
dx
F (x, 0)

+
[
2y(x) + 4xy′(x) + x2y′′(x)

]
F (0, y(x)) + 2

[
2xy(x) + x2y′(x)

]
y′(x)

d

dy
F (0, y(x))

+
[
x2y(x)− 1

]
y′′(x)F ′y(0, y(x)) +

[
x2y(x)− 1

]
y′(x)2 d

2

dy2
F (0, y(x))

−
[
2y(x) + 4xy′(x) + 4y(x)y′(x) + x2y′′(x) + 2xy′(x)2 + 2xy(x)y′′(x)

] F (0, 0)

2
. (19)

By setting x = 1 in the above equation and using y(1) = 1, y′(1) = −1 and y′′(1) = 2(k−2)
k−3 (see Lemma

2), we readily find that (Hint: d
dxF (x, 0)|x=1 = d

dyF (0, y)|y=1 because F (x, y) = F (y, x) for all |x| ≤ 1,
|y| ≤ 1 as observed in Section 2)

d

dx
F (x, 0)|x=1 =

(−4 + 3y′′(1))(2F (1, 0)− F (0, 0)

8
=

k

6(k − 2)
, (20)

by using (15). Hence, by (17),

E[N ] =
k

k − 3
. (21)
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3.3 Variance

To obtain the variance of N , let us twice differentiate both sides of (11) with respect to x after setting
y = x and then set x = 1. We show in Appendix C that

d2

dx2
F (x, x)|x=1 =

1

k − 3

(
2k

3
− (k − 6)E[N ] + 6(k − 2)

d

dx
F (x, 0)|x=1 + 3(k − 2)

d2

dx2
F (x, 0)|x=1

)
,

=
k(2k + 3)

3(k − 3)2
+

3(k − 2)

k − 3

d2

dx2
F (x, 0)|x=1, (22)

by using (20) and (21). The variance of N is then obtained via the formula

var(N) =
d2

dx2
F (x, x)|x=1 + E[N ]− (E[N ])2 ,

=
2k

3(k − 3)
+

3(k − 2)

k − 3

d2

dx2
F (x, 0)|x=1, (23)

by using (21) and (22).

It remains to find d2

dx2
F (x, 0)|x=1 in (23). Unfortunately this quantity cannot be obtained without

solving equation (11). Indeed, the interested reader can check that differentiating (19) w.r.t. x yields
the tautology ‘0 = 0’; differentiating (19) twice w.r.t. x gives an equation involving the third and fourth
derivative of F (x, 0) at x = 1. Continuing to differentiate (19) generates an open system of equations (i.e.,

there are more unknowns than the number of equations) from which we cannot derive d2

dx2
F (x, 0)|x=1.

The rest of the paper is devoted to the solution of (11), which will allow us to compute d2

dx2
F (x, 0)|x=1

and subsequently var(N).

4 Infinite number of users

Dividing both sides of (11) and letting k →∞ yields

(1− xy)F (x, y) = (1− xy2)F (x, 0) + (1− x2y)F (0, y) +
x2y + xy2 − 2

2
F (0, 0), |x| ≤ 1, |y| ≤ 1. (24)

Setting y = 1/x for |x| = 1 (or equivalently y = x) and noting that |y| = 1 yields (Hint: we use that
F (x, 1/x) is well-defined for |x| = 1 so that the l.h.s. of (24) must vanish when y = 1/x)

0 =

(
1− 1

x

)
F (x, 0) + (1− x)F (0, 1/x) +

x+ 1/x− 2

2
F (0, 0), |x| = 1,

which can be rewritten as

F (x, 0) = xF (0, 1/x) +
1− x

2
F (0, 0), |x| = 1. (25)
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The function F (x, 0) is analytic for |x| < 1 and continuous for |x| ≤ 1 and the function F−(x) :=
xF (0, 1/x) + 1−x

2 F (0, 0) is analytic in |x| > 1 and continuous in |x| ≥ 1 with a pole at x = ∞. Since
F (x, 0) and F−(x) are each other’s analytic continuations from (25), Liouville’s theorem implies that
F (x, 0) = P (x) and xF (0, 1/x) + 1−x

2 F (0, 0) = P (x) for all x ∈ C. where P (x) is an arbitrary polynomial
of degree one. With P (x) = a0 + a1x we obtain, for x ∈ C,

F (x, 0) = a0 + a1x, (26)

xF (0, 1/x) +
1− x

2
F (0, 0) = a0 + a1x. (27)

Letting x = 0 in (26) implies that a0 = F (0, 0). On the other hand, letting x = 1 in (26) implies that
a1 = F (1, 0)− F (0, 0). By using (15) we get that a1 = 1

3 −
1
2F (0, 0). Hence, for x ∈ C,

F (x, 0) = F (0, 0) +

(
1

3
− 1

2
F (0, 0)

)
x, (28)

xF (0, 1/x) +
1− x

2
F (0, 0) = F (0, 0) +

(
1

3
− 1

2
F (0, 0)

)
x. (29)

It remains to identify F (0, 0). Dividing (29) by x and letting x→∞ yields

F (0, 0) =
1

3
, (30)

so that

F (x, 0) =
1

3
+
x

6
, x ∈ C. (31)

Introducing now (30) and (31) into (24) and using the symmetry property (13), yields

F (x, y) =
2 + x+ y − xy2 − x2y − 2x2y2

6(1− xy)
=

1

3
+
x+ y

6
+
xy

3
, x ∈ C, y ∈ C. (32)

From (31) we find
d

dx
F (x, 0)|x=1 =

1

6
,

which agrees with (20) when k →∞, and d2

dx2
F (x, 0)|x=1 = 0 which implies from (23) that

var(N) =
2

3
, (33)

when k →∞.

Discussion: The interest of the approach used to derive (32) lies in the fact that it allows us to solve the
functional equation (11) when k =∞. There is however a more direct way to obtain F (x, y) when k =∞,
which we now discuss. It is based on the intuitive argument that when k is infinite only states (0, 0), (0, 1),
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(1, 0), and (1, 1) are (positive) recurrent states. To see why this is true, let us consider the discrete-time
Markov chain (DTMC) obtained by uniformizing, for finite k, the continuous-time Markov chain whose
non-zero transitions are displayed in Figure 2. Non-zero transitions of this DMTC are obtained from the
non-zero transition rates of the CTMC {(X(t), Y (t)), t ≥ 0} found in Section 2, and are given by

(0, 0)→ (1, 0) with probability 1/2,

(0, 0)→ (0, 1) with probability 1/2,

For i ≥ 1 : (i, 0)→ (i, 1) with probability (k − 1)/k,

For j ≥ 1 : (0, j)→ (1, j) with probability (k − 1)/k,

For i ≥ 1 : (i, 0)→ (i+ 1, 0) with probability 1/k,

For j ≥ 1 : (0, j)→ (0, j + 1) with probability 1/k,

For i ≥ 1, j ≥ 1 : (i, j)→ (i, j + 1) with probability 1/k,

For i ≥ 1, j ≥ 1 : (i, j)→ (i+ 1, j) with probability 1/k,

For i ≥ 1, j ≥ 1 : (i, j)→ (i− 1, j − 1) with probability (k − 2)/k.

Letting k →∞ in the above yields the non-zero transition rates

(0, 0)→ (1, 0) with probability 1/2,

(0, 0)→ (0, 1) with probability 1/2,

For i ≥ 1 : (i, 0)→ (i, 1) with probability 1,

For j ≥ 1 : (0, j)→ (1, j) with probability 1,

For i ≥ 1, j ≥ 1 : (i, j)→ (i− 1, j − 1) with probability 1.

It is easy to see that starting from any state (i, j) out of the set {(0, 0), (0, 1), (1, 0), (1, 1)} the DTMC
will enter that set in a finite number of time-steps (starting from (i, i) with i ≥ 2, the DTMC will
join state (1, 1) in i − 1 time-steps and starting from (i, j) with i > j ≥ 0, the DTMC will join state
(1, 0) in 2(i − 1) − j time-steps). Consider state (0, 0). From it the DTMC can either follow the path
(1, 0)→ (1, 1)→ (0, 0) with probability 1/2 or the path (0, 1)→ (1, 1)→ (0, 0) with probability 1/2. We
conclude that the stationary probabilities of states (0, 0), (1, 0), (0, 1), and (1, 1) are 1/3, 1/6, 1/6, and
1/3, respectively, thereby yielding F (x, y) = 1

3 + x+y
6 + xy

3 , in agreement with (32). It is worth noting
that this argument can be extended to multipartite (and not only tripartite) entanglement distribution
switch.

5 Finite number of users

In this section we solve the functional equation (11) when k is finite with k > 3 (stability condition).
Throughout, for any complex number z, z̄ denotes its complex conjugate and <(z) its real part.
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5.1 Preliminary results

Define the set
L = {w ∈ C, |w| ≤ 1 : w|w|2 + w|w|2 − k|w|2 + k − 2 = 0}. (34)

Lemma 1 (The contour L)
L is a smooth closed contour that does not intersect with itself, is symmetric with respect to the real

axis, and has the representation

L =
{
w ∈ C, |w| ≤ 1 : w = ρ(θ)eiθ,−π ≤ θ ≤ π

}
, (35)

with ρ(θ) the unique zero in (0, 1] of the polynomial in the variable ρ defined by 2ρ3 cos θ − kρ2 + k − 2.
The function ρ(θ) is periodic with period 2π and is infinitely differentiable on R, ρ(θ) = ρ(−θ) for all

θ, and

ρ(0) = 1, ρ′(0) = 0, ρ′′(0) =
1

3− k
, ρ′′′(0) = 0. (36)

The proof is in Appendix D.
Let γ be the conformal mapping of the unit disk D := {z ∈ C : |z| < 1} onto the interior of the contour

L, denoted by L+. This mapping is uniquely determined by the conditions γ(0) = 0 and d
dzγ(z) > 0 at

z = 0 [27, Theorem 1.2, 1.3]. By Theorem 2.24 in [27], the conformal mapping γ(z) is continuous in
the region {z ∈ C : |z| ≤ 1}, and maps the unit circle C one-to-one onto the contour L. Moreover, the
symmetry of L leads to the following property: for |z| ≤ 1,

γ(z) = γ(z). (37)

The one-to-one conformal mapping from C onto L is given by

γ(t) = ρ(φ(θ))eiφ(θ), (38)

for t = eiθ, where φ(θ) is the unique continuous and strictly increasing mapping in [−π, π] solution of the
integral equation

φ(θ) = θ − 1

2π

∫ π

−π
log(ρ(φ(u))) cot

(
u− θ

2

)
du, θ ∈ [−π, π]. (39)

Note that (39) can be rewritten as1

φ(θ) = θ − 1

2π

∫ π

−π
(log(ρ(φ(u)))− log(ρ(φ(θ))) cot

(
u− θ

2

)
du, θ ∈ [−π, π], (40)

since ∀θ ∈ [−π, π] the singular integral
∫ π
−π cot

(
u−θ

2

)
du is equal to 0 in the sense of Cauchy principal

value [11, Chapter I.1.5.].

1Hint: 2 log
(
sin
(
u−θ
2

))
is a primitive of cot

(
u−θ
2

)
yielding limε→0

(∫ θ−ε
π

cot
(
u−θ
2

)
dθ +

∫ π
θ+ε

cot
(
u−θ
2

)
dθ
)

= 0.

12



Since −φ(−θ) is also a solution of (39) the uniqueness of the solution implies that for all θ ∈ [−π, π]

φ(θ) = −φ(−θ). (41)

In particular (41) implies that φ(0) = 0 which in turn yields

γ(1) = 1, (42)

from (38) together with ρ(0) = 1 (cf. Lemma 1). Also, it is a simple exercise to show that φ(−π) = −π
and φ(π) = π (Hint: cot

(
u±π

2

)
= − tan(u/2) and ρ(φ(u)) = ρ(φ(−u)) from (41) and ρ(θ) = ρ(−θ)).

The conformal mapping from D onto L+ is given by

γ(t) =
1

2πi

∫
C

γ(u)

u− t
du =

1

2π

∫ π

−π

ρ(φ(θ))

eiθ − t
eiφ(θ)+iθdθ, |t| < 1. (43)

The part between (38)-(43) is taken from [16, Chapter II] (see also [6, Chapters I.6 and IV.3]).

We will also need the inverse of the conformal mapping γ, called γ0. Fortunately the mapping γ0 can
be obtained in explicit form from [7, Section 7]. To this end, note that the contour L(1, 0) in [7, Eq. (7)]
reduces to the contour L in (35) upon setting β(s) = k−2

k−2+s and α = 1
2 so that the constant a in [7, Eq.

(5)]) is given by a = 2
k−2 . Then, by [7, Section 7]

γ0(w) = 1− 2δ

w

(1− w)2

(1− δ)2

(
k − 2− w
k − 2− δ

)[
1 +

1

δ

(
w − δ
1− w

)√
k − 2− wδ2

k − 2− w

]
, for w ∈ L, (44)

with δ :=
k−2−

√
(k−2)2+8(k−2)

4 , and for w ∈ L+

γ0(w) =
1

2πi

∫
L

γ0(u)

u− w
du. (45)

On the other hand, the r.h.s. of (44) can be analytically continued up to the region {w ∈ C : |w| < k−2},
which shows (in particular) that γ0(w) is analytic for |w| < 1 and continuous for |w| ≤ 1. The mapping
γ0 is given by (45) for w ∈ L+ and by (44) for w ∈ {w ∈ C : |w| ≤ 1} − L+. This property will be used
in the proof of Proposition 1.

Last
γ0(0) = 0 and γ0(1) = 1, (46)

which follows from γ(0) = 0, γ(1) = 1 and γ0(γ(t)) = t for t ∈ C+ ∪ C.

The contour L is depicted in Figure 3 for k = 4 and k = 50. Not surprisingly we note that as k becomes
large the contour L becomes close to the unit circle. This result follows from the fact that for all θ, ρ(θ)→ 1
as k →∞ (Hint: write the polynomial Q(ρ) := 2ρ3 cos θ−kρ2+k−2 as Q(ρ) = k(2ρ3 cos θ/k−ρ2+1−2/k);
for any θ, as k →∞ the polynomial Q(ρ) may vanish only when ρ→ 1), which in turn implies from (39)
that φ(θ)→ θ.
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Figure 3: Inner contour is L for k = 4, middle contour is L for k = 50 and outer contour is the unit circle.

5.2 Reduction of (11) to a boundary value problem

Take w ∈ L and notice that K(w,w) = 0. Since F (w,w) is well-defined for w ∈ L (since |w| ≤ 1 and
|w| ≤ 1 when w ∈ L) the left-hand side of (11) must vanish when (x, y) = (w,w). This generates the
relation

(1− w|w|2)F (w, 0) + (1− w|w|2)F (0, w) + (<(w)|w|2 − 1)F (0, 0) = 0, for w ∈ L. (47)

Because 1−w|w|2 = 0 if and only if w = 1, we can divide both sides of (47) by 1−w|w|2 when w 6= 1 to
obtain

F (w, 0) = −
(

1− w|w|2

1− w|w|2

)
F (0, w) +

(
1−<(w)|w|2

1− w|w|2

)
F (0, 0), for w ∈ L − {1}. (48)

On the other hand

lim
w→1
w∈L

1− w|w|2

1− w|w|2
= lim

θ→0

1− ρ(θ)3(cos θ + i sin θ)

1− ρ(θ)3(cos θ − i sin θ)
= −1,

by L’Hôpital’s rule (Hint: ρ(0) = 1 and d
dθρ(θ)|θ=0 = 0 by Lemma 1), and

lim
w→1
w∈L

1−<(w)|w|2

1− w|w|2
= lim

θ→0

1− ρ(θ)3 cos θ

1− ρ(θ)3(cos θ − i sin θ)
= 0,

by again using L’Hôpital’s rule. This shows that the coefficients of F (w, 0) and F (0, w) in (48) are
well-defined when w = 1, which implies that (49) can be analytically continued up to w = 1, to give

F (w, 0) = −
(

1− w|w|2

1− w|w|2

)
F (0, w) +

(
1−<(w)|w|2

1− w|w|2

)
F (0, 0), for w ∈ L. (49)
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Take |t| = 1. Letting w = γ(t) in (49) and using w = γ(1/t) by (37) gives

F (γ(t), 0) = −G(t)F (0, γ(1/t)) + g(t)F (0, 0), ∀|t| = 1, (50)

where

G(t) := −1− γ(t)|γ(t)|2

1− γ(t)|γ(t)|2
, (51)

g(t) :=
1−<(γ(t))|γ(t)|2

1− γ(t)|γ(t)|2
. (52)

A key observation is that F (γ(t), 0) is regular for |t| < 1 and F (0, γ(1/t)) is regular for |t| > 1 since
L+ ⊂ {z ∈ C : |z| < 1}. As a result, (50) defines a non-homogeneous Hilbert Boundary Value Problem
(BVP) on C [11, 14, 17, 28], which can be solved provided the functions G and g fulfill certain conditions
(see proof of Proposition 1).

Section 8 discusses the technique of reducing the solution of certain two-dimensional functional equa-
tions (Eq. (11) in our case) to the solution of a boundary value problem (typically Riemann-Hilbert or
Dirichlet problem).

Recall that arg[ϕ(z)]C denotes the variation of the argument of ϕ(z) when z describes the unit circle.
Introduce

χ :=
1

2π
arg[G(t)]C ∈ Z, (53)

the index of the BVP defined in (50). The integer number χ gives the increment (positive or negative) of
the argument of G(t) when t describes the unit circle once.

Define

I1 := exp

(
1

2πi

∫
C

log(u−1G(u))

u− 1
du

)
, (54)

I2 := exp

(
1

2πi

∫
C

log(u−1G(u))

u
du

)
, (55)

I3 :=
1

2πi

∫
C

g(u)e−H(u)

u− 1
du, (56)

I4 :=
1

2πi

∫
C

g(u)e−H(u)

u
du. (57)

It is shown in Appendix E that I2 = 1.
Proposition 1 below gives F (x, 0) for x ∈ L+ ∪ L. The function F (0, x) for x ∈ L+ ∪ L is deduced

from it since F (x, 0) = F (0, x) for all |x| ≤ 1.

Proposition 1 (F (x, 0) for x ∈ L+ ∪ L)
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For x ∈ L+

F (x, 0) = e

1
2πi

∫
C

log(u−1G(u))

u− γ0(x)
du
(
F (0, 0)

2πi

∫
C

g(u)e−H(u)

u− γ0(x)
du+ a0 + a1γ0(x)

)
, (58)

and for x0 ∈ L

F (x0, 0) := lim
x→x0
x∈L+

F (x, 0) = eH(t0)

(
F (0, 0)

2
g(γ0(x0))e−H(γ0(x0)) +

F (0, 0)

2πi

∫
C

g(u)e−H(u)

u− γ0(x0)
du+ a0 + a1γ0(x)

)
,(59)

where G(t) and g(t) are given in (51) and (52), γ0(x) is given in (44) (resp. (45)) for x ∈ L (resp.
x ∈ L+), and

H(t) :=
1

2
log
(
t−1G(t)

)
+

1

2πi

∫
C

log(u−1G(u))

u− t
du, t ∈ C. (60)

The constants F (0, 0), a0, and a1 in (58)-(59) are given by

F (0, 0) = ∆−1 2(k − 3)

3(k − 2)
I2, (61)

a0 := ∆−1 2(k − 3)

3(k − 2)
(1− I2I4), (62)

a1 := F (0, 0), (63)

with ∆ := 2I1I2(I3 − I4) + 2I1(1 + I2)− I2.
Also,

F (1, 0) = ∆−1 2(k − 3)

3(k − 2)
I1(I2(I3 − I4) + I2 + 1). (64)

Proof. It is shown in Lemma 4 in Appendix G that the index χ (defined in (53)) of the BVP defined
(50) is equal to 1. For t ∈ C, define

H(t) =
1

2
log
(
t−1G(t)

)
+

1

2πi

∫
C

log(u−1G(u))
du

u− t
.

It is shown in Lemma 3 in Appendix F that G(t) 6= 0 for t ∈ C and that the mappings log(t−1G(t)),
g(t) and g(t)e−H(t) satisfy a Hölder condition on C (as continuous functions on this contour). Hence, the
solution of the BVP in (50) is given by [11, Part I.2], [14, Chapter 5], [17, Chapter II], [28, Chapter 5]

F (γ(t), 0) = eΓ(t) (Ψ(t) + P (t)) , |t| < 1, (65)

F (0, γ(1/t)) = t−1eΓ(t) (Ψ(t) + P (t)) , |t| > 1, (66)

lim
t→t0
t∈C+

F (γ(t), 0) = eΓ+(t0)
(
Ψ+(t0) + P (t0)

)
, |t0| = 1, (67)

lim
t→t0
t∈C−

F (0, γ(1/t)) = t−1
0 eΓ−(t0)

(
Ψ(t0)− + P (t0)

)
, |t0| = 1, (68)
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with P (t) = a0 + a1t a polynomial of degree one, and

Ψ(t) :=
F (0, 0)

2πi

∫
C
g(u)e−H(u) du

u− t
, |t| 6= 1,

Ψ+(t) :=
1

2
F (0, 0)g(t)e−H(t) + Ψ(t), |t| = 1,

Ψ−(t) := −F (0, 0)

2
g(t)e−H(t) + Ψ(t), |t| = 1,

Γ(t) :=
1

2πi

∫
C

log(u−1G(u))
du

u− t
, |t| 6= 1,

Γ+(t0) := lim
t→t0
|t|<1

Γ(t) =
1

2
log
(
t−1
0 G(t)

)
+ Γ(t0) = H(t0), |t0| = 1,

Γ−(t0) := lim
t→t0
|t|>1

Γ(t) = −1

2
log
(
t−1
0 G(t0)

)
+ Γ(t0), |t| = 1.

Letting t = γ0(x) in (65) and in (67) we obtain (58) and (59), respectively. Note that the singular integrals
in (59) and (60) are defined in the sense of their Cauchy principal value [11, Section I.1.5.].

It remains to find the unknown constants F (0, 0), a0, and a1. Letting x = 0 in (58) and x = 1 in (59)
and using the identities γ0(0) = 0 and γ0(1) = 1 (cf. (46)), G(1) = 1, and g(1) = 0 (cf. Lemma 3) gives
the equations

(1− I2I4)F (0, 0)− I2a0 = 0, (69)

F (1, 0)− I1I3F (0, 0)− I1a0 − I1a1 = 0. (70)

Two additional equations are needed to find the unknowns a0, a1, F (0, 0), and F (1, 0). One is provided
by (15), namely,

2F (1, 0)− F (0, 0) =
2(k − 3)

3(k − 2)
. (71)

Another one comes from (66). Letting t→∞ in (66) and using γ(0) = 0 generates the equation

F (0, 0) = a1. (72)

Letting a1 = F (0, 0) in (70) implies that Eqs (69)-(71) define a linear system of three equations with three
unknowns F (0, 0), a0, and F (1, 0), whose unique solution is given in (61), (62) and (64). This concludes
the proof.

The functional equation (11) and Proposition 1 yield the following corollary:

Corollary 1 (Solution of (11) in L+ ∪ L × L+ ∪ L)
For x, y ∈ L+ ∪ L,

F (x, y) =
k − 2

x2y + xy2 − kxy + k − 2

(
(1− xy2)F (x, 0) + (1− x2y)F (0, y) +

(
x2y + xy2

2
− 1

)
F (0, 0)

)
,

(73)
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where F (x, 0) is given in (58) (resp. (59)) for x ∈ L+ (resp. x ∈ L ) and F (0, y) = F (y, 0) for all
y ∈ L+ ∪ L.

In particular, the r.h.s. of (73) gives F (x, y) for all x, y ∈ [0, 1] as [0, 1] ⊂ L+ ∪ L.

Because F (x, 0) is not analytic for x ∈ L due to the presence of the terms 1−<(x)|x|2
1−x|x|2 and 1−x|x|2

1−x|x|2 in (59),

the r.h.s. of (73) cannot be analytically extended to the entire region {x ∈ C, y ∈ C : |x| ≤ 1, |y| ≤ 1},
meaning that we do not have an explicit expression for F (x, y) when (x, y) ∈ {x ∈ C, y ∈ C : |x| ≤ 1, |y| ≤
1} − {x ∈ C, y ∈ C : x ∈ L+ ∪ L, y ∈ L+ ∪ L}. Fortunately, since the performance metrics of interest
can be derived from F (x, y) when x, y ∈ [0, 1] (see Section 7), not knowing F (x, y) in explicit form in the
entire region {x ∈ C, y ∈ C : |x| ≤ 1, |y| ≤ 1} is not problematic.

6 Variance of the number of stored qubits at the switch

This section is devoted to the calculation of the unknown term d2

dx2
F (x, 0)|x=1 in the formula for the

variance in (23). To this end, we will use (58) in Proposition 1. However, this calculation requires care
as both integrals in the r.h.s. of (58) converge to singular integrals as x→ 1.

For the sake of completeness we report below known results on Cauchy type integrals that we will use
in this calculation. This material can be found in [11, Section I.1.], [17, Chapter 1], [28, Chapters 1, 2].
All results are stated for the unit circle C as this is what we need, but they hold for any smooth, non
self-intersecting, and closed contour.

For any t0 ∈ C the singular integral 1
2πi

∫
C

du
u−t0 exists in the sense of its Cauchy principal values2[11,

p. 28, formula (5.4)], and is given by
1

2πi

∫
C

du

u− t0
=

1

2
. (74)

Define Φ(t) := 1
2πi

∫
C
φ(u)
u−t du for t 6∈ C. If φ(t) satisfies a Hölder condition on C then the following so-called

Plemelj-Sokhotski formulas hold

Φ+(t0) := lim
t→t0
t∈C+

Φ(t) =
1

2
φ(t0) +

1

2πi

∫
C

φ(u)

u− t
du, (75)

Φ−(t0) := lim
t→t0
t∈C−

Φ(t) = −1

2
φ(t0) +

1

2πi

∫
C

φ(u)

u− t
du. (76)

With the help of (74) we can rewrite Φ+(t0) as (a similar formula holds for Φ−(t0), which we will not
need)

Φ+(t0) = φ(t0) +
1

2πi

∫
C

φ(u)− φ(t0)

u− t0
du. (77)

2 1
2πi

∫
C

du
u−t0

= limr↓0
1

2πi

∫
C−l

du
u−t0

with l is that part of C cut from C by a small circle with center at t0 and radius r.
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If φ(m), the m-th derivative of φ on C, exists then for t 6∈ C

Φ(m)(t) :=
dm

dtm
1

2πi

∫
C

φ(u)

u− t
du =

m!

2πi

∫
C

φ(u)

(u− t)m+1
du, (78)

=
1

2πi

∫
C

φ(m)(u)

u− t
du, (79)

for m = 1, 2, . . .; if in addition φ(m) satisfies a Hölder condition on C, the Plemelj-Sokhotski formula (75)
applies, to give for t0 ∈ C

[Φ(m)(t0)]+ := lim
t→t0
t∈C+

Φ(m)(t) =
1

2
φ(m)(t0) +

1

2πi

∫
C

φ(m)(u)

u− t0
du, (80)

= φ(m)(t0) +
1

2πi

∫
C

φ(m)(u)− φ(m)(t0)

u− t0
du, (81)

for m = 1, 2, . . ., where (81) follows from (74). Notice that the integrals in (77) and (81) are well-defined
as Riemann improper integrals.

We are now in position to calculate d2

dx2
F (x, 0)|x=1. For t ∈ C, define

α(t) := log(t−1G(t)), (82)

β(t) := g(t)e−H(t), (83)

where G, g, and H are given in (51), (52), and (60), respectively. Introduce the integrals

I5 :=
1

2πi

∫
C

α′(u)− α′(1)

u− 1
du, (84)

I6 :=
1

2πi

∫
C

β′(u)− β′(1)

u− 1
du, (85)

I7 :=
1

2πi

∫
C

α′′(u)− α′′(1)

u− 1
du, (86)

I8 :=
1

2πi

∫
C

β′′(u)− β′′(1)

u− 1
du. (87)

It is shown in Lemma 6 in Appendix H that the mappings α and β are twice differentiable on C and that
their second derivatives are continuous on C, which shows that the integrals I5, . . . , I8 are standard (and
therefore finite) Riemann integrals.

19



Differentiating (58) w.r.t x gives for x ∈ C+ (Hint: a1 = F (0, 0))

d

dx
F (x, 0) =

γ′0(x)

2πi

∫
C

α(u)

(u− γ0(x))2
du × F (x, 0)

+e
1

2πi

∫
C

α(u)
u−γ0(x)

du
(
F (0, 0)

γ′0(x)

2πi

∫
C

β(u)

(u− γ0(x))2
du+ F (0, 0)γ′0(x)

)
,

= γ′0(x)

[
F (x, 0)

2πi

∫
C

α(u)

(u− γ0(x))2
du+ F (0, 0)e

1
2πi

∫
C

α(u)
u−γ0(x)

du
(

1

2πi

∫
C

β(u)

(u− γ0(x))2
du+ 1

)]
,

= γ′0(x)

[
F (x, 0)

2πi

∫
C

α′(u)

u− γ0(x)
du+ F (0, 0)e

1
2πi

∫
C

α(u)
u−γ0(x)

du
(

1

2πi

∫
C

β′(u)

u− γ0(x)
du+ 1

)]
, (88)

upon using twice (79) to establish (88). Note that (79) applies to the mappings α and β since they are
differentiable on C, as mentioned above and proved in Lemma 6 in Appendix H.

By using (79) and (81), the limit of (88) as x→ 1 is

d

dx
F (x, 0)|x=1 = γ′0(1)

[
F (1, 0)

(
α′(1) + I5

)
+ F (0, 0)I1

(
β′(1) + I6 + 1

)]
. (89)

We already know that d
dxF (x, 0)|x=1 = k

6(k−2) (cf. (20)).

Differentiating (88) w.r.t x ∈ L+, we obtain after using (79) (the latter result applies to mappings α′

and β′ as they are differentiable on C – see Lemma 6)

d2

dx2
F (x, 0) =

γ′′0 (x)

γ′0(x)
× d

dx
F (x, 0)

+γ′0(x)

[
d

dx
F (x, 0)× 1

2πi

∫
C

α′(u)

u− γ0(x)
du+ F (x, 0)

γ′0(x)

2πi

∫
C

α′′(u)

u− γ0(x)
du

+F (0, 0)
γ′0(x)

2πi

∫
C

α′(u)

u− γ0(x)
du× e

1
2πi

∫
C

α(u)
u−γ0(x)

du
(

1

2πi

∫
L

β′(u)

u− γ0(x)
du+ 1

)
+F (0, 0)e

1
2πi

∫
C

α(u)
u−γ0(x)

du × γ′0(x)

2πi

∫
L

β′′(u)

u− γ0(x)
du

]
. (90)

Finally, letting x → 1 in (90) we find by using γ0(1) = 1, (79), and (81) with t0 = 1, definitions
(84)-(87), and d

dxF (x, 0)|x=1 = k
6(k−2) (cf. (20)), that

d2

dx2
F (x, 0)|x=1 =

γ′′0 (1)

γ′0(1)
× k

6(k − 2)
+ γ′0(1)

[
k

6(k − 2)

(
α′(1) + I5

)
+ F (1, 0)γ′0(1)

(
α′′(1) + I7

)
+F (0, 0)γ′0(1)I1

{(
α′(1) + I5

)
(β′(1) + I6 + 1) + β′′(1) + I8

}]
, (91)

where F (0, 0) is given in (61) and F (1, 0) = 1
2F (0, 0) + 2(k−3)

6(k−2) by (15).
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7 Numerical results

In this section, we address the numerical calculation of F (0, 0), the probability that the switch is empty,
given in (61), and of the variance of the number of stored qubits at the switch, given in (23) and (91),
when 3 < k <∞.

7.1 Steps in the numerical evaluation of F (0, 0) and var(N)

Throughout, θ ∈ [−π, π] and u = eiθ. Below are the steps to compute F (0, 0) and var(N).
Step 1: Computation of α(u).

By (82) and (51)
α(u) = log(e−iθG̃(φ(θ))), (92)

with

G̃(θ) := − 1− ρ(θ)3eiθ

1− ρ(θ)3e−iθ
. (93)

In (128), ρ(θ) is the only zero in (0, 1] of 2 cos(θ)ρ3− kρ2 + k− 2 (see Lemma 1) and in (92) φ(θ), defined
in (39), is obtained as the output of the following iterative scheme:

φ0(θ) := θ, (94)

φn+1(θ) := θ − 1

2π

∫ π

−π
log(ρ(φn(ω))) cot

(
ω − θ

2

)
dω. n = 0, 1, . . . . (95)

Step 2: Computation of α′(u) and α′′(u).
The mappings α′(u) and α′′(u) are given in (130)-(131), with G̃′(θ) given in (134) and G̃′′(θ) given in

(137). The first and second derivatives of ρ(θ) showing up in (134) and (137) are obtained by differentiating
the equation 2 cos(θ)ρ(θ)3 − kρ(θ)2 + k = 0, which gives

ρ′(θ) =
ρ(θ)2 sin θ

3ρ(θ) cos θ − k
, (96)

ρ′′(θ) =
ρ(θ)2

3ρ(θ) cos θ − k

(
cos θ +

5ρ(θ) sin(θ)2

3ρ(θ) cos θ − k
− 3ρ(θ)2 sin(θ)2 cos θ

(3ρ(θ) cos θ − k)2

)
, (97)

where we used (96) to obtain (97). The first and second derivatives of φ(θ) in (130)-(131) could be obtained
by differentiating the defining equation (39). However, since the mapping γ0 is known explicitly (see (44)),
it is more computationally efficient to differentiate the identity γ0(γ(w)) = w with w = ρ(φ(θ))eiφ(θ) ∈ L
(see Section 5.1), to obtain

φ′(θ) =
iei(θ−φ(θ))

ρ′(φ(θ)) + iρ(φ(θ))
× 1

γ′0(ρ(φ(θ))eiφ(θ))
, (98)
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and

φ′′(θ) = − ei(θ−φ(θ))

(ρ′(φ(θ)) + iρ(φ(θ)))2γ′0
(
ρ(φ(θ))eiφ(θ)

)2
×

[
eiθφ′(θ)

(
−iρ(φ(θ))2 − 2ρ′(φ(θ))ρ(φ(θ)) + iρ′(φ(θ))2

)
γ′′0

(
ρ(φ(θ))eiφ(θ)

)
+
(
−2φ′(θ)ρ′(φ(θ)) + iφ′(θ)ρ′′(φ(θ))− iφ′(θ)ρ(φ(θ)) + iρ(φ(θ)) + ρ′(φ(θ))

)
γ′0

(
ρ(φ(θ))eiφ(θ)

)]
.

(99)

Step 3: Computation of β(u).
By (83) and (52)

β(u) = g̃(φ(θ))e−H(u), (100)

where g̃ is given in (129) and H is given in (142).

Step 4: Computation of β′(u) and β′′(u).
The mappings β′(u) and β′′(u) are given in (132) and (133), respectively, with the mappings H ′ and

H ′′ given in (143) and (144), respectively.

Step 5: Computation of integrals I1, I3, . . . , I8.
Since the integrands in I5, . . . , I8 in (84)-(87) are well-defined on C these integrals can be computed

without any problem by using (130)-(133). After easy but lengthy algebra constants α′(1) in (84) and
α′′(1) in (86) have been found to be

α′(1) = φ′(0)
k

k − 3
− 1 and α′′(1) = 1− φ′(0)

k

k − 3
+ iφ′′(0)

k

k − 3
.

Constants β′(1) in I6 and β′′(1) in I8 are calculated from (132) and (133), respectively.

The integrand in I1 in (54) is well-defined on C since G(1) = 0 by Lemma 3 in Appendix F, so that it

can be evaluated using (92) since I1 can be rewritten as I1 = exp
(

1
2π

∫
C
α(u)
u−1 du

)
. The integrand in I3 in

(56) is also well-defined as g(1) = 0 by Lemma 3 in Appendix F, and can be easily evaluated using (100)

since I3 can be rewritten as I3 = 1
2πi

∫
C
β(u)
u−1du. Last, I4 in (57) is computed by using (100) since I4 can

be rewritten as I4 = 1
2πi

∫
C
β(u)
u du.

Steps 1-5 allow us to compute F (0, 0) in (61) and var(N) in (23) (recall that I2 = 1 as shown in
Appendix E).
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7.2 Plots k → {F (0, 0),E[N ],var(N)}

We recall that N is the (stationary) number of qubits stored at the switch. The mappings k → F (0, 0) =
P (empty system), k → E[N ] = k

k−3 (see (21)), and k → var(N) are displayed in Figures 4-6, respectively.
On each figure the dotted line is the corresponding asymptotic result when k = ∞ (F (0, 0) = 1/3 and
var(N) = 2/3 – see Section 4, and E[N ] = 1).

We observe that beyond a certain threshold for the number of users (say k = 40 in each figure) the
performance metrics do not evolve much. In contrast, below this threshold there are sharp variations in
the performance metrics.

The program used to generate Figures 4 and 6 is available at https://github.com/gvardoyan/
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Figure 4: Solid line: Prob. switch memory is empty as a function of number of links k for k ≥ 4. Dotted
line: P (empty system) = 1

3 when k =∞ – see (30).

8 Related works and specificities of equation (11)

The technique of reducing the solution of certain two-dimensional functional equations (equation (11) in
our case) to the solution of a boundary value problem (typically Riemann-Hilbert or Dirichlet problem) –
whose solution is known in closed-form – is due to Fayolle and Iasnogorodski [15] for polynomial kernels
(in (11) the kernel is the coefficient of F (x, y), namely, K(x, y)), and to Cohen and Boxma [10, 11] and
Blanc [6] for Poisson kernels (i.e. kernels of the type xy − rβ(λ(1 − r1x − r2y)), |r| ≤ 1, λ > 0, r1 ≥ 0,
r2 ≥ 0, r1 + r2 ≤ 1, where β(s) is the Laplace-Stieltjes transform of some probability distribution on
[0,∞)) via the use of uniformization techniques.

Subsequent works, involving either polynomial or Poisson kernels, include [2, 7, 8, 13, 14] (non-
exhaustive list).

Let us now discuss some specificities of the functional equation (11). Its kernel, K(x, y), is a polynomial
of degree two in each variable. The standard approach, invented by Fayolle and Iasnogorodski [15], would
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Figure 5: Solid line: Expected number of stored qubits at the switch as a function of number of links k
for k ≥ 4. Dotted line: E[N ] = 1 when k →∞ – see (21).

consist in finding the algebraic solution y = Y (x) (resp. x = X(y)) of the equation K(x, Y (x)) = 0 (resp.
K(X(y), y) = 0). Doing so, we find

Y (x) =
x(k − x)±

√
x(x(x− k)2 − 4(k − 2))

2x
, x ∈ C.

Y (x) has four branch real points inside the unit circle given by the four zeros of the discriminant x(x(x−
k)2 − 4(k − 2)), two zeros in [0, 1) and two zeros in (1,∞). The branch points in [0, 1) are a1 = 0 and
a2 = (k + 2 −

√
(k − 2)(k + 6))/2. Similar results hold for X(y) since K(x, y) = K(y, x). Now, and

this would be the second step of the standard approach for polynomial kernels, when x swipes twice the
segment [0, a2], Y (x) describes a contour on which a boundary value problem can be set to calculate
F (x, y). Here, however, this contour goes to infinity since Y (x)→∞ as x→ 0 which yields a number of
complications. To the best of our knowledge, this is in contrast with all related works involving polynomial
kernels for which the contour is always closed.

To avoid the burden of working with an infinite contour, we have used the uniformization technique
for Poisson kernels devised by Cohen and Boxma [10, 11] and Blanc [6]. This approach has allowed us to
set a boundary value problem on the closed contour L defined in (34). However, and this is yet another
specificity of equation (11) and of its kernel, since the point z = 1 belongs to the contour L, the calculation
(in particular) of the second-order derivative of F (x, 0) at x = 1, involved in the formula for the variance
N in (23), requires care (see Section 6). This is so as, on L, the function F (x, 0) is defined as a principal
value integral (cf. (59)). Again, this is in contrast with related works we are aware of, as in the latter
calculating any derivative of F (x, 0) at x = 1 (resp. F (0, y) at y = 1) does not offer any difficulty since
this function is in general analytic (or can be extended as an analytic function) at the vicinity of x = 1
(resp. y = 1). In summary, despite its apparent simplicity, equation (11) exhibits non-standard and
interesting features.
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Figure 6: Solid line: Variance of number of stored qubits at the switch as a function of number of links
k for k ≥ 4. Dotted line: var(N) = 2

3 as k →∞ – see (33).

9 Conclusion

In this work, we analyzed a quantum entanglement distribution switch in which each client has a dedi-
cated link connected to the switch. The switch serves tripartite entanglement to k ≥ 3 users according
to incoming requests. At the link level, entangled states are generated across each link according to
independent Poisson processes with a constant and identical rate (µ), resulting in two-qubit maximally-
entangled states. These qubits are stored at local quantum memories, one at the user and the other at the
switch. When three link-level entangled stated are accrued, the switch performs three-qubit measurement
(successful with probability q) to provide end-to-end entanglement to users of groups of size three. This
system can also be seen as an assembly-like stochastic queueing system with one central node (or plant)
receiving parts or components of a product from geographically distant manufacturing plants. As soon
as three parts from three distinct plants are available at the central plant, they are assembled instanta-
neously and immediately leave the system. Under simplifying assumptions (identical links, infinite storage
capabilities at the users and at the switch, no cut-off times at quantum storage) we have obtained the
switch capacity, the probability that no there are no entangled qubits in the switch memory, the expected
number of stored qubits at the switch and the variance of the number of stored qubits at the switch.
These quantities are obtained by solving a two-dimensional equation satisfied by the generating function
of a two-dimensional Markov chain modeling the state of the system. The solution of the functional equa-
tion is obtained by reducing it to a boundary value problem on a closed contour, which we solve. This
analysis is of independent interest due to the form of the kernel of the functional equation (cf. Section 8)
along with the fact that point 1 lies on the contour (see comment at the beginning of Section 6) which
generates some difficulties when computing some performance metrics. In terms of future work, it would
be interesting to relax the assumption that quantum states are stored indefinitely, as cut-off times have
been found to play an important role in controlling quantum state fidelity (quality) [33]. This could be
done by assuming that these quantum states have an exponential lifetime with a constant rate.
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A Proof of (10)

Note that π(0, 0) = F (0, 0). We will need the following identities:∑
i≥1
j≥1

π(i, j)xiyj = F (x, y)− F (x, 0)− F (0, y) + F (0, 0), (101)

∑
i≥0
j≥1

π(i, j)xiyj = F (x, y)− F (x, 0), (102)

∑
i≥1
j≥0

π(i, j)xiyj = F (x, y)− F (0, y), (103)

∑
i≥2
j≥2

π(i, j)xiyj = F (x, y)− F (x, 0)− F (0, y) + F (0, 0)− y
∑
i≥1

π(i, 1)xi − x
∑
j≥1

π(1, j)yj + π(1, 1)xy,

(104)∑
i≥3
j≥3

π(i, j)xiyj =
∑
i≥2
j≥2

π(i, j)xiyj − x2
∑
j≥2

π(2, j)yj − y2
∑
i≥2

π(i, 2)xi + x2y2π(2, 2),

= F (x, y)− F (x, 0)− F (0, y) + F (0, 0)− y
∑
i≥1

π(i, 1)xi

− x
∑
j≥1

π(1, j)yj − x2
∑
j≥2

π(2, j)yj − y2
∑
i≥2

π(i, 2)xi + xyπ(1, 1) + x2y2π(2, 2), (105)

where the latter equality comes from (104). Multiplying both sides of Eq. (5) by xi and then summing
over all i ≥ 2 yields

(2λ+ ν)
∑
i≥2

π(i, 0)xi =
ν

x

∑
i≥2

π(i+ 1, 1)xi+1 + λx
∑
i≥2

π(i− 1, 0)xi−1,

=
ν

x

∑
i≥3

π(i, 1)xi + λx
∑
i≥1

π(i, 0)xi,

=
ν

x

∑
i≥1

π(i, 1)xi − π(2, 1)x2 − π(1, 1)x

+ λx(F (x, 0)− π(0, 0)). (106)

Since
∑

i≥2 π(i, 0)xi = F (x, 0) − π(1, 0)x − π(0, 0), we obtain the following from Eq. (106) by using (1)
and (2):

ν

x

∑
i≥1

π(i, 1)xi = (λ+ λ(1− x) + ν)F (x, 0)− νx

2
π(0, 0), |x| ≤ 1, (107)

Similarly, from Eq. (6) we obtain by using (1) and (3)

ν

y

∑
j≥1

π(1, j)yj = (λ+ λ(1− y) + ν)F (0, y)− νy

2
π(0, 0), |y| ≤ 1. (108)
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Multiplying now both sides of Eq. (7) by xi and then summing over all i ≥ 2, gives

(2λ+ ν)
∑
i≥2

π(i, 1)xi =
ν

x

∑
i≥2

π(i+ 1, 2)xi+1 + λx
∑
i≥2

π(i− 1, 1)xi−1 + (λ+ ν)
∑
i≥2

π(i, 0)xi,

=
ν

x

∑
i≥3

π(i, 2)xi + λx
∑
i≥1

π(i, 1)xi + (λ+ ν)
∑
i≥2

π(i, 0)xi,

=
ν

x

∑
i≥1

π(i, 2)xi − π(2, 2)x2 − π(1, 2)x

+ λx
∑
i≥1

π(i, 1)xi

+ (λ+ ν)

∑
i≥0

π(i, 0)xi − π(1, 0)x− π(0, 0)

 .

With
∑

i≥2 π(i, 1)xi =
∑

i≥1 π(i, 1)xi − π(1, 1)x, we find for |x| ≤ 1

ν

x

∑
i≥1

π(i, 2)xi = (λ+ λ(1− x) + ν)
∑
i≥1

π(i, 1)xi + νxπ(2, 2) + νπ(1, 2)− (λ+ ν)F (x, 0)

+ (λ+ ν)xπ(1, 0) + (λ+ ν)π(0, 0)− (2λ+ ν)xπ(1, 1).

Similarly for |y| ≤ 1

ν

y

∑
j≥1

π(2, j)yj = (λ+ λ(1− y) + ν)
∑
j≥1

π(1, j)yj + νyπ(2, 2) + νπ(2, 1)− (λ+ ν)F (0, y)

+ (λ+ ν)yπ(0, 1) + (λ+ ν)π(0, 0)− (2λ+ ν)yπ(1, 1). (109)

Multiplying now both sides of Eq. (9) by xiyj and then summing over all i ≥ 2, j ≥ 2, yields

(2λ+ ν)
∑
i≥2
j≥2

π(i, j)xiyj

=
ν

xy

∑
i≥2
j≥2

π(i+ 1, j + 1)xi+1yj+1 + λx
∑
i≥2
j≥2

π(i− 1, j)xi−1yj + λy
∑
i≥2
j≥2

π(i, j − 1)xiyj−1,

=
ν

xy

∑
i≥3
j≥3

π(i, j)xiyj + λx
∑
i≥1
j≥2

π(i, j)xiyj + λy
∑
i≥2
j≥1

π(i, j)xiyj . (110)
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By using identities (101)-(105), Eq. (110) rewrites

(2λ+ ν)

F (x, y)− F (x, 0)− F (0, y) + F (0, 0)− y
∑
i≥1

π(i, 1)xi − x
∑
j≥1

π(1, j)yj + π(1, 1)xy


=

(
λ(x+ y) +

ν

xy

)
[F (x, y)− F (x, 0)− F (0, y) + F (0, 0)]−

(
λxy +

ν

x

)∑
i≥1

π(i, 1)xi

−
(
λxy +

ν

y

)∑
j≥1

π(1, j)y−
νy

x

∑
i≥2

π(i, 2)xi − νx

y

∑
j≥2

π(2, j)yj + νπ(1, 1) + νxyπ(2, 2). (111)

Simple algebra in (111) gives(
λ(1− x) + λ(1− y) + ν

(
1− 1

xy

))
[F (x, y)− F (x, 0)− F (0, y) + F (0, 0)]

=
(

(2λ+ ν)y − λxy − ν

x

)∑
i≥1

π(i, 1)xi +

(
(2λ+ ν)x− λxy − ν

y

)∑
j≥1

π(1, j)yj

− νy

x

∑
i≥1

π(i, 2)xi − νx

y

∑
j≥1

π(2, j)yj − ((2λ+ ν)xy − ν)π(1, 1) + νyπ(1, 2) + νxπ(2, 1) + νxyπ(2, 2),

= −ν
x

∑
i≥1

π(i, 1)xi − ν

y

∑
j≥1

π(1, j)yj + (λ+ ν)yF (x, 0) + (λ+ ν)xF (0, y)

− νxyπ(2, 2) + ((2λ+ ν)xy + ν)π(1, 1)− (λ+ ν)xy(π(1, 0) + π(0, 1))− (λ+ ν)(x+ y)π(0, 0),

where we have used (109) and (109) to derive the last equality. Using (107) and (108), we now obtain(
λ(1− x) + λ(1− y) + ν

(
1− 1

xy

))
[F (x, y)− F (x, 0)− F (0, y) + F (0, 0)]

= − (λ(1− x) + (λ+ ν)(1− y))F (x, 0)− (λ(1− y) + (λ+ ν)(1− x))F (0, y)

−
(

2λ+ ν

2

)
(x+ y)π(0, 0) + d(x, y), (112)

with

d(x, y) := νπ(1, 1) + xy (−νπ(2, 2) + (2λ+ ν)π(1, 1)− (λ+ ν)π(1, 0)− (λ+ ν)π(0, 1)) . (113)

From (4) we see that the second term in the right-hand side of (113) is equal to zero, so that

d(x, y) = νπ(1, 1) = (2λ+ ν)π(0, 0), (114)
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where the second equality comes from (1). Collecting terms having F (x, 0), F (0, y), and F (0, 0) as factors
in (112) and using (114) finally yields(

λ(1− x) + λ(1− y) + ν

(
1− 1

xy

))
F (x, y) = ν

(
y − 1

xy

)
F (x, 0) + ν

(
x− 1

xy

)
F (0, y)

− ν
(
x+ y

2
− 1

xy

)
F (0, 0),

which concludes the proof.

B Zero of K(x, y) for |x| = 1

Lemma 2 For |x| = 1, the equation K(x, y) = 0 as a unique solution y = y(x) such that |y(x)| ≤ 1.

Moreover y(1) := 1, y′(1) = −1 and y′′(1) = 2(k−2)
k−3 .

Proof. Recall that k > 3.
Assume first that x = 1. Since K(1, y) = −(y − 1)(y − (k − 2)) we see that K(1, y) has a unique zero

in the unit disk {|y| ≤ 1}, located at y = 1. Assume now that x is fixed with |x| = 1 and x 6= 1. Define
h(x, y) = x(k − x)y. For |y| = 1, we have

|K(x, y)− h(x, y)| = |xy2 + k − 2| ≤ k − 1 < |k − x| = |x(k − x)y| = |h(x, y)|,

where the second inequality holds since3 |x| = 1 with x 6= 1. By Rouché’s theorem we conclude that
K(x, y) and h(x, y) have the same number of zeros in the unit disk {|y| < 1}. Since h(x, y) has the only
zero y = 0 in {|y| < 1}, K(x, y) has a unique zero in {|y| < 1}. This proves the first part of the lemma.

The fact that y(x) has first and second derivatives at x = 1 follows4 from the implicit function theorem
[27], that applies here since K(x, y) is analytic in C×C, K(1, 1) = 1, and ∂

∂yK(x, y)|(x,y)=(1,1) = k−3 6= 0.

Differentiating K(x, y(x)) with respect to x and letting x = 1 gives y(1)(1) = −1 by using y(1) = 1.

Differentiating twice K(x, y(x)) with respect to x and letting x = 1 gives y′′(1) = 2(k−2)
k−3 upon using

y(1) = 1 and y′(1) = −1. This concludes the proof.

C Proof of (22)

When x = y (11) becomes

(2x3 − kx2 + k − 2)F (x, x) = (k − 2)((1− x3)F (x, 0) + (1− x3)F (0, x) + (x3 − 1)F (0, 0)),

= (k − 2)(1− x3)(2F (x, 0)− F (0, 0)),

3To see that, take x = eiθ with x ∈ (0, 2π). Then, |k − x|2 = k2 + 1 − 2k cos(θ) which is strictly larger than |k − 12| =
(k − 1)2 = k2 − 2k + 1 when cos(θ) < 1.

4Since K(x, y) is analytic in C × C, K(1, 1) = 1 and ∂
∂y
K(x, y)|(x,y)=(1,1) = k − 3 6= 0, there exists a neighborhood V of

x = 1 in the complex plane and an analytic function w(x) defined on V such that K(x,w(x)) = 0 for all x ∈ V and w(1) = 1.
This necessarily implies that w(x) = y(x) for all x ∈ V ∩ {|x| = 1}, and therefore that y(x) is indefinitely differentiable at
x = 1 since 1 ∈ V ∩ {|x| = 1}.
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since F (x, 0) = F (0, x). From the identities 2x3 − kx2 + k − 2 = (1 − x)(−2x2 + x(k − 2) + k − 2) and
1− x3 = (1− x)(1 + x+ x2) the above becomes

(−2x2 + x(k − 2) + k − 2)F (x, x) = (k − 2)(1 + x+ x2)(2F (x, 0)− F (0, 0)), (115)

upon dividing both sides by 1 − x. Let us calculate the 2nd-order derivative of the l.h.s. of (115). We
have

d

dx

(
(−2x2 + x(k − 2) + k − 2)F (x, x)

)
= (−4x+ k − 2)F (x, x) + 2(−2x2 + x(k − 2) + k − 2)

d

dx
F (x, x),

and

d2

dx2

(
(−2x2 + x(k − 2) + k − 2)F (x, x)

)
= −4F (x, x) + 2(−4x+ k − 2)

d

dx
F (x, x) + (−2x2 + x(k − 2) + k − 2)

d2

dx2
F (x, x).

Letting x = 1 gives

d2

dx2

(
(−2x2 + x(k − 2) + k − 2)F (x, x)

)
|x=1

= −4F (1, 1) + 2(k − 6)
d

dx
F (x, x)|x=1 + 2(k − 3)

d2

dx2
F (x, x)|x=1,

= −4 +
2k(k − 6)

k − 3
+ 2(k − 3)

d2

dx2
F (x, x)|x=1, (116)

since F (1, 1) = 1 and d
dxF (x, x)|x=1 = E[N ] = k

k−3 from (21).
Similarly, let us calculate the 2nd-order derivative of the r.h.s. of (115). We have

d

dx

(
(k − 2)(1 + x+ x2)(2F (x, 0)− F (0, 0))

)
= (k − 2)

(
(1 + 2x)(2F (x, 0)− F (0, 0)) + 2(1 + x+ x2)

d

dx
F (x, 0)

)
,

and

d2

dx2

(
(k − 2)(1 + x+ x2)(2F (x, 0)− F (0, 0))

)
= (k − 2)

(
2(2F (x, 0)− F (0, 0)) + 4(1 + 2x)

d

dx
F (x, 0) + 2(1 + x+ x2)

d2

dx2
F (x, 0)

)
.

Letting x = 1 gives

d2

dx2

(
(k − 2)(1 + x+ x2)(2F (x, 0)− F (0, 0))

)
|x=1

= (k − 2)

(
2(2F (1, 0)− F (0, 0)) + 12

d

dx
F (x, 0)x=1 + 6

d2

dx2
F (x, 0)|x=1

)
.

30



By using (15) and (20) the above rewrites

d2

dx2

(
(k − 2)(1 + x+ x2)(2F (x, 0)− F (0, 0))

)
|x=1

= (k − 2)

(
4(k − 3)

3(k − 2)
+

2k

k − 2
+ 6

d2

dx2
F (x, 0)|x=1

)
. (117)

Equating the r.h.s. of (116) and (117) we obtain

−4 +
2k(k − 6)

k − 3
+ 2(k − 3)

d2

dx2
F (x, x)|x=1 = (k − 2)

(
4(k − 3)

3(k − 2)
+

2k

k − 2
+ 6

d2

dx2
F (x, 0)|x=1

)
,

that is

d2

dx2
F (x, x)|x=1 =

1

2(k − 3)

(
4− 2k(k − 6)

k − 3
+

4(k − 3)

3
+ 2k + 6(k − 2)

d2

dx2
F (x, 0)|x=1

)
,

=
k(2k + 3)

3(k − 3)2
+

3(k − 2)

k − 3

d2

dx2
F (x, 0)|x=1,

which is (22).

D Proof of Lemma 1

We may rewrite the set L in (34) as

L :=
{

0 ≤ ρ ≤ 1,−π ≤ θ ≤ π : 2ρ3 cos θ − kρ2 + k − 2 = 0
}
.

Define f(θ, ρ) := 2ρ3 cos θ − kρ2 + k − 2. Let us show that for any θ ∈ R, f(θ, ρ) has a unique zero in
(0, 1], denoted by ρ = ρ(θ).

Assume first that θ = 2lπ for l ∈ Z. From

f(2lπ, ρ) = (x− 1)

(
x− k − 2−

√
k2 + 4k − 12

2

)(
x− k − 2 +

√
k2 + 4k − 12

2

)
,

we deduce that f(2lπ, ρ) has a single zero in (0, 1] given by ρ(2lπ) = 1.
Assume now that θ ∈ R− {2lπ, l ∈ Z}. From

f(θ,−1) = −2(cos θ + 1) ≤ 0, f(θ, 0) = k − 2 > 0, f(θ, 1) = 2(cos θ − 1) < 0

and

lim
ρ→−∞

f(θ, ρ) =

{
−∞, if θ ∈ (2lπ, (2l + 1)π),
+∞, if θ ∈ ((2l + 1)π, 2(l + 1)π),

lim
ρ→∞

f(θ, ρ) =

{
+∞, if θ ∈ (2lπ, (2l + 1)π),
−∞, if θ ∈ (2l + 1, 2(l + 1)),
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for l ∈ Z, we readily deduce that the polynomial f(θ, ρ) of degree 3 in the variable ρ has a single zero
ρ = ρ(θ) in (0, 1). In summary, for any θ ∈ R, f(θ, ρ) has a unique zero ρ = ρ(θ) in (0, 1].

Since the partial derivatives dm

dθm f(θ, ρ) and dm

dρm f(θ, ρ) exist for all m = 0, 1, . . . and d
dρf(θ, ρ) =

2ρ(3ρ cos θ − k) does not vanish for any zero (θ, ρ) of f(θ, ρ) in R× (0, 1] as k > 3, we conclude from the
implicit function theorem [27] that ρ(θ) is infinitely differentiable in R.

Because ρ(θ) = ρ(θ + 2π) for any θ ∈ R, the function ρ(θ) is periodic with period 2π and is infinitely
differentiable in (in particular) [−π, π]. The continuity of ρ(θ) in [−π, π] together with ρ(−π) = ρ(π)
implies that the contour L defined by (35) is closed and the differentiability of ρ(θ) in [−π, π] implies that
it is smooth. The contour L is symmetric with respect to the real axis since f(θ, ρ) = f(−θ, ρ) for all
θ ∈ R, ρ ≥ 0.

Differentiating equation f(θ, ρ(θ)) = 0 once gives ρ′(0) = 0 by using ρ(0) = 1, differentiating it twice
gives ρ′′(0) = 1

3−k by using ρ(0) = 1 and ρ′(0) = 0, and differentiating it three times gives ρ′′′(0) = 0 by

using ρ(0) = 1, ρ′(0) = 0 and ρ′′(0) = 1
3−k .

Last, if L intersects with itself this means that there exist θ1, θ2 ∈ (0, π), θ1 6= θ2, such that
ρ(θ1) = ρ(θ2) (because L is symmetric with respect to the real axis we do not need to consider the
case where θ1, θ2 ∈ (−π, 0)). Assume that ρ(θ1) = ρ(θ2) = ρ0 for some θ1, θ2 ∈ (0, π). Note that ρ0 6= 0 as
ρ = 0 is not a zero of fθ(ρ). The identities f(θi, ρ0) = 0 for i = 1, 2 imply that 2ρ3

0(cos(θ1 − cos(θ2)) = 0,
which in turn implies that cos(θ1) = cos(θ2) and that θ1 = θ2 since θ1, θ2 ∈ (0, π). Therefore the contour
L does not intersect with itself.

E Proof that I2 = 1

We have by (55), (38), and (51)∫
C

log(u−1G(u)

u
du = i

∫ π

−π
log

(
e−iθ

ρ(φ(θ))3eiφ(θ)

1− ρ(φ(θ))3e−iφ(θ)

)
dθ,

= i

∫ 0

−π
log

(
e−iθ

ρ(φ(θ))3eiφ(θ) − 1

1− ρ(φ(θ))3e−iφ(θ)

)
dθ + i

∫ 0

−π
log

(
eiθ

ρ(φ(−θ))3eiφ(−θ) − 1

1− ρ(φ(−θ))3e−iφ(−θ)

)
dθ,

= i

∫ 0

−π
log

(
e−iθ

ρ(φ(θ))3eiφ(θ) − 1

1− ρ(φ(θ))3e−iφ(θ)

)
dθ + i

∫ 0

−π
log

(
eiθ
ρ(φ(θ))3e−iφ(θ) − 1

1− ρ(φ(θ))3eiφ(θ)

)
dθ, (118)

= i

∫ 0

−π
log

(
e−iθ

ρ(φ(θ))3eiφ(θ) − 1

1− ρ(φ(θ))3e−iφ(θ)

)
dθ − i

∫ 0

−π
log

(
e−iθ

ρ(φ(θ))3eiφ(θ) − 1

1− ρ(φ(θ))3e−iφ(θ)

)
dθ,

= 0,

where we have used (41) and the property that ρ(θ) = ρ(−θ) for all θ (cf. Lemma 1) to establish (118).
This concludes the proof from the definition of I2 in (55).
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F Properties of mappings G and g

The following results will be used in the proof of Lemmas 3 and 4. Since γ0 is a one-to-one mapping from
L onto C, for any t = eiθ there exists a unique w ∈ L such that γ0(w) = t. Hence, cf. (51)-(52),

G(γ0(w)) = − 1− ρ(θ)3eiθ

1− ρ(θ)3e−iθ
, (119)

g(γ0(w)) =
1− ρ(θ)3 cos θ

1− ρ(θ)3e−iθ
, (120)

for all w ∈ L by using γ(γ0(w)) = w (in particular) for all w ∈ L.
Introduce the mappings

G̃(θ) :=
ρ(θ)3eiθ − 1

1− ρ(θ)3e−iθ
, (121)

g̃(θ) :=
1− ρ(θ)3 cos θ

1− ρ(θ)3e−iθ
. (122)

Observe from (51), (52) and (38) that for t = eiθ

G(t) = G̃(φ(θ)), g(t) = g̃(φ(θ)). (123)

Lemma 3 (Properties of G and g)
The function G(t) does not vanish on C and G(t), g(t), log(t−1G(t)) and g(t)e−H(t) are continuous

on C.
Also, G(1) = 1 and g(1) = 0.

Proof. Let t0 = eiθ0 ∈ C. Assume first that θ0 ∈ [−π, π] − {0}. Since φ(θ) is continuous in [−π, π],
the functions G̃(φ(θ)) and g̃(φ(θ)) in (121)-(122) are continuous at θ0 if their common denominator
1 − ρ(φ(θ))3e−iφ(θ) does not vanish at this point. This is true as ρ(θ) < 1 for all θ ∈ [−π, π] − {0} and
that φ(θ) = 0 iff θ = 0. The same argument shows that the numerator of G̃(φ(θ)) does not vanish at θ0.
Assume now that θ0 = 0. Applications of L’Hôpital’s rule show that G̃(0) = 1 (or equivalently G(1) = 1)
and g̃(0) = 1 (or equivalently g(1) = 0), thereby proving all statements of the lemma (but the continuity
of g(t)e−H(t)) thanks to (123).

It remains to show that g(t)e−H(t) with H(t) defined in (60) is continuous on C. We have just
shown that the first term log(t−1G(t)) in (60) is continuous on C. Rewriting the integral in (60) as∫ π
−π

log(e−iθG(eiθ))−log(t−1G(t))
eiθ−t e−iθdθ, we observe that it is a continuous function of t ∈ C since for each

θ ∈ [−π, π] the mapping t→ log(e−iθG(eiθ))−log(t−1G(t))
eiθ−t e−iθ is continuous on C and the range of integration

(i.e., [−π, π]) is finite. Therefore H(t) is continuous on C as the sum of two continuous functions on C,
and so is g(t)e−H(t) as the composition of continuous functions on C. This ends the proof.
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G Calculation of the index χ

Lemma 4 (Index)
The index χ (defined in (53)) is equal to one.

Proof. Thanks to (119) the index χ in (53) is also given by

χ =
1

2π
arg[G(γ0(w))]L. (124)

Take w = ρ(θ)eiθ ∈ L. When θ = π (resp. θ = −π), w = −ρ(π) (w = ρ(−π) = ρ(π)) and G(γ0(w)) =

−1+ρ(π)3

1+ρ(π)3
= −1. When θ = 0, w = ρ(0) = 1 and

G(γ0(1)) = − lim
θ→0

−3 d
dθρ(θ)ρ(θ)2eiθ − iρ(θ)3eiθ

−3 d
dθρ(θ)ρ(θ)2e−iθ + iρ(θ)3e−iθ

= 1, (125)

since d
dθρ(θ)|θ=0 = 0 and ρ(θ) = 1 by (36), where the second equality holds by L’Hôpital’s rule.

The function G(γ0(w)) = − 1−ρ(θ)3eiθ

1−ρ(θ)3e−iθ
in (119) is continuous in [−π, π] since ρ(θ) is continuous in

[−π, π] (cf. Lemma 1), since its denominator does not vanish for θ 6= 0 as ρ(θ) < 1 for θ 6= 0 and since

limθ→0− 1−ρ(θ)3eiθ

1−ρ(θ)3e−iθ
= 1 as shown above.

Let us now show that G(γ0(w)) crosses the real axis only at θ = 0 and at θ = π (resp. θ = −π) when
w describes once the contour L or, equivalently, that =(G(γ0(w)) 6= 0 when θ ∈ (−π, π) with θ 6= 0. By
(119)

=(G(γ0(w)) =
2(1− ρ(θ)3 cos θ)ρ(θ)3 sin θ

1− 2ρ(θ)3 cos θ + ρ(θ)6
. (126)

Fix θ0 ∈ (−π, π) with θ0 6= 0. The numerator of =(G(γ0(w)) vanishes if and only if 1 = ρ(θ0)3 cos(θ0).
Since ρ(θ) < 1 for θ 6= 0, we see that 1 > ρ(θ0)3 cos(θ0). On the other hand, the denominator of
=(G(γ0(w)) does not vanish since 1− 2ρ(θ0)3 cos(θ0) + ρ(θ0)6 > 1− 2ρ(θ0)3 + ρ(θ0)6 = (1− ρ(θ0)3)2 > 0
by using cos(θ0) < 1 and ρ(θ0) < 1. Therefore, =(G(γ0(w)) > 0 for θ0 ∈ (0, π) and =(G(γ0(w)) < 0 for
θ0 ∈ (−π, 0).

In summary, we have shown that as w describes once the contour L the mapping G(γ0(w)) describes
once a circuit around zero in the counter-clockwise direction, thereby proving that χ = 1 by (124).

H Hölder condition for first and second derivatives of α and β

Lemma 5 The mapping φ defined in (39) is twice differentiable in [−π, π] and its second derivative is
continuous in [−π, π].

Proof. We recall that the stability condition k ≥ 4 is enforced. By Lemma 3 in [7, p. 876], the conformal
mapping γ(z) from C onto L (see Section 5.1) is differentiable on C. By (98) and the differentiability of
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γ on C, φ′(θ) exists if (a) ρ′(φ(θ)) + iρ(φ(θ)) 6= 0 for θ ∈ [−π, π]. The latter is always true since ρ′(θ) is a
real number (cf. (96)) and ρ(θ) 6= 0 for all θ ∈ [−π, π]. This proves the differentiability of φ on [−π, π].

The proof that φ is twice differentiable is more tedious. Differentiating the equation γ(γ0(w)) = w for
w ∈ L (see Section 5.1) gives γ′0(w) = 1

γ′(γ0(w)) . But Lemma 3 in [7, p. 876] also tells us that γ′(z) 6= 0

on C − {1} for all k ≥ 4, which allows to conclude that

γ′0(w) 6= 0, ∀w ∈ L − {1}. (127)

By (127) the denominator in (99) does not vanish for θ ∈ [−π, π]− {0} and it does not vanish either for
θ = 0 since γ′0(ρ(φ(0))eiφ(0)) = γ′0(1) 6= 0 by (153) (here we are using that ρ′(φ(θ)) + iρ(φ(θ)) 6= 0 for
θ ∈ [−π, π] as already observed). On the other hand, a glance at the r.s.h. of (99) indicates that the term
within square brackets is well-defined on [−π, π] if (c) γ′′0 (w) is well-defined on L which, by (148) with
i = 2, (150) and (152), amounts to show that (c) K − wδ2 6= 0 for w ∈ L in the denominator of (152)
(Hint: w 6∈ L and K − w does not vanish on L since K = k − 2 ≥ 2 and |w| ≤ 1 – see Figure 3). It can
be checked that property (c) holds (a more direct argument is to notice that (c) holds as otherwise γ0

in (44) would not be well-defined on L). This proves that φ is twice differentiable on θ ∈ [−π, π]. Last,
we observe from (99) that φ′′(θ) is continuous on [−π, π] as it is only composed by continuous mappings,
which completes the proof.

Lemma 6 The mapping α defined in (82) is twice differentiable on C and its second derivative is con-
tinuous on C. The same result holds for the mapping β defined in (83).

Proof. Define

G̃(θ) = − 1− ρ(θ)3eiθ

1− ρ(θ)3e−iθ
, (128)

g̃(θ) =
1− ρ(θ)3 cos θ

1− ρ(θ)3e−iθ
. (129)

Since ρ(θ) ∈ [0, 1) for θ ∈ (0, 1) and ρ(0) = 1 (see Section 5.1), the denominator in the r.h.s. of (128) and
(129) has a single zero of multiplicity one in [−π, π] at θ = 0. Since both numerators in the r.h.s. of (128)
and (129) vanish at θ = 0, this shows that the mappings G̃(θ) and g̃(θ) are continuous in [−π, π].

Notice that (cf. (51), (52), (38))

G(eiθ) = G̃(φ(θ)) and g(eiθ) = g̃(φ(θ)).

We have for u = eiθ (cf. (82))

α′(u) =
d

deiθ
log(e−iθG(eiθ)) = −ie−iθ d

dθ
log(e−iθG̃(φ(θ)) = −ie−iθ

(
−i+

φ′(θ)G̃′(φ(θ))

G̃(φ(θ))

)
, (130)
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and

α′′(u) =
d

du
α′(u) =

1

ieiθ
d

dθ
α′(u) = −ie−iθ d

dθ

{
−ie−iθ

(
−i+

φ′(θ)G̃′(φ(θ))

G̃(φ(θ))

)}
, by using(130),

= −ie−iθ
(
−e−iθ

(
−i+

φ′(θ)G̃′(φ(θ))

G̃(φ(θ))

)
− ie−iθ d

dθ

φ′(θ)G̃′(φ(θ))

G̃(φ(θ))

)
,

= −e−iθα′(u)− e−2iθ d

dθ

φ′(θ)G̃′(φ(θ))

G̃(φ(θ))
, by using again (130),

= −e−iθα′(u)− e−2iθ

φ′′(θ)G̃′(φ(θ))

G̃(φ(θ))
+ φ′(θ)2 G̃

′′(φ(θ))

G̃(φ(θ))
− φ′(θ)2

(
G̃′(φ(θ))

G̃(φ(θ))

)2
 , (131)

after easy algebra. Similarly for u = eiθ (cf. (83))

β′(u) =
d

deiθ

{
g(eiθ)e−H(eiθ)

}
= −ie−iθ d

dθ

{
g̃(φ(θ))e−H(eiθ)

}
= −ie−iθ

(
φ′(θ)g̃′(φ(θ))− ieiθg̃(φ(θ))H ′(eiθ

)
e−H(eiθ), (132)

and

β′′(u) = −e−2iθ

[
−iφ′(θ)g̃′(φ(θ)) + φ′′(θ)g̃′(φ(θ)) + φ′(θ)2g̃′′(φ(θ))− ieiθφ′(θ)g̃′(φ(θ))H ′(eiθ)

+e2iθg̃(φ(θ))H ′′(eiθ)− eiθ
(
iφ′(θ)g̃′(φ(θ)) + eiθg̃(φ(θ))H ′(eiθ)

)
H ′(eiθ)

]
e−H(eiθ), (133)

after lengthy but easy algebra. On the other hand,

G̃′(θ) = − 2iρ(θ)2

(1− ρ(θ)3e−iθ)2

(
ρ(θ)4 − ρ(θ) cos θ − 3ρ′(θ) sin θ

)
, (134)

g̃′(θ) =
iρ(θ)2

(1− ρ(θ)3e−iθ)2

(
ρ(θ)4 − ρ(θ) cos θ − 3ρ′(θ) sin θ

)
, (135)

so that
G̃′(θ) = −2g̃′(θ), (136)
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and

G̃′′(θ) =
ρ(θ)

(1− ρ(θ)3e−iθ)3

(
−4ρ(θ)8e−iθ + ρ(θ)5(3 + e−2iθ)

+3ρ(θ)4
(

2iρ′(θ)(e−2iθ − 3)− ρ′′(θ)(1− e−2iθ)
)

+ 12ρ(θ)3ρ′(θ)2(1− e−2iθ)

−2iρ(θ)2 sin θ + 6iρ(θ)
(
2ρ′(θ) cos θ + ρ′′(θ) sin θ

)
+ 12iρ′(θ)2 sin θ

)
, (137)

g̃′′(θ) = −1

2
G̃′′(θ) from (136). (138)

In particular,

G̃′(0) = i
k

k − 3
, G̃′′(0) = −

(
k

k − 3

)2

, g̃′(0) = − i
2
· k

k − 3
, g̃′′(0) =

1

2

(
k

k − 3

)2

.

We are now in position to prove the lemma. We have shown in Lemma 5 above that φ(θ) is twice
differentiable in [−π, π] and that its second derivative is continuous in [−π, π]. Also, recall that ρ(θ) is
infinitely differentiable in [−π, π] (cf. Lemma 1).

We start with α. The first derivative of α(u) in (130) is continuous on C if the numerator in the ratio5

G̃′(θ)

G̃(θ)
=

2iρ(θ)2

(1− ρ(θ)3e−iθ)(1− ρ(θ)3eiθ)

(
ρ(θ)4 − ρ(θ) cos θ − 3ρ′(θ) sin θ

)
, (139)

vanishes when the denominator vanishes. Since ρ(θ) ∈ [0, 1) for θ 6= 0 and ρ(0) = 1 (see Lemma 1) the
denominator in (139) has a single zero in [−π, π] at θ = 0 and this zero has multiplicity two. It is easily
checked that ρ(θ)4 − ρ(θ) cos θ − 3ρ′(θ) sin θ has a zero of order two at θ = 0. This shows that α′ is
well-defined (actually continuous) on C.

Now, since α′ is continuous on C, we see from (131) and from the fact that the ratio in (134) is
continuous for θ ∈ [−π, π], that α′′ is continuous on C if the numerator in the ratio

G̃′′(θ)

G̃(θ)
= − ρ(θ)

(1− ρ(θ)3e−iθ)2(1− ρ(θ)3eiθ)

×

(
−4ρ(θ)8e−iθ + ρ(θ)5(3 + e−2iθ) + 3ρ(θ)4

(
2iρ′(θ)(e−2iθ − 3)− ρ′′(θ)(1− e−2iθ)

)
+ 12ρ(θ)3ρ′(θ)2(1− e−2iθ)− 2iρ(θ)2 sin θ + 6iρ(θ)

(
2ρ′(θ) cos θ + ρ′′(θ) sin θ

)
+ 12iρ′(θ)2 sin θ

)
,

(140)

5Since the mapping φ(θ) is strictly increasing in [−π, π] with φ(−π) = −π and φ(π) = π (see Section 5.1) showing that
the mapping ϕ(θ) is continuous in [−π, π] is the same, thanks to the continuity of φ(θ), as showing that ϕ(φ(θ)) is continuous
in [−π, π]. This property is used repeatedly hereafter.
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vanishes when the denominator vanishes. As observed above the denominator in (140) has a single zero in
[−π, π] at θ = 0 and this zero has multiplicity three. One can check that the term within the parentheses
in (140) has a zero of order three at θ = 0 (Hint: ρ′(0) = ρ′′′(0) = 0 and ρ′′(0) = 1/(3− k) from Lemma
1), which proves that α is twice differentiable on C and that α′′ is continuous on C.

We now turn our attention to β. It is easy to show that g̃ is twice differentiable in [−π, π] and that its
second derivative is continuous (Hint: check that the numerator in (135) (resp. (138)) vanishes at θ = 0
as many times as the denominator does). We are therefore left with proving that the mapping H is twice
differentiable on C and that its second derivative is continuous on C. With (82), H(t) in (60) writes

H(t) =
1

2
α(t) +

1

2πi

∫
C

α(u)

u− t
du. (141)

Thanks to (74), H(t) in (141) is also given by

H(t) = α(t) +
1

2πi

∫
C

α(u)− α(t)

u− t
du, t ∈ C. (142)

For every t ∈ C, notice that the integrand in (142) is continuous on C. This is clearly true for u 6= t.
When u = t it is equal to α′(t) by L’Hôpital’s rule. Differentiating (142) gives, for t ∈ C,

H ′(t) = α′(t) +
1

2πi

∫
C

α(u)− α(t)− α′(t)(u− t)
(u− t)2

du, (143)

H ′′(t) = α′′(t) +
1

2πi

∫
C

2(α(u)− α(t))− 2α′(t)(u− t)− α′′(t)(u− t)2

(u− t)3
du. (144)

For every t ∈ C, notice that the integrand in (143) (resp. (144)) is continuous on C. This is clearly true
for u 6= t. When u = t it is equal to 1

2α
′′(t) (resp. 1

3α
′′′(t)) by L’Hôpital’s rule. The third derivative α′′′(t)

can be calculated similarly to the calculation of α′′ in (131); this calculation is omitted (for the sake of
simplicity we recommend discarding the point u = t when evaluating the integral in (144)). Since we have
shown that α, α′ and α′′ are all continuous on C, the mappings H, H ′ and H ′′ are all continuous on C as
the range of integration in (142)-(144) is bounded. This concludes the proof.

I First and second derivatives of γ0

Set K = k − 2. First rewrite γ0(w) in (44) as

γ0(w) = 1− 2

(1− δ)2(K − δ)
(δγ0,1(w) + γ0,2(w)) , (145)

with

γ0,1(w) =
(1− w)2(K − w)

w
, (146)

γ0,2(w) =
(w − δ)(1− w)

w

√
(K − wδ2)(K − w). (147)
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For i = 1, 2 we find

di

dwi
γ0(w) = − 2

(1− δ)2(K − δ)

(
δ
di

dwi
γ0,1(w) +

di

dwi
γ0,2(w)

)
, (148)

with

d

dw
γ0,1(w) =

(w − 1)(Kw − 2w2 +K)

w2
, (149)

d2

dw2
γ0,1(w) =

2(K − w3)

w3
, (150)

and

d

dw
γ0,2(w) =

1

2w2
√

(K − wδ2)(K − w)

(
−Kδ3w2 + 3Kδ2w3 + 2δ3w3 − 4δ2w4 −Kδ3w −Kδ2w2

+2δ2w3 − 2K2w2 −Kδw2 + 3Kw3 + 2K2δ −Kδw −Kw2

)
, (151)

d2

dw2
γ0,2(w) = − 1

4w3 ((K − wδ2)(K − w))3/2

(
K2δ5w3 + 3K2δ4w4 − 12Kδ4w5 + 8δ4w6 + 3K2δ5w2

+K2δ4w3 − 4Kδ5w3 − 4K3δ2w3 − 2K2δ3w3 + 18K2δ2w4 − 12Kδ2w5 − 12K3δ3w

+18K2δ3w2 − 2K2δ2w3 − 4Kδ3w3 − 4K3w3 +K2δw3 + 3K2w4 + 8K4δ

−12K3δw + 3K2δw2 +K2w3

)
. (152)

It is easy to see that

d

dw
γ0(w)|w=1 =

8
√

2(k − 3)√
6− k +

√
(k + 6)(k − 2) · (3

√
k − 2 +

√
k + 6))

. (153)
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