
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. N, NO. N, MONTH YEAR 1

Towards Stability Analysis of Data Transport
Mechanisms: a Fluid Model and Its Applications

Gayane Vardoyan, C.V. Hollot, and Don Towsley

Abstract—The Transmission Control Protocol (TCP) utilizes
a congestion avoidance and control mechanism as a preventive
measure against congestive collapse and as an adaptive measure
in the presence of changing network conditions. The set of avail-
able congestion control algorithms is diverse, and while many
have been studied from empirical and simulation perspectives,
there is a notable lack of analytical work for some variants.
To gain more insight into the dynamics of these algorithms,
we: (1) propose a general modeling scheme consisting of a set
of functional differential equations of retarded type (RFDEs)
and of the congestion window as a function of time; (2) apply
this scheme to TCP Reno and demonstrate its equivalence to a
previous, well known model for TCP Reno; (3) show applications
of the new framework to the widely-deployed congestion control
algorithm TCP CUBIC, for which analytical models are few
and limited; as well as to H-TCP, another high-speed congestion
control algorithm; and (4) validate the model using simulations.
Our modeling framework yields a fluid model for window-
or rate-based congestion control variants. From a theoretical
analysis of this model with TCP CUBIC, we discover that CUBIC
is locally uniformly asymptotically stable – a property of the
algorithm previously unknown. Through further analysis, we
derive a sufficient condition for H-TCP’s stability, but observe
via a numerical analysis and simulations that H-TCP rarely
converges to an equilibrium and is usually not asymptotically
stable in practical high-speed settings.

I. INTRODUCTION

TCP carries most of the traffic on the Internet. One of its
important functions is to perform end-to-end congestion

control to alleviate congestion in the Internet and to provide
fair bandwidth sharing among different flows. To date, many
different congestion control algorithms (variants) have been
developed, among which are Reno, Vegas, STCP [1], CUBIC
[2], H-TCP [3], and BBR [4]. Stability is an imperative
property for any dynamical system. The stability of several
of these variants including Reno, Vegas, and STCP has been
extensively and carefully studied, however, little is known
about the stability properties of more recent variants such as
CUBIC and H-TCP. These latter variants have typically been
studied through simulation and experimentation, neither of
which are adequate to make careful statements about stability.
As we will observe, for some variants this deficiency is due
to the lack of a modeling framework with which to develop
appropriate models that are amenable to a formal stability
analysis. The goals of this paper are to point out deficiencies
in the previous framework used to study variants such as Reno

G. Vardoyan and D. Towsley are with the College of Information and
Computer Sciences at the University of Massachusetts, Amherst.

C.V. Hollot is with the Department of Electrical and Computer Engineering
at the University of Massachusetts, Amherst.

Manuscript received June 30, 2020.

that make it unsuitable to study a variant such as CUBIC, and
then to present a new framework and apply it to the analyses
of CUBIC and H-TCP. Our choice of CUBIC is because it is
a popular variant that is the default in the Linux distribution,
and our choice of H-TCP is because it has been recommended
by the Energy Sciences Network [5] and has been used within
the Department of Energy’s data transfer network [6].

The traditional approach for modeling a congestion control
algorithm’s behavior is to derive a differential equation (DE)
for its congestion window (cwnd) or sending rate as a function
of time. Such DEs typically account for the algorithm’s in-
crease and decrease rules, as well as loss probability functions,
for example, to incorporate an active queue management
(AQM) policy. This method is highly effective for modeling
certain types of controllers, such as TCP Reno and STCP,
whose cwnd update rules are very simple (e.g., Reno’s cwnd
grows by one every round trip and decreases by half upon
congestion detection). However, this approach reaches its
limitations when presented with a controller whose cwnd
update functions are complex, thereby making it difficult or
impossible to directly write a DE for the cwnd or sending
rate. For example, CUBIC’s increase update rule is a function
of time since last loss and of the congestion window size
immediately before loss. Moreover, in the case of CUBIC,
the steady-state value of cwnd lies at the saddle point of the
window function, which obstructs the stability analysis of the
protocol.

To overcome the impediments of the traditional approach,
we develop a novel framework that exploits the fact that
all cwnd- and rate-based controllers that utilize packet loss
information1 to make changes to the cwnd or rate have two
variables in common: the value of cwnd (rate) immediately
before loss and the time elapsed since last loss. As a conse-
quence, one can derive a set of two DEs: the first describing
the maximum cwnd (rate) as a function of time, and the
second describing the duration of congestion epochs. This
is a relatively easy task, compared to deriving a DE for
cwnd (rate) of a complex algorithm directly. The advantage
of such a model is that it offers tremendous versatility since
it does not define cwnd or rate functions within the set of
DEs, with the latter being identical for many controllers. Note
that the proposed model is applicable not only to TCP-based
congestion controllers, but also to UDT [7] and QCN [8].

In this work, we use both event- and packet-based simula-
tions to validate our analytical models. To validate the analyt-

1Note that this includes not only ACK-based algorithms, but also packet
marking schemes as in ECN (Explicit Congestion Notification). From this
point forward, we refer to such schemes as “loss-based”.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. N, NO. N, MONTH YEAR 2

ical stability results for CUBIC, we introduce a lightweight
simulation framework that can easily be adapted to other
congestion control variants. The simulation treats loss as
a non-homogenous Poisson process and generates new loss
events based on a user-defined loss model. We refer to this
framework as the non-homogeneous Poisson loss (NHPL)
simulation. The reason for its development is that it enables
us to fully control every aspect of a model, such as changing
link capacity throughout a flow’s lifetime or using custom
loss probability models. Perhaps the most important capability
of this framework is the ease of specifying initial conditions
for flows at the start of the congestion avoidance phase,
since having control of these conditions is critical for testing
the regions of stability for algorithms that are locally stable
(as most congestion controllers in practice are). The NHPL
simulation is of independent interest separate from this paper
(a description of the framework is provided in [9] as well as
in Appendix A).

Further, at the time of writing, NS3 [10] – a popular
discrete-event network simulator – did not yet natively support
CUBIC, and existing implementations have scalability prob-
lems: as more flows are introduced, the simulation becomes
quite slow. Hence, we use the NHPL framework to validate
the DE model for CUBIC and observe that the average
cwnd predicted by both are in close agreement. As system
parameters are varied, the simulation and CUBIC’s DE model
agree on whether the system is stable. For TCP CUBIC, we
observe that instability can be introduced by setting the initial
conditions too far from their fixed-point values. While our
analysis states that CUBIC is locally asymptotically stable,
these simulations complement the theory by demonstrating
that CUBIC is not globally stable.

We use NS3, which unlike the NHPL framework is a
packet-based simulation, to validate the DE model for H-
TCP. We observe that NS3 is in close agreement with the
DE model in terms of average cwnd and average congestion
epoch duration. We also note that when H-TCP operates in its
high-speed regime, its cwnd tends to exhibit large oscillations
that last indefinitely, as evidenced by both the DE model
and numerical evaluation of H-TCP’s stability condition. In
contrast, CUBIC’s cwnd exhibits convergence to its fixed
point, and fewer oscillations.

A summary of the contributions of this work is as follows:
• a new modeling framework applicable to a diverse set of

congestion control algorithms,
• applications of this model to CUBIC and H-TCP, and

stability analyses of these algorithms,
• validation of this model with two different simulation

frameworks.
We call the new modeling framework the MWLI (Max

Window Loss Interval) model. The MWLI model was orig-
inally presented in [11] with an extended version in [9].
Arguments for this model’s validity (e.g., a proof of concept
with TCP Reno), as well as its use in proving the local
asymptotic stability of CUBIC are covered in extensive detail
in these manuscripts. Hence, we state only main results here
for CUBIC’s stability, but present some new analysis regarding
its fixed point. For H-TCP, however, we present a stability

analysis via the MWLI model in its entirety.
The rest of this paper is organized as follows: we discuss

related work in Section II. We introduce the modeling frame-
work in Section III and apply it to TCP Reno. In Section
IV, we apply the MWLI model to TCP CUBIC and review
results from its stability analysis from [11]. We also present a
more detailed analysis of CUBIC’s fixed point and observe
its limiting behavior in terms of link capacity and delay.
In Section V, we apply the model to H-TCP and present
a sufficient condition for stability. Similar to the CUBIC
analysis, we also perform a detailed analysis of H-TCP’s
fixed-point and derive its limiting behavior. In Section VI, we
discuss the specific choice of a loss probability model used
throughout our work. In Section VII, we validate the new
model and the stability result for CUBIC and H-TCP using
two different types of simulations and loss models. We draw
conclusions in Section VIII.

II. BACKGROUND

There exist a number of analytical studies of TCP and its
stability. In [12], Misra et al. derive a fluid model for a set
of TCP Reno flows and show an application to a networked
setting where RED (Random Early Detection) is the AQM
policy. Kelly proposed an optimization-based framework for
studying and designing congestion control algorithms in [13],
where STCP was an output. In [14], Srikant presented a simple
analysis of Jacobson’s TCP congestion control algorithm. In
[15], Hollot et al. analyze the stability of TCP with an AQM
system implementing RED.

Huang et al. develop and analyze the stability of a general
nonlinear model of TCP in [16], focusing on HighSpeed, Scal-
able, and Standard TCP for comparisons of relative stability.
The authors rely on functions f(w) and g(w), which are
additive and multiplicative parameters, respectively, and are
both functions of the current congestion window size. Our
model differs from these examples in that rather than mod-
eling the congestion window directly, we instead model two
interdependent variables (maximum cwnd and time between
losses) that in turn determine the evolution of the window. This
new method presents a window of opportunity for modeling
complex, nonlinear transport algorithms for which it is not
possible to write a DE for cwnd directly or whose f(w) and
g(w) functions cannot be written in closed form.

Theoretical analyses of TCP CUBIC are rare, possibly due
to the protocol’s behavior around the fixed point, which sig-
nificantly complicates the analysis of its stability. In one study,
Bao et al. propose Markov chain models for average steady-
state TCP CUBIC throughput, in a wireless environment [17].
In [18], Poojary et al. derive an expression for average cwnd
of a single CUBIC flow under random losses. In contrast
to [17] and [18], the model we present in this work for
CUBIC provides insight into both the transient and steady-
state behavior of the algorithm. Moreover, we utilize Lyapunov
stability theory to prove that CUBIC is locally asymptotically
stable independent of link delay and other system parameters
(the parameters only affect the region of attraction). This result
is one of the main contributions of this work.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. N, NO. N, MONTH YEAR 3

 t

W(t) W(t)

Wmax(t)

Wmax(t)

s(t)s(t)

Fig. 1: W (t), Wmax(t), and s(t) for TCP Reno.

Term Definition
C per-flow capacity
τ link delay in signaling a loss to the source
Wmax(t) the size of the cwnd immediately before loss
s(t) the time elapsed since loss
W (t) the cwnd as a function of time
p(t) a probability of loss function

TABLE I: Term definitions.

Some studies attempt to gain insight into the stability of
high-speed TCP variants using an empirical perspective. These
usually involve characterizing stability (or instability) by the
coefficient of variation (CoV) or stability index, as in [19]
and [20], or even by simply using the standard deviation of
the throughput as in [21]. While these observation-based and
comparative studies are extremely valuable in assessing pro-
tocol behavior in deployment, they do not present a complete
picture: to understand inherent protocol properties, modeling
and performance analysis are required.

III. THE MWLI MODEL

In this section, we present the new model, which is the focus
of this work. As a proof of concept, we apply this model to
TCP Reno and show that it is mathematically equivalent to
the well-known DE model originally presented in [12]. We
note that while the two models are equivalent, they make
use of different types of information, which is essential for
developing a fluid model for TCP CUBIC presented in Section
IV and for H-TCP presented in Section V.

In the analysis that follows, we will use the notation
f ≡ f(t) to represent a function or variable that is not time-
delayed. Similarly, we will use fT ≡ f(t − T) to represent
a function or variable that is delayed by an amount of time
T . We will also use ḟ = df(t)/dt to represent the derivative
of f with respect to time. The notation ∂f(x)/∂x denotes
the partial derivative of f with respect to the variable x, and
∂f(x)
∂x |x=x∗ is the partial evaluated at x = x∗.
Table I presents some useful definitions. The main idea

behind the model is the following: instead of deriving a DE
for the cwnd function W (t) directly, which is specific to a data
transport algorithm, we instead derive DEs for Wmax(t) – the
size of the cwnd immediately before the most recent loss, and
s(t) – the amount of time elapsed since last loss, which are

variables common to all loss-based algorithms. Since W (t) is
a function of Wmax(t) and s(t), it is completely determined
by their DEs. The result is the following model2:

dWmax(t)

dt
= −(Wmax(t)−W (t))

W (t− τ)

τ
p(t− τ)

ds(t)

dt
= 1− s(t)W (t− τ)

τ
p(t− τ)

(1)

Here, p(t − τ) is a loss probability function. The expression
W (t − τ)p(t − τ)/τ describes the packet loss rate, delayed
by τ . Here, τ represents the delay in signaling a loss to the
source, and may as well be a function of t. In the interest of
simplifying notation (as well as subsequent analyses), we keep
τ constant henceforth. Note that this assumption is reasonable
for high-BDP regimes for which controllers like CUBIC and
H-TCP were designed. The first DE in (1) describes the
behavior of Wmax, which takes the value of W (t) right
before a loss. At the time of loss, if Wmax(t) > W (t), then
Wmax decreases by the amount Wmax(t)−W (t); otherwise,
it increases by the same amount. The second DE describes
the evolution of the time since last loss s(t), which grows
by one unit and is reset to zero upon loss. This system can
be adapted to a rate-based scheme in terms of maximum rate
and time since last rate decrease, simply by dividing each DE
by τ . Since we will be describing applications of this model
to TCP Reno, CUBIC, and H-TCP, which are all cwnd-based
congestion controllers, we use (1) in the interest of the paper.

Figure 1 illustrates Wmax(t), s(t), and W (t) for TCP Reno.
To adapt model (1) to TCP Reno, we define Reno’s cwnd
as a function of Wmax(t) and s(t). At the time of loss,
W (t) = Wmax(t) is halved. This becomes the initial value
of W (t) in the new congestion epoch. W (t) then increases by
one segment for every round-trip time, so the total increase is
s(t)/τ after s(t) time has elapsed since the last loss. Hence,

W (t) =
Wmax(t)

2
+
s(t)

τ
. (2)

Then the fluid model for Reno is (1) combined with (2). In
[11], we show that this model is mathematically equivalent to
the well-established model for TCP Reno’s cwnd presented in
[12] (given by their equation (4) to be precise):

dW (t)

dt
=

1

τ
− W (t)

2

W (t− τ)

τ
p(t− τ). (3)

When used with Reno, the MWLI model given by (1) can be
linearized. This representation can then be analyzed to yield
system parameter-dependent conditions for Reno’s stability.
This analysis is similar to the one presented in [14].

The loss probability function can be customized according
to the specific characteristics of a given system, such as queue
size and AQM policy. For simplicity, when performing a
formal stability analysis of a model, we use the following
function:

p(t) = max

(
1− Cτ

W (t)
, 0

)
. (4)

2Note that W (t) must be either derived explicitly, for example as in (2) for
TCP Reno or given in the definition of the controller, as in (5) for CUBIC.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. N, NO. N, MONTH YEAR 4

This function is presented in [14] as an approximation of the
M/M/1/B drop probability when the buffer size B → ∞.
We will explore an alternate loss probability model – one
that incorporates more realistic queueing dynamics – when
validating H-TCP using NS3.

Note that model (1) does not specify W (t), and therein
lies the versatility of this scheme. For a given cwnd-based
transport algorithm, the modeler need only substitute a func-
tion describing the evolution of cwnd over time, as we did
for Reno. We demonstrate this technique again with CUBIC
in Section IV. This property of the model is useful both for
analyzing existing algorithms and examining the stability of
new ones. Moreover, the MWLI model can be used to help
design and fine tune new congestion control algorithms, as
their behavior may be simulated efficiently and easily using
(1) and any loss probability function.

IV. ANALYSIS OF TCP CUBIC

In this section, we review the stability analysis of TCP CU-
BIC using the MWLI model, first presented in [11]. There, we
showed that CUBIC is locally uniformly asymptotically stable
using Razumikhin’s Theorem (Theorem 1.4 in [22]) applied to
a suitable Lyapunov function. Further, we derived convergence
results on the system’s solution. As a new contribution, we
introduce a result regarding the limiting behavior of CUBIC’s
fixed point in terms of capacity and delay.

A. TCP CUBIC Fluid Model

TCP CUBIC’s congestion window function is defined in
terms of the time since last loss s(t) and maximum value of
cwnd immediately before the last loss Wmax(t) [2]:

W (t) = c

(
s(t)− 3

√
Wmax(t)b

c

)3

+Wmax(t) (5)

where b is a multiplicative decrease factor and c is a scaling
factor. Figure 2 illustrates the evolution of CUBIC’s cwnd
over time. The opaque red curves represent behavior in steady
state: the window is concave until a loss occurs at CUBIC’s
fixed-point value of cwnd, Ŵ . The light red curves describe
cwnd behavior if a loss does not occur: the window becomes
convex, also known as CUBIC’s probing phase. The fluid
model for CUBIC is then simply (1) coupled with (5), with
(4) as the loss probability function. More specifically, (1),
(4), and (5) represent the dynamical interaction of CUBIC
with a congested network. Prior to the development of (1),
we attempted to develop a fluid model by first computing the
equilibrium point for CUBIC, but this exercise gave a value
of s at (5)’s saddle point and consequently, a confounding
linearization of dW/dt = 0. Further attempts at deriving
dW/dt, taking into account the time-dependencies s(t) and
Wmax(t), resulted in a highly complex DE involving both
Wmax(t), s(t), and their derivatives. Even obtaining the fixed
points of this DE would be highly cumbersome, compared to
obtaining the fixed point of (1).

 t

Fig. 2: CUBIC’s saddle point causes dW (t)/dt to evaluate to
zero at the fixed point of the system.

B. Fixed Point Analysis

For (1), (4), and (5), let Ŵmax, ŝ, Ŵ , and p̂ represent
the fixed point values of Wmax(t), s(t), W (t), and p(t),
respectively. In [11], we showed that

ŝ =
3

√
Ŵ b

c
and Ŵ (Ŵ − Cτ)3 =

τ3c

b
,

where the second equation can be solved for Ŵ solely as a
function of the system parameters c, b, C, and τ . This value of
Ŵ can then be used with the equation for ŝ to obtain a value
for ŝ solely as a function of the system parameters. Further,
we showed that Ŵmax = Ŵ and that in steady state, Ŵ and p̂
are strictly positive. Given the former fact, we use Ŵmax and
Ŵ interchangeably from now on. An interesting comparison is
Ŵ as a function of p̂ for Reno and CUBIC. Model (3) yields

ŴReno =

√
2

p̂
, while ŴCUBIC = 4

√
τ3c

p̂3b
.

In other words, whereas throughput under Reno depends on
loss probability as O(p̂−1/2), CUBIC exhibits a O(p̂−3/4)
dependence.

Next, we obtain the limiting behavior of ŝ.
Claim: ŝ = O((Cτ)1/3).
Proof: In [11], we showed that

ŝ =
τ

Ŵ p̂
=

τ

Ŵ − Cτ
. (6)

Since ŝ = (bŴ/c)1/3, we also have that Ŵ = ŝ3c/b.
Substituting this expression for Ŵ into Eq. (6) and rearranging
yields

ŝ4 − b

c
Cτ ŝ− b

c
τ = 0.

Given a quartic equation

c4x
4 + c3x

3 + c2x
2 + c1x+ c0 = 0,

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. N, NO. N, MONTH YEAR 5

the roots are

x1,2 = − c3
4c4
− S ± 1

2

√
−4S2 − 2p+

q

S
,

x3,4 = − c3
4c4

+ S ± 1

2

√
−4S2 − 2p− q

S
,

where,

p =
8c4c2 − 3c23

8c24
, q =

c33 − 4c4c3c2 + 8c24c1
8c34

,

S =
1

2

√
−2

3
p+

1

3c4

(
Q+

∆0

Q

)
, (7)

Q =
3

√
∆1 +

√
∆2

1 − 4∆3
0

2
, (8)

∆0 = c22 − 3c3c1 + 12c4c0, and

∆1 = 2c32 − 9c3c2c1 + 27c23c0 + 27c4c
2
1 − 72c4c2c0.

For CUBIC, c3 = 0, c4 = 1, p = 0, q = −Cτ bc ,
∆0 = −12bτ/c, and ∆1 = 27C2(bτ/c)2, so that

Q =
3

√√√√27

2

(
b

c
Cτ

)2

+
1

2

√
272

(
b

c
Cτ

)4

+ 4

(
12
b

c
τ

)3

= O((Cτ)2/3),

and S =
1

2

√
1

3

(
Q− 12bτ

c

1

Q

)
= O((Cτ)1/3).

Finally, to obtain ŝ, we choose the root x3,4 with the plus sign
and show later on that this root is indeed valid (i.e., positive
for any large Cτ). Thus,

ŝ = S +
1

2

√
−4S2 − q

S
= O((Cτ)1/3). (9)

In contrast, for TCP Reno it can be shown that ŝ = O(Cτ2).
Claim: for large Cτ , the quantity inside the square root in Eq.
(9) is positive.
Proof: substituting the value for q above, we check if

Cτb

c

1

S
− 4S2 > 0. (10)

When Eq. (10) holds, substituting for S and rearranging yield

2Cτb

c
>

(
1

3

(
Q− 12bτ

c

1

Q

))3/2

.

Note that Q is always positive. Hence, it suffices to show

33/22Cτb

c
> Q3/2.

Substituting for Q and dividing by
√

27 yields

2Cτb

c
>

1√
2

√√√√(b
c
Cτ

)2

+

√(
τ
b

c

)3(
C4τ

b

c
+

256

27

)
For large Cτ ,

C4τ
b

c
+

256

27
< 2C4τ

b

c
,

so it suffices to show

2Cτb

c
>

1√
2

√
b2

c2
C2τ2(1 +

√
2).

Noting that 1 +
√

2 < 4, it suffices to show that

2Cτb

c
>

√
2
b2

c2
C2τ2 =

√
2
b

c
Cτ,

2 >
√

2 X

Hence, for large Cτ , we have selected the correct root for
computing ŝ.

C. Change of Variables

For convenience, we perform a change of variables within
the MWLI model, (1), so that the fixed point of the system is
located at the origin. To accomplish this, define x as follows:

x(t) =

[
x1(t)

x2(t)

]
=

[
Wmax(t)− Ŵmax

s(t)− ŝ

]
=

[
Wmax(t)− Ŵ

s(t)− ŝ

]

where the last equality follows because Ŵmax = Ŵ . Also,
define Ψ(t) and p̃(t) as follows:

Ψ(t) = c

x2(t) + ŝ−
3

√
b(x1(t) + Ŵ)

c

3

+ x1(t) + Ŵ ,

p̃(t) = max

(
1− Cτ

Ψ(t)
, 0

)
.

Then the new system is:

ẋ1 =
(

Ψ− x1 − Ŵ
) Ψτ

τ
p̃τ ,

ẋ2 = 1− (x2 + ŝ)
Ψτ

τ
p̃τ .

(11)

Note that Ψτ and p̃τ are functions of x1(t− τ) ≡ x1τ

and x2(t− τ) ≡ x2τ . It is easy to verify that
x∗ = [x1 x2 x1τ x2τ]T = 0 is a fixed point of the new
system (see [11] for a proof). Stability analysis of the system
(11) at the origin is equivalent to analyzing the stability of
the original system (1) at the equilibrium values Ŵmax and
ŝ.

D. Stability and Convergence Analyses

In [11], we show the existence and uniqueness of a solution
to (11) through its fixed point x∗. This is done by showing
that ẋ1 and ẋ2 are continuously differentiable functions in
some neighborhood of the fixed point, so that we have local
Lipschitz continuity. Recall that in this work, we prove local
stability for TCP CUBIC (there is evidence that the system is
not globally stable, as we discuss in Section VII). Specifically,
we prove that there exists a neighborhood around the fixed
point such that the system is stable. While we do not provide
a detailed characterization of the domain of attraction, we are
able to show that x1 and x1τ should be restricted to an interval
[−ρŴ , ρŴ], for some ρ ∈ (0, 1).

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. N, NO. N, MONTH YEAR 6

Next, we cover the main points and results of the stability
analysis. In general, the linearization of (11) and (4) about
x = x∗ := 0 is[
ẋ1

ẋ2

]
=

1

ŝ
A0

[
x1

x2

]
− ŝ

τ
A1

[
x1τ

x2τ

]
, where

A0 =

[
∂Ψ
∂x1
− 1 ∂Ψ

∂x2

0 −1

] ∣∣∣∣∣
x=x∗

and A1 =

[
0 0
∂Ψτ
∂x1τ

∂Ψτ
∂x2τ

] ∣∣∣∣∣
x=x∗

.

For CUBIC, ∂Ψ/∂x1|x=x∗= 1 and ∂Ψ/∂x2|x=x∗= 0, so
that ẋ1 = 0. This means that the linearized system cannot
be used to deduce the local stability of the nonlinear system.
The key cause of this problem is the fact that the fixed point
value of x2 = 0 is the saddle point of the function Ψ (or
equivalently, ŝ is the saddle point of W (t)). This causes
all first-order partial derivatives of ẋ1 to evaluate to zero at
x∗ = 0. Figure 2 illustrates this phenomenon. Hence, in order
to incorporate a local contribution from ẋ1 in the analysis, it
is necessary to expand ẋ1 further. Specifically, a third-order
Taylor Series expansion is necessary, since all second-order
terms also evaluate to zero at the origin.

The expanded system looks as follows:

ẋ1 = −αx3
1 + βx2

1x2 − γx1x
2
2 + δx3

2 + h1

ẋ2 = −1

ŝ
x2 −

ŝ

τ
x1τ + h2

(12)

where α =
b3

27c2ŝ7
, β =

b2

3cŝ5
, γ =

b

ŝ3
, and δ =

c

ŝ

and h1 and h2 are higher-order terms of ẋ1 and ẋ2, respec-
tively. In [11], we analyze the stability of (12) using the
Lyapunov-Razumikhin Theorem, the statement of which is
given below as it appears in [22]. For the purpose of this
theorem, we introduce some notation. Let C = C([−τ, 0],Rn)
be the set of continuous functions mapping the interval [−τ, 0]
to Rn, where τ is the maximum delay of a system. For any
A > 0 and any continuous function of time ψ ∈ C([t0−τ, t0 +
A],Rn), and t0 ≤ t ≤ t0 +A, let ψt ∈ C be a segment of the
function ψ defined as ψt(θ) = ψ(t + θ), −τ ≤ θ ≤ 0. The
general form of a retarded functional differential equation is

ẋ(t) = f(t, xt) (13)

Below, R+ is the set of positive real numbers, and S̄ is the
closure of the set S.

Theorem IV.1 (Lyapunov-Razumikhin Theorem). Suppose f :
R× C → Rn takes R×(bounded sets of C) into bounded sets
of Rn, and u, v, w : R̄+ → R̄+ are continuous nondecreasing
functions, u(s) and v(s) are positive for s > 0, and u(0) =
v(0) = 0, v strictly increasing. If there exists a continuously
differentiable function V : R× Rn → R such that

u(||x||) ≤ V (t, x) ≤ v(||x||), for t ∈ R and x ∈ Rn, (14)

w(s) > 0 for s > 0, and there exists a continuous nonde-
creasing function p(s) > s for s > 0 such that

V̇ (t, x(t)) ≤ −w(||x(t)||) (15)
if V (t+ θ, x(t+ θ)) ≤ p(V (t, x(t))) (16)

for θ ∈ [−τ, 0], then the system (13) is uniformly asymptoti-
cally stable. If in addition lims→∞ u(s) =∞, then the system
(13) is globally uniformly asymptotically stable.

The continuous nondecreasing function p(s) defined in the
theorem above is not to be confused with the loss probability
function defined for the MWLI model earlier in the text. Note
that in this work, we will only prove local stability for CUBIC.
Therefore, our goal is to show that we can find a function V
for which all conditions specified in the theorem are valid
locally, i.e., in a sufficiently small neighborhood around the
fixed point. A typical choice of Lyapunov candidate is the
quadratic form, i.e., a function of the form Z(x) = xTPx,
where P is a positive definite matrix. In [11], we discuss
in detail why such a candidate is not suitable for analyzing
the stability of our system and instead propose the Lyapunov-
Razumikhin candidate

V (x) =
ŝ

2c
x2

1 +
τ

4ŝ
x4

2. (17)

We prove this candidate’s validity (i.e., it satisfies conditions
(14), (15), and (16)) and use it to prove the local uniform
asymptotic stability of TCP CUBIC around its fixed point
x∗ = 0. Note that we can write V (x) or V (x(t)) instead of
V (t,x(t)) because V is autonomous, i.e., it is not explicitly a
function of time. Specifically, we showed that condition (14)
is satisfied under

u(||x||) = ε1||x||42 and v(||x||) = ε0||x||22, where

ε1 < min

(
ŝ

6c
,
τ

4ŝ

)
and ε0 = max

(
ŝ

2c
,
τ

4ŝ

)
.

For condition (16), we let p > 1 be a constant, which
can be arbitrarily close to one. Then for (16), we can use
p(V (x(t))) = pV (x(t)):

V (x(t− θ)) ≤ pV (x(t)), for θ ∈ [0, τ].

Finally, for condition (15) we showed that (under condition
(16)) there exists a constant K < λmin[Q̃] such that

V̇ ≤ −(λmin[Q̃]−K)||x||42

where λmin[Q̃] is the smallest eigenvalue of the matrix

Q̃ =

ŝα
c − ŝβ

2
√

2c
0

− ŝβ

2
√

2c

ŝγ
2c 0

0 0 τ
ŝ2

 .
In addition, we also showed the following convergence result:

||x||42≤
1

ε1(λmin[Q̃]−K)
ε20

t+ ε1
V (0)

. (18)

Above, we define V (0) ≡ V (x(0)) since V is implicitly
a function of time. The result in (18) can be contrasted
with linearizable, stable systems, which exhibit exponential
convergence to the fixed point. What follows is a summary
of the stability and convergence results for TCP CUBIC. For
the system described by (11), the following properties hold:
(a) The system has a unique fixed point x∗ = 0.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. N, NO. N, MONTH YEAR 7

(b) The system has a unique solution in a neighborhood of
this fixed point.

(c) The fixed point is locally uniformly asymptotically stable
and in addition, we have the following constraints on the
stability region:
(i) x1 and x1τ are constrained to [−ρŴ , ρŴ], for some
ρ ∈ (0, 1).

(ii) |x1|, |x2|< 1.
(d) The solution is bounded according to (18) for |x1| and

|x2| small enough.

V. ANALYSIS OF H-TCP

In this section, we use the MWLI model to analyze the
stability of H-TCP. As with CUBIC, we use (4) as the loss
model. Unlike CUBIC, whose cwnd is given explicitly as a
function of time, H-TCP’s cwnd behavior is stated in terms of
increase and decrease response functions, so we must derive
its W (t) in closed form. H-TCP behaves as follows [23]: on
each acknowledgement, set

cwnd← cwnd + α(∆)/cwnd (19)

and on each congestion event, set

cwnd← β(t)cwnd, (20)

where ∆ is the time since the last congestion event and α(∆)
and β(t) are described in detail below. α(∆) is constructed so
that after a congestion event, H-TCP’s cwnd increases linearly
for a period of ∆L seconds; this is known as the low-speed
regime of the protocol. After ∆L seconds have passed, as
long as there are no new congestion events, H-TCP transitions
into its high-speed regime and evolves the cwnd according to
a function of ∆. When a congestion event occurs, H-TCP
uses a backoff factor β(t) ∈ [0.5, 0.8], depending on current
estimated maximum and minimum round-trip times. The full
operation is as follows:
(a) On each acknowledgement, set

α(∆) =

1, if ∆ ≤ ∆L,

1 + 10(∆−∆L) +
(

∆−∆L

2

)2

, if ∆ > ∆L,

and then let α(∆) = max (2(1− β(t))α(∆), 1). (Note:
the original definitions, e.g., in [3], [23], simply state
α(∆) = 2(1 − β(t))α(∆). However, if ∆ ≤ ∆L, then
2(1− β(t))α(∆) = 2(1− β(t)), which will be less than
one for any value of β(t) ∈ [0.5, 0.8] that is not 0.5. Since
the increase factor must be at least one, we assume that
α(∆) = 1 in this case, hence the use of max above (also
used in [24]).) Then, use Eq. (19) to adjust the cwnd.

(b) On each congestion event, set

β(t) =
τmin

τmax
, β(t) ∈ [0.5, 0.8].

Then, use Eq. (20) to adjust the cwnd.
Above, τmin/τmax is the ratio of minimum to maximum round-
trip times experienced by the source. ∆L is usually set to
1s [23]. The authors in [23] also suggest scaling α(∆) with
round-trip time to make the increase rate and convergence

time invariant with RTT, as well as to potentially reduce
unfairness. We first derive W (t) without RTT scaling and
later on introduce a scaling factor γ to discuss its effects on
stability (γ = τ/τref , where τref is a reference RTT value as
discussed in [24] and [25]). To simplify our analysis, we make
the assumption that β(t) = b, for b ∈ [0.5, 0.8]. Note that this
assumption is reasonable, since in steady state, τmin = τmax

so that the decrease factor is a constant.
Note that in the case where ∆ > ∆L, 2(1 − b)α(∆) can

also be less than one, so that α(∆) = 1. This means that until
some time tL, H-TCP will operate in the low-speed regime
(i.e., it will behave like TCP Reno even though ∆ > ∆L). We
compute tL to simplify future analysis. To do so, we solve the
following equation for tL:

2(1− b)

(
1 + 10(tL −∆L) +

(
tL −∆L

2

)2
)

= 1.

The result is

tL = ∆L − 20 +

√
400− 4 +

2

(1− b)
.

Note that for b ∈ [0.5, 0.8], tL ≥ ∆L. We are now ready to
write down the cwnd function for H-TCP:

W (t) = bWmax(t) +
1

τ
min (tL, s(t))

+
1{s(t) > tL}

τ

∫ s(t)

tL

α(∆)d∆. (21)

Note that the indicator function above is required since the
integral can evaluate to a positive value in some cases where
s(t) < tL.

A. Fixed Point Analysis

If tL ≥ ŝ, then the fixed point of the system and its stability
analysis reduces to that of TCP Reno. From now on, we
assume that tL < ŝ; in other words, we analyze H-TCP in
environments where the congestion epochs in steady state are
sufficiently long for the cwnd to transition to the high-speed
regime after the linear growth stage. This is common in high-
BDP environments for which H-TCP was designed. Note that
this causes the indicator function in (21) to evaluate to 1.
In steady state, we know that W (t) = Wmax(t) = Ŵ and
s(t) = ŝ. Applying this to (21), we have

Ŵ =
tL

(1− b)τ
+

2

τ

(
(ŝ−∆L)3

12
+ 5(ŝ−∆L)2 + ŝ− tL

− (tL −∆L)3

12
− 5(tL −∆L)2

)
.

We now eliminate Ŵ from the equation above. From the
second equation in (1), we obtain

ŝŴ p̂

τ
= 1,

ŝŴ (1− Cτ/Ŵ)

τ
= 1,

Ŵ =
τ

ŝ
+ Cτ. (22)

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. N, NO. N, MONTH YEAR 8

Substituting this into the fixed point equation above, we obtain

τ

ŝ
+ Cτ =

tL
(1− b)τ

+
2

τ

(
(ŝ−∆L)3

12
+ 5(ŝ−∆L)2

+ŝ− tL −
(tL −∆L)3

12
− 5(tL −∆L)2

)
. (23)

Note that (23) is quartic in ŝ. We can use it to analyze
the limiting behavior of ŝ in terms of C and τ (specifically,
we assume large Cτ and C � τ). To simplify notation,
let x ≡ ŝ. Recall that in steady state, τmin = τmax, which
means that the decrease factor is b = 0.8. From now on, to
simplify subsequent analysis, we assume ∆L = 1s, which is
the usual default value in H-TCP implementations. Using this,
along with the steady-state value of b, we may now evaluate
the steady-state value of tL, which is given by

√
406 − 19.

Substituting this into (23), expanding and grouping by x yields

x4 + 57x3 − 105x2 +
(

812
√

406− 16283− 6Cτ2
)
x−6τ2

= 0.

Recall the form of the roots of a quartic equation from Section
IV-B. For H-TCP, letting Γ = 812

√
406− 16283, we have

∆0 = 1052 − 171
(
Γ− 6Cτ2

)
− 72τ2 = O(Cτ2),

∆1 = −2(1053) + 53865
(
Γ− 6Cτ2

)
− 162(572)τ2

+ 27
(
Γ− 6Cτ2

)2 − 432(105)τ2 = O(C2τ4),

q =
1

8

(
573 + 228(105)

)
+
(
Γ− 6Cτ2

)
= O(Cτ2),

and p is a negative constant (no dependence on C or τ). From
above and from Eq. (8), we obtain

∆2
1 = O(C4τ8), ∆3

0 = O(C3τ6), and Q = O((C2τ4)1/3).

Further (see Appendix B for derivation details),

∆0

Q
= O((C2τ4)1/3), Q+

∆0

Q
= O((C2τ4)1/3), and

S =
1

2

√
2

3
p′ +

1

3

(
Q+

∆0

Q

)
= O((Cτ2)1/3),

where p′ ≡ −p is positive. Finally, letting q′ ≡ −q and noting
that for large Cτ , q′ > 0, we use the plus-sign version of x3,4

to obtain

x = −57

4
+ S +

1

2

√
2p′ +

q′

S
− 4S2 (24)

and further noting that q′/S and S2 are both O((C2τ4)1/3),
we obtain ŝ = O((Cτ2)1/3). See Appendix B for a proof of
the limiting behavior of q′/S, as well as for a proof that the
root in (24) is positive and real for large Cτ and C � τ .

B. Stability Analysis

We perform a change of variables similar to Section IV-C.
Letting δ ≡ ŝ − ∆L, ξ ≡ tL − ∆L and rewriting the cwnd
function in terms of x1(t) and x2(t), yields

Ψ(t) = b(x1(t) + Ŵ) +
tL
τ

+
2(1− b)

τ

(
(x2(t) + δ)3

12

+ 5(x2(t) + δ)2 + x2(t) + ŝ− tL −
ξ3

12
− 5ξ2

)
.

For the stability analysis, we need the partial derivatives of
Ψ(t) with respect to x1 and x2 evaluated at the fixed point.
They are

∂Ψ

∂x1
= b,

∂Ψ

∂x2
=

2(1− b)
τ

(
(x2(t) + δ)2

4
+ 10(x2(t) + δ) + 1

)
,

∂Ψ

∂x2

∣∣∣∣∣
0

=
2(1− b)

τ

(
(ŝ−∆L)2

4
+ 10(ŝ−∆L) + 1

)
.

Let the quantity above (the partial with respect to x2 evaluated
at the fixed point) be denoted as F∆L . Note that F∆L is always
positive: recall that tL ≥ ∆L for all b ∈ [0.5, 0.8] and by our
assumption, ŝ > tL, so it follows that ŝ > ∆L. The linearized
system is[

ẋ1

ẋ2

]
=

1

ŝ

[
b− 1 F∆L

0 −1

][
x1

x2

]
− ŝ

τ

[
0 0

b F∆L

][
x1τ

x2τ

]
.

Then, calling the first matrix (multiplied by 1/ŝ) above A0

and the second matrix (multiplied by −ŝ/τ) A1, note that the
linearized system has the form

ẋ = A0x +A1xτ .

Its Laplace transform is

sX(s)− x(0) = A0X(s) +A1X(s)e−sτ .

Solving for X(s) yields

X(s) = (sI −A0 −A1e
−sτ)x(0).

We compute

sI −A0 −A1e
−sτ =

[
s+ 1−b

ŝ

−F∆L

ŝ

bŝ
τ e
−sτ s+ 1

ŝ + ŝ
τ F∆Le−sτ

]
,

and the determinant of this matrix is

∆ =

(
s+

1− b
ŝ

)(
s+

1

ŝ

)(
1 +

ŝ

τ

F∆L(
s+ 1−b

ŝ

)e−sτ) .
Note that the first two components of ∆, s + (1 − b)/ŝ and
s+1/ŝ, are stable. For the third component, we can apply the
Nyquist stability criterion. Let

H(s) :=
ŝ

τ

F∆L(
s+ 1−b

ŝ

)e−sτ =
ŝF∆L(

sτ + (1−b)τ
ŝ

)e−sτ
and let ρ := (1− b)τ/ŝ and θ := tan−1(ωτ/ρ). Then

H(jω) =
ŝF∆L√
ω2τ2 + ρ2

e−j(ωτ+θ).

Decomposing H(jω) into real and imaginary components
yields

I(H(jω)) = − ŝF∆L sin(ωτ + θ)√
ω2τ2 + ρ2

,

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. N, NO. N, MONTH YEAR 9

R(H(jω)) =
ŝF∆L cos(ωτ + θ)√

ω2τ2 + ρ2
.

The Nyquist stability criterion states the following: The ratio-
nal function 1+H(s) has poles in the open left-half s-plane if
and only if the Nyquist contour ΓH in the H(s)-plane does not
encircle the (−1, 0) point when the number of poles of H(s)
in the right-hand s-plane is zero [26]. Clearly, H(s) does not
have any poles in the right-hand s-plane. It remains to check
whether the point (−1, 0) is encircled in the H(s)-plane or to
derive conditions to ensure that it is not encircled. We can find
the point where the contour intersects the real axis by setting
I(H(jω)) = 0, yielding

sin(ωτ + θ) = 0.

This equation is satisfied when ωτ + θ = ±nπ, for n =
0, 1, 2, Next, we analyze the real component. For n = 0
and n even, the numerator of the real part is equal to ŝF∆L ,
which is always greater than zero. Hence, when n = 0 or
even, I(H(jω)) > 0. To analyze the case of n odd, we use
the following:

ωτ = ±nπ − θ,
|ωτ | = |±nπ − θ|.

Further, note that |θ| = |arctan(ωτ/ρ)| < π/2. Therefore,
|ωτ | > π/2, so for n odd,

R(H(jω)) =
−ŝF∆L

(> π/2)
>
−2ŝF∆L

π
.

For stability, we require that R(H(jω)) ≥ −1. This yields the
following (sufficient) stability condition:

ŝF∆L ≤ π

2
,

ŝ

(
(ŝ−∆L)2

4
+ 10(ŝ−∆L) + 1

)
≤ πτ

4(1− b)
.

Recall that ŝ is a function of C, τ , and tL, and the latter is
a function of ∆L. We have not been able to find values of
C, τ , and ∆L that satisfy the stability condition above. In
addition, we have not been able to find a set of parameters for
which the simulation of DEs show a stable system. Recall
that in the cwnd function definition (21), no RTT scaling
is employed. RTT scaling can reduce unfairness, as well as
enable congestion epoch duration and convergence time to
be independent of RTT. When implemented in H-TCP, RTT
scaling is only enabled in high-speed regimes (i.e., when
∆ > tL), and works by scaling α(∆) in this regime by τ/τref ,
where the recommended value of τref = 100 ms [24]. With
this change, the stability condition becomes

ŝ

τref

(
(ŝ−∆L)2

4
+ 10(ŝ−∆L) + 1

)
≤ π

4(1− b)
,

where tL is redefined as

tL =

{
∆L − 20 +

√
400− 4 +

2τref
(1−b)τ if 2(1−b)τ

τref
≤ 1,

∆L otherwise.

Numerical analysis shows that in practical settings (i.e., for
realistic values of C, τ , and b), H-TCP with RTT scaling

0 10 20 30 40 50

Time (s)

0

1

2

3

4

5

6

C
w

n
d

 (
b

y
te

s
)

10
6

=1

=0.4

=0.08

Fig. 3: Effect of RTT scaling on H-TCP’s cwnd. Curves
produced by the DE model with C = 1 Gbps, τ = 40 ms,
b = 0.8, and scaling factor γ = τ/τref . In all three cases, the
protocol operates in the high-speed regime and is unstable.
Decreasing γ reduces the magnitude of the oscillations.

(with scaling parameter γ := τ/τref) is still unstable when
it operates in the high-speed regime. In fact, we find that the
only way to stabilize the systems is to use values of b and
τref that force the protocol to operate exclusively in the low-
speed regime (i.e., to behave as standard TCP). However, we
note that certain values of γ tend to dampen the oscillation
amplitudes of H-TCP’s cwnd, albeit without affecting the
convergence behavior of the protocol. One example of this
phenomenon is illustrated in Figure 3. The cwnd curves are
a result of the DE model with C = 1 Gbps, τ = 40 ms,
and b = 0.8. γ = 1 corresponds to no RTT scaling, while
γ = 0.4 corresponds to using the recommended τref = 100
ms. Recall the fixed point expression for cwnd from Eq. (22):
Ŵ = τ/ŝ + Cτ . Note from this equation that in high-BDP
settings, Ŵ is dominated by the BDP, Cτ , while varying γ
only changes ŝ. Hence, Ŵ does not change much with γ. This
is reflected in Figure 3, as all three flows reach approximately
the same maximum value of cwnd, ≈ Cτ = 5 × 106 bytes.
On the other hand, the flow that corresponds to γ = 0.08
deviates significantly less from the fixed point than do the
other flows, with larger γ’s. Interestingly, decreasing γ further
precludes H-TCP from operating in the high-speed regime, and
the protocol’s behavior approaches that of standard TCP while
not necessarily stabilizing it (i.e., the cwnd retains its sawtooth
profile and there is no convergence to the fixed point).

VI. A NOTE ON THE LOSS MODEL AND OTHER
APPLICATIONS OF THE MWLI MODEL

We chose the probability of loss model given by Eq. (4)
for its simplicity and dependence on few system parameters.
However, it is worthwhile to note that this loss model is
used often in fluid approximation models, especially under the
assumption that the packet arrival process is a Poisson process
[14]. Such an assumption is reasonable in certain scenarios,
e.g., with sufficiently long-lived data transfers and large buffer
sizes at congestion points. However, in scenarios where traffic
may be bursty, the arrival process no longer behaves as a
Poisson process, and using the loss model given by (4), or

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. N, NO. N, MONTH YEAR 10

even its finite-version for M/M/1/B queues with queue size
B, may cause inaccuracies for throughput prediction [27].

Note that the MWLI model can accommodate different
loss models, and as long as a model p(t) can be written
in closed form in steady state (e.g., (4) simply becomes
p(t) = 1−Cτ/Ŵ in steady state), one can perform fixed point
and stability analyses. A consequence of using a particular p(t)
is that the analysis is valid under the same assumptions for
which p(t) is a reasonable model. Hence, while H-TCP seems
unstable under (4), it may behave very differently under a less
harsh p(t). In Section VII, we explore another loss model for
H-TCP that incorporates queue size.

Both CUBIC and H-TCP are second-generation TCP vari-
ants that were developed to operate more efficiently in high-
BDP settings than their predecessors. In other words, these two
protocols, which are both congestion-window based, fall into
the same congestion controller category, and in our analyses
we make some assumptions that are specific to TCP flows in
high-BDP settings to enable simpler analyses. Nevertheless,
it is possible to use the MWLI model to accommodate
protocols and settings which we do not study in the present
manuscript. For instance, the constant τ assumption may be
removed, and τ replaced with a function R(t) that depends
explicitly on time, and implicitly on queueing dynamics as
well as processing delay, the latter being an important factor in
datacenter networks. In the next section, we demonstrate how
to incorporate queueing dynamics q(t) into a loss probability
function p(t); we also redefine τ as solely the propagation
delay (which we assume to be constant), and define the overall
delay to be the sum of queueing and propagation delays, much
as in [28]. Making such modifications can render the model
more predictive in settings where RTT variation is significant.

Further, there are some settings (e.g., datacenters) in which
buffers may be shallow. Such a scenario may be accom-
modated by choosing an appropriate queueing model with
a maximum queue size qmax and adjusting this parameter
accordingly. A similar change may be made for settings
with large buffer sizes. Alternate loss probability models are
also straightforward to implement, via the p(t) function. For
instance, to model TCP in a wireless setting, one would
choose a p(t) that reflects the completely independent Poisson-
driven losses that are characteristic of such environments. To
model bursty traffic one may use an on-off Markov process
modulating a Poisson loss process. To account for ECN
marks, one must account in the model that the rate at which
congestion signals are relayed to the sender is a function of
the queue length, which can also be done via an appropriately-
chosen p(t−τ) function (which in turn may also have to reflect
an AQM scheme). Finally, to account for duplicate ACKs,
one may again use the p(t− τ) function to ensure that a loss
is suffered when the buffer is full, so that a multiplicative
decrease is applied to the cwnd as a result. We leave the details
of these explorations to future work on the topic.

VII. SIMULATIONS

We use simulation to validate model (11) and the stability
analyses of TCP CUBIC and H-TCP. For H-TCP, we use

NS3 and for CUBIC, we develop a simulation framework that
treats loss as a non-homogenous Poisson process and generates
new loss events based on a user-defined probability of loss
model. Because of the loss generation method, we call this
simulation framework the Non-Homogeneous Poisson Loss,
or NHPL simulation. A detailed description of the framework
is provided in [9]. An advantage of using this framework for
validating the DEs over, for example, NS3, is that we can
observe the behavior of solely the congestion avoidance phase
of an algorithm, which allows us to more easily verify the
theoretical analysis of the controller’s stability. Moreover, as
we observe from simulations of the DEs, an algorithm’s stabil-
ity can be highly sensitive to the initial conditions specified at
the beginning of the congestion avoidance phase (note that this
observed sensitivity to initial conditions is consistent with our
demonstration of local-only stability). The initial conditions
are values of Wmax(0) and s(0) for all flows, and we can
control them more easily with our simulation framework. This
can be especially useful when testing the region of stability for
a given system. Another reason for using NHPL simulations
for CUBIC is that at the time of writing, CUBIC is not natively
supported in NS3. As a result, certain experiments of CUBIC
in NS3 take an exceedingly long time to complete (especially
systems with high BDPs, which are of interest in this paper).

Note that the NHPL simulation framework is event-based,
rather than packet-based. To diversify our experiments, we
use NS3 – a packet-based simulation framework – to vali-
date the H-TCP model. For the experimental setup, we use
a PointToPoint channel between two net devices. We
choose the PI (Proportional Integral controller) AQM scheme
[29] for H-TCP in NS3. We choose PI because it is simple
to implement within the MWLI model. Since NS3 does not
natively support PI, we modify the similar AQM protocol PIE
[30] implementation, which is available in NS3.

In order to compare the DE model against NS3, we alter
the DEs’ previous loss model (that of Eq. (4)) to incorporate
some of the major components of PI, with the objective of
implementing a simplified version of the AQM scheme that
reasonably approximates PI. Specifically, every T UPDATE
seconds (we use 5 ms in all our experiments – similar to the
value used in the experiments of [29]), we compute

∆p = α̂(q − qref) + β̂(qref − qold) and set
p← p+ ∆p

(25)

as PI’s new drop probability. Above, α̂ and β̂ are parameters,
q is the current length of the queue, qold is the length of the
queue in the previous iteration, and qref is the desired queue
length. Note that this value of qref is a reference for an average
flow within our DE model, as opposed to a reference for all
flows in aggregate, and similarly for the values of q and qold, so
that the loss probability is computed for a single flow. In all our
experiments, we set α̂ = 1.822×10−5 and β̂ = 1.816×10−5,
as in [29]. The value of p is then used to update s and Wmax

in the DE model.
For the DE model, we use the following queue model (based

on a model from [31]):
dq(t)

dt
=
W (t)

τ
− C, (26)

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. N, NO. N, MONTH YEAR 11

0 10 20 30 40 50

Time (s)

0

20

40

60

80

100

120

C
w

n
d
 (

s
e
g
m

e
n
ts

)

Fixed Point Value

NHPL Sim

DE Model

Fixed Point cwnd 125

NHPL Sim avg cwnd 117

DE Sim avg cwnd 123

(a) τ = 1 ms, 1 flow

0 10 20 30 40 50

Time (s)

0

20

40

60

80

100

120

C
w

n
d
 (

s
e
g
m

e
n
ts

)

Fixed Point Value

NHPL Sim

DE Model

Fixed Point cwnd 125

NHPL Sim avg cwnd 122

DE Sim avg cwnd 123

(b) τ = 1 ms, 20 flows

0 50 100 150 200

Time (s)

0

200

400

600

800

1000

1200

C
w

n
d
 (

s
e
g
m

e
n
ts

)

Fixed Point Value

NHPL Sim

DE Model

Fixed Point cwnd 1250

NHPL Sim avg cwnd 1073

DE Sim avg cwnd 1242

(c) τ = 10 ms, 1 flow

0 50 100 150 200

Time (s)

0

200

400

600

800

1000

1200

C
w

n
d
 (

s
e
g
m

e
n
ts

)

Fixed Point Value

NHPL Sim

DE Model

Fixed Point cwnd 1250

NHPL Sim avg cwnd 1189

DE Sim avg cwnd 1242

(d) τ = 10 ms, 20 flows

Fig. 4: Comparison of average cwnd (computed post-transient phase) generated by NHPL simulations against steady-state cwnd
generated by model (11) for TCP CUBIC. Also shown is the fixed-point value of cwnd. Per-flow capacity C = 1 Gbps.

0 50 100 150 200

Time (s)

0

2000

4000

6000

8000

10000

12000

C
w

n
d

 (
s
e

g
m

e
n

ts
)

Fixed Point Value

NHPL Sim

DE Model

Fixed Point cwnd 12500

NHPL Sim avg cwnd 11867

DE Sim avg cwnd 12500

(a) τ = 100 ms, stable (b) τ = 100 ms, unstable

Fig. 5: The impact of initial conditions on stability. For both
(a) and (b), C = 1 Gbps, τ = 100 ms. In (a), there is
one flow whose initial conditions W (0) and s(0) are very
close to the fixed point values Ŵ and ŝ, respectively. Both
the NHPL simulation and the model exhibit stability. In (b),
there is one flow whose initial conditions are set too far from
the fixed point value, destabilizing the flow in both the NHPL
simulation and the DE system.

0 20 40 60 80 100

Time (s)

0

20

40

60

80

100

120

140

C
w

n
d

 (
s
e

g
m

e
n

ts
)

Fixed Point Value

Convergence Bound

DE Model

Instantaneous norm

Fixed Point cwnd 125.0025

DE Sim avg cwnd 120.5252

Fig. 6: Convergence for CUBIC. At the top is the cwnd
generated by DEs as it converges to the fixed point value
of cwnd. Below these two curves is a comparison of the
instantaneous norm ||x||2 against the analytical bound in (18).
Here, C = 100 Mbps, τ = 10 ms.

where q(t) is the number of packets in the bottleneck queue.
Then the queueing delay is given by qdel(t) = q(t)/C. Hence,
the total delay is the sum of queueing and propagation delays,
given by qdel(t) + τ ; this is the value we use instead of τ in
(1). Note that for the experiment descriptions in this section,
we only state the (constant) propagation delay τ .

It remains to choose a queue size for NS3 experiments: i.e.,

the MaxSize variable for PI’s queue, which we will call qmax

from now on. Let N be the number of NS3 flows. For each
NS3 experiment, we choose a value of N large enough so that
bandwidth on the link is fully utilized. To choose a suitable
value for qmax, we multiply qref by N and choose a larger
value, keeping in mind that choosing too large a qmax may
cause instability.

For convenience, denote the aggregate (or link) capacity
CA := NC. Note that the DE model takes C as a parameter,
while NS3 sets the link bandwidth using CA and divides it
by N to set the sending rate of each flow. Note that in all
calculations above, C may have to be scaled by a maximum
segment size (MSS) and other constants: in all our simulations,
we use the unit of segments/sec for C.

A. TCP CUBIC

Figure 4 compares the average cwnd generated by the NHPL
simulations against the average value of cwnd generated by
the DEs. The fixed-point value of cwnd, Ŵ , is also shown
(albeit sometimes entirely hidden by the DE curve because
of fast convergence). All flows in this figure have a per-flow
capacity of 1 Gbps, while the round-trip time is varied (these
combinations of C and τ are sufficient to generate a diverse
set of behaviors). All flows have b = 0.2 and c = 0.4 (the
default values used in Linux implementations of CUBIC).

Figure 4a shows a single stable flow with τ = 1 ms. The
transient response of both simulations is clearly visible, and
we observe that they reach steady-state within a similar period.
Not shown in this panel is the value of ŝ ≈ 4 seconds. By
observing the time between losses in the NHPL simulation,
we see that there is a close agreement. Figure 4b shows the
same experiment, but with 20 flows. As expected, the average
value of cwnd from the NHPL simulation approaches Ŵ as the
number of flows increases. Figures 4c and 4d show one and
20 flows, respectively, for τ = 10 ms. The initial conditions
(values of s(0) and Wmax(0)) are deliberately far enough
from the fixed point to demonstrate a more dramatic transient
response. Figure 5 shows two examples of 100 ms flows: in (a),
there is a single flow that is stable, while the initial conditions
in (b) cause instability for one flow in both the DEs and NHPL
simulation.

Figure 6 illustrates the transient and steady-state responses
of a flow with C = 100 Mbps and τ = 10 ms, as well as

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. N, NO. N, MONTH YEAR 12

||x||2 as it compares to the convergence bound (18). Observe
that ||x||2 always lies below the bound and approaches zero
as the flow reaches steady state. The bound appears flat in
this example because for this system, V (t0) dominates in the
denominator. We observe this phenomenon for many systems;
this implies that the initial conditions are crucial for a flow’s
stability.

B. H-TCP

We present experiments with varying BDPs, ranging from
low – wherein H-TCP operates exclusively in the linear
regime, to high – where H-TCP’s average congestion epoch is
larger than ∆L seconds. Since NS3 does not use RTT scaling,
we set γ = 1 in all DE simulations. All NS3 curves are
averages of five runs. Figure 7 presents comparisons of the
MWLI DE model for H-TCP, using Eqs. (25) and (26) as loss
probability function and queue model, respectively, against
NS3 with PI as the AQM scheme. The experiment in Figure
7a uses a link capacity CA of 500 Mbps with 15 flows in
NS3. This corresponds to C = 33 Mbps for the DE model.
Packet size is set to 1000 bytes and MSS is 958 bytes. For
this experiment, τ = 10 ms, which causes the BDP to be
low enough that on average, H-TCP operates in the low-speed
regime. This is evidenced by the average time between losses,
s, defined as follows:

s :=
1

R

R∑
r=1

1

N

N∑
f=1

1

Lf,r

Lf∑
i=1

sf,ri ,

where R is the number of NS3 experiment runs, Lf,r is the
number of losses suffered by flow f during the duration of the
experiment in the rth run, and sf,ri is the time between the
(i− 1)th and ith loss of flow f in the rth run (for i = 1, we
compute the time until the first loss). For Figure 7a, s = 0.29
s, which is below the low-speed regime threshold ∆L = 1 s.
The DE model outputs a value of 0.27 s for ŝ.

For the experiment in Figure 7b, we increase the link
capacity to one Gbps and the number of flows to 25. Here,
NS3 yields s = 0.25 s and the DE model yields ŝ = 0.27 s.
For the experiment in Figure 7c, we use CA = 1 Gbps and a
propagation delay of 20 ms. The number of flows is set to 45
in NS3. Here, s = 0.38 s and ŝ = 0.44 s. In Figure 7d, CA = 2
Gbps and τ = 40 ms, which allows H-TCP to be able to spend
time in the high-speed regime, with s = 2.19 s and ŝ = 2.2 s.
Finally, Figure 8 presents an experiment with a relatively larger
BDP compared to those of Figure 7: here, CA = 4 Gbps and
τ = 30 ms. There are 25 NS3 flows and as with experiments
in Figure 7, the average is plotted over five runs. In this plot,
s = 1.7 s and ŝ = 1.8 s. Note that for this larger BDP, the NS3
curve is slower to converge to the DE curve, compared to some
of the experiments in Figure 7. Further, note that as the BDP
increases (e.g., Figure 7d and Figure 8), the DE model predicts
a lack of convergence (which may be interpreted as a type of
instability in the context of TCP) for H-TCP’s cwnd. Similarly,
the average NS3 flow experiences greater variation compared
to cwnds in lower-BDP settings. We observe this in general
for larger BDPs, but predictably, the cwnd can be stabilized by
introducing more flows, albeit at the cost of decreasing each

flow’s throughput and often forcing the protocol to operate in
the low-speed regime. These observations are consistent with
those of the numerical analysis discussion in Section V-B.
Note that in all our experiments, the average cwnds match
closely between NS3 and the DE model, and similarly, there
is close agreement between s and ŝ. Hence, Figures 7 and 8
demonstrate the MWLI model’s ability to effectively predict
H-TCP’s behavior.

VIII. CONCLUSION

The main contribution of this work is a novel and versatile
fluid model, which we call the MWLI model, for cwnd- and
rate-based data transport algorithms. The model is structured
so that the differential equations do not depend on the specific
window or rate function of a congestion controller. As a result,
this framework offers opportunities to model and analyze the
stability of a diverse set of controllers whose window or rate
functions may not be linear and whose increase and decrease
rules may not be given in explicit form. We applied this
model to three different algorithms: TCP Reno, CUBIC and
H-TCP. For the former, we proved in prior work that the new
model is equivalent to a well-established model for Reno. For
CUBIC, the new model succeeds where traditional methods
of modeling cwnd are ineffective. In prior work, we analyzed
the fluid model for CUBIC and discovered that for a given
probability of loss model, its window is locally uniformly
asymptotically stable. We also derived a convergence bound
on the solution of the system as a function of the system
parameters. Further, we developed an event-based simulation
framework to validate the model and related theoretical results
for CUBIC.

For H-TCP, we performed a linear stability analysis of the
congestion controller under certain assumptions. We find that
H-TCP is unstable in most cases under a particular loss model,
but that it can be stabilized under a more realistic loss model,
e.g., such as one whose operation is closer to that of the PI
AQM scheme. We validated H-TCP’s model using NS3 and
find that the MWLI model is able to predict average cwnd and
average time between losses well.

APPENDIX A

We introduce a method of simulating the evolution of a
congestion window given W (t) – cwnd as a function of time,
and λ(t) – loss rate as a function of time. We first describe the
procedure for generating loss events given arbitrary W (t) and
λ(t). We then consider a specific loss model and discuss the
workarounds necessary when dealing with capacity constraints
and time delays. The final result is an algorithm whose
pseudocode we present in detail. Finally, we illustrate the
operation of the algorithm using an example cwnd trajectory.

A. Generating Loss Events

We would like to generate inter-loss times given a loss
rate function λ(t). In order to do so, we apply the Inverse
Transform Method on the Poisson distribution, described in
the following proposition.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. N, NO. N, MONTH YEAR 13

0 10 20 30 40 50

Time (s)

0

5

10

C
w

n
d

 (
b

y
te

s
)

10
4

Model

NS-3

DE Sim avg cwnd 74636

NS3 avg cwnd 77573

(a) CA = 500 Mbps, τ = 10 ms,
qref = 500, qmax = 1000,

N = 15, MSS = 958

0 10 20 30 40 50

Time (s)

0

5

10

15

C
w

n
d

 (
b

y
te

s
)

10
4

Model

NS-3
DE Sim avg cwnd 81441

NS3 avg cwnd 79812

(b) CA = 1 Gbps, τ = 10 ms,
qref = 800, qmax = 3500,

N = 25, MSS = 958

0 10 20 30 40 50

Time (s)

0

2

4

6

8

10

12

C
w

n
d

 (
b

y
te

s
)

10
4

Model

NS-3
DE Sim avg cwnd 77386

NS3 avg cwnd 75025

(c) CA = 1 Gbps, τ = 20 ms,
qref = 1000, qmax = 4000,

N = 45, MSS=958

0 50 100 150

Time (s)

0

1

2

3

4

5

C
w

n
d

 (
b

y
te

s
)

10
5

Model

NS-3

DE Sim avg cwnd 496327

NS3 avg cwnd 487226

(d) CA = 2 Gbps, τ = 40 ms,
qref = 800, qmax = 2500,

N = 20, MSS = 958

Fig. 7: Validation of H-TCP’s DE model using NS3. Red curves represent average cwnd over all NS3 flows. NS3 uses PI as
the AQM scheme and DE models use Eqs. (25) and (26). Aggregate capacity is given by CA := NC. qref and qmax have
units of packets, while MSS is in bytes. Each red curve is an average of five runs of the experiment.

0 20 40 60 80 100

Time (s)

0

1

2

3

4

5

6

C
w

n
d
 (

b
y
te

s
)

10
5

Model

NS-3
DE Sim avg cwnd 586797

NS3 avg cwnd 575324

Fig. 8: Validation of H-TCP’s DE model using NS3. Aggregate
capacity CA = 4 Gbps, τ = 30 ms, qref = 100 packets,
qmax = 1000 packets, N = 25 flows, and MSS = 1158 bytes.
The red curve is an average of five runs of NS3.

Proposition A.1. Suppose a loss event occurs at time t0. The
time to the next loss is given by T where∫ t0+T

t0

λ(t)dt = − lnu,

where u is randomly generated from the uniform distribution
U(0, 1).

Proof. Note that λ(t) denotes a Non-Homogeneous Poisson
Process, where the number of events between s and t,Ns(t)
has a Poisson distribution with parameter ms(t) =

∫ t
s
λ(τ)dτ ,

P (Ns(t) = k) =
ms(t)

k

k!
e−ms(t).

We can then write the CDF of the time from t0 to the next
loss as

FXt0 (T) = 1− P (Nt0(T) = 0) = P (Nt0(T) > 0)

= 1− exp
(
−
∫ t0+T

t0

λ(t)dt
)
.

Note that a CDF can be seen as a random variable with uni-
form distribution U(0, 1), and can be sampled by generating
uniform random numbers (this is known as Inverse Transform

Sampling). Therefore, inter-loss time samples can be generated
as T = F−1

Xt0
(u). From the above equation we obtain∫ t0+T

t0

λ(t)dt = − ln (1− u) ≡ − lnu,

where the last equivalence follows from the fact that if u is
uniformly distributed between 0 and 1, so is 1− u.

B. Delays and Capacity Constraints

In TCP (and most other data transport protocols), the loss
rate is a function of the sending rate W (t)/τ and of a
probability of loss model p(t):

λ(t) =
W (t)p(t)

τ
. (27)

Therefore, in order to obtain a sample of the time until next
loss, the following equation can be solved for T :

1

τ

∫ t0+T

t0

W (t)p(t)dt = − ln(u). (28)

Note that W (t) and p(t) are viewed from the perspective
of the congestion point (e.g. a router) where the loss is being
generated. Therefore, whenever a loss occurs, the subsequent
reduction in the window size (multiplicative decrease) is not
reflected in W (t) until after a delay of approximately τ
seconds. This is illustrated in Figure 9, which shows an
example trajectory of the cwnd function. Each time a loss
i occurs at time li at a congestion point, a corresponding loss
indication is reflected in W (t) at time Ti = li+ τ . The caveat
of using (28) to compute T is that W (t) may have changed
sometime in the time interval [t0, t0 + T] (which can happen
if a loss indication is scheduled in this interval; we call this
a pending loss indication (PLI)). In such a case, the solution
is to project the current W (t) until the next loss indication,
update W (t) to a new function, and use this new function to
generate a new loss event. Once a new loss event is generated,
the process may need to repeat until we either produce a loss
event that takes place before the next PLI or until we run out
of PLIs.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. N, NO. N, MONTH YEAR 14

Time

W(t)

T3T2T1

W1(t)

W2(t)
W3(t)

l1

l6

l5

l4

l3

l2

T6T4 T5T0=

BDP=C

Fig. 9: Example trajectory of Reno’s congestion window. li is
the time when loss occurs at the congestion point (e.g. router).
Ti is the time of the ith loss indication.

Another complication may arise with certain probability
of loss models. For example, in this work we consider the
following model:

p(t) =

(
1− Cτ

W (t)

)+

.

As a consequence, λ(t) = 0 whenever W (t) < Cτ . This is de-
picted in Figure 9, where losses only occur when W (t) ≥ Cτ .
In order to obtain an analytical solution for T during the ith
loss event, we can first compute TBDP , the time at which
W (t) reaches Cτ , or the bandwidth-delay product (BDP).
Then, let t0 = max (TBDP , li) − Ti−1, where Ti−1 is the
time of the most recent loss indication and li is the time of
the most recent loss event at the congestion point.

Another feature of the simulation framework is the ability to
generate multiple parallel flows. This feature is especially im-
portant for validating models that use a system of differential
equations to characterize the behavior of congestion control
algorithms. The output of such models (e.g. cwnd) usually
describes the behavior of the average flow in a large population
of flows. Indeed, in Section VII, we note that the average cwnd
size from simulation results matches closer to the steady-state
value of the DE models as we increase the number of flows
in the simulation.

When multiple flows are involved, TBDP is the time at
which the sum of their congestion windows reaches the BDP,
and li is the time at which the most recent loss (across all
flows) occurred. We must compute t0 for each flow, which is
given by

t0,f = max (TBDP , li)− Ti−1,f ,

where Ti−1,f is the most recent loss indication of flow f . T
is then computed using the following equation:

1

τ

N∑
f=1

∫ t0,f+T

t0,f

Wf (t)pf (t)dt = − ln(u). (29)

Any time a new loss event is generated, we must also choose
a flow that will suffer the loss. The flow is picked based on
its congestion window size at the time the loss is scheduled
to occur (flows with larger windows are more susceptible to
suffer a loss).

C. Pseudocode

Loss generation can be described by the pseudocode in
GeneratePoiLoss. This function is called from the main
procedure each time a loss is occurring at the congestion
point in a given interval. (So, for the example in Figure
9, GeneratePoiLoss would be called in the intervals
containing the events li, i ∈ {1, . . . , 6}.) The arguments of the
function are as follows: pendingLITs is a two-dimensional
matrix whose first row is a list of pending loss indication times,
and whose second row contains the corresponding flows that
will suffer the losses. LLIs is an array that keeps record of
the last loss indication times of all flows. GLLI is the most
recent loss indication. Tl is the time of the most recent loss
event. Wloss is an array containing the cwnd sizes of all flows
immediately before their most recent loss events. p(t) is a
probability of loss function and τ is the round-trip time. For

function GENERATEPOILOSS(pendingLITs, LLIs, GLLI , Tl, Wloss,
p(t), τ)

. LLT : last loss time at congestion point

. pendingLITs: a list of pending loss indication times and corre-
sponding flows

Initialization:
GNPLI ← pendingLITs.nextLossT ime . next (global)

pending loss indication time
LF ← pendingLITs.nextF low . the corresponding flow of the

next loss event
TBDP ← time when sum of cwnd’s reaches BDP
t0 ← max (TBDP , Tl)

lossT ime← COMPUTET(LLIs,GLLI,Wloss, t0, τ, p(t))

while lossT ime ≥ GNPLI do
. next loss occurs after GNPLI , so:
. (1) determine duration of current congestion epoch for flow LF :
I ← GNPLI − LLIs(f)
. (2) the window function is changed at GNPLI , and we are

looking at a new congestion epoch, so update relevant variables
Wloss ←WLF (I) . get the Wloss value of the next congestion

epoch for flow LF
GLLI ← GNPLI
LLIs(LF)← GLLI
if NPLI.isEmpty then

NPLI ←∞
else

GNPLI ← pendingLITs.nextLossT ime
LF ← pendingLITs.nextF low

end if
. (3) generate a new loss event at congestion point
Recompute TBDP

t0 ← max(TBDP , GLLI)
lossT ime← COMPUTET(LLIs,GLLI,Wloss, t0, τ, p(t))

end while

. schedule the next loss indication event
pendingLITs.add(lossT ime+ τ)
return (lossT ime, pendingLITs)

end function

function COMPUTET(LLIs, GLLI , Wloss, t0, τ , p(t))
u← rand() . generate a number from uniform distr.
construct Wf (t), ∀f ∈ {1, . . . , N} using Wloss

t0,f ← t0 − LLIs(f), ∀f ∈ {1, . . . , N}
. to generate the next loss interval:
Use Equation (29) to compute T , keep only real, positive roots
lossT ime← GLLI + t0 + T

end function

the example in Figure 9, where there is only one flow, the
procedure outlined in the pseudocode would do the following:

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. N, NO. N, MONTH YEAR 15

1) At time t = 0, a loss occurred at the congestion point
(not shown in the figure), so a pending loss indication
was scheduled for T0 = τ .

2) Also at the time of the loss (at t = 0), a new loss
time was generated using GeneratePoiLoss. This
loss time is l1. Since l1 occurs after the next pending
loss indication (which is at T0), the while loop in
GeneratePoiLoss is triggered. We integrate the cwnd
function from t = 0 to T0 = τ , compute a new Wloss

(which is the size of the window right before T0), and
feed these values as parameters to computeT. The latter
function computes the next loss arrival time; this is a new
value of l1. We compare this new l1 to the next pending
loss indication time (which in this case is ∞ since no
other pending loss indications have been scheduled after
T0). Since l1 <∞, we exit the loop and have a new loss
time of l1 and pending loss indication T1 = l1 + τ .

3) The main procedure iterates until it reaches the interval
containing l1, at which point GeneratePoiLoss is
called. The latter function generates l2, and since l2
occurs after the next pending loss indication time (T1),
we re-generate l2 using the same procedure as for l1.

4) The main procedure continues until it reaches the interval
containing T1, at which point the loss indication is
processed (the cwnd is halved and there is a new Wloss).

5) Loss events l2 and l3 and pending loss indications T2 and
T3 are processed similarly.

6) At loss event l4, a new loss time l5 is generated. Since
it appears before T4, we simply schedule a pending
loss at T5 (no need to go through the while loop in
GeneratePoiLoss as we did for the other losses).

7) At loss event l5, l6 is generated, but it occurs after
the pending loss indication at T4, which has not been
processed yet. Hence, the while loop is triggered.

APPENDIX B

First, let us show that for H-TCP, ∆0/Q = O((C2τ4)1/3).
This is because

∆0

Q
=

21/3∆0

(∆1 +
√

∆2
1 − 4∆3

0)1/3
=

(∆1 −
√

∆2
1 − 4∆3

0)1/3

21/3

< ∆
1/3
1 = O(C2/3τ4/3).

Next,

∆0

Q
+Q =

(∆1 −
√

∆2
1 − 4∆3

0)1/3 + (∆1 +
√

∆2
1 − 4∆3

0)1/3

21/3

<
2(∆1 +

√
∆2

1 − 4∆3
0)1/3

21/3
= O((C2τ4)1/3).

We now examine the limiting behavior of q′/S. Letting c0 =
Γ + (573 + 228(105))/8,

q′

S
=

6Cτ2 − c0
1
2

√
2
3p
′ + 1

3

(
Q+ ∆0

Q

) < 12
√

3Cτ2(
Q+ ∆0

Q

)1/2

=
12
√

3
6
√

2Cτ2(
(∆1 −

√
∆2

1 − 4∆3
0)1/3 + (∆1 +

√
∆2

1 − 4∆3
0)1/3

)1/2

<
12
√

3
6
√

2Cτ2

∆
1/6
1

<
25Cτ2

(C2τ4)1/6
,

where the last inequality holds for large C since the coef-
ficient of C2τ4 in ∆1 is 972. It is now easy to see that
q′/S = O((C2τ4)1/3). Finally, it remains to show that (24)
is real and positive for large C and C � τ . Clearly, under
these assumptions, S > 57/4. It then remains to show that the
quantity inside the square root is positive, or

2p′ + q′/S > 4S2 =
2

3
p′ +

1

3

(
Q+

∆0

Q

)
.

Defining y := Q + ∆0/Q, multiplying both sides by S and
simplifying yields

6
√

3q′ > (y − 4p′)(2p′ + y)1/2.

Both sides of the inequality are positive for large C, so we
may square them to obtain, after simplifying,

108(q′)2 > y3 − 6p′y2 + 32(p′)3.

For large C, it is easy to see that y3 − 6p′y2 + 32(p′)3 < y3,
so it is sufficient to prove that 108(q′)2 > y3, or

216(q′)2 >[
(∆1 −

√
∆2

1 − 4∆3
0)1/3 + (∆1 +

√
∆2

1 − 4∆3
0)1/3

]3

.

We first focus on the right-hand side of this inequality. It is
easy to see that ∆1 +

√
∆2

1 − 4∆3
0 < 2∆1. For large C and

C � τ , it is also true that ∆1−
√

∆2
1 − 4∆3

0 < ∆1/8. To see
that this is true, note that this claim is equivalent to that of

7∆1/8 <
√

∆2
1 − 4∆3

0, or 15∆2
1/64 > 4∆3

0,

and recall that ∆1 grows with (Cτ2)2 while ∆0 grows with
Cτ2. Hence, it is sufficient for us to prove that

216(q′)2 >
[
(∆1/8)1/3 + (2∆1)1/3

]3
= ∆1(21/3 + 1/2)3.

Noting that (21/3 + 1/2)3 < 6, it is sufficient to show that
36(q′)2 > ∆1, or, after expanding both sides,

1296(Cτ2)2 − 432c0Cτ
2 + 36c20 >

972(Cτ2)2 − 348574.3Cτ2 − 571698τ2 + 2070623.3,

which easily holds for large C and C � τ .

ACKNOWLEDGMENT

This work was supported by the US Department of Energy
under Contract DE-AC02-06CH11357 and by the National
Science Foundation under Grant No. CNS-1413998.

REFERENCES

[1] T. Kelly, “Scalable TCP: Improving performance in highspeed wide area
networks,” ACM SIGCOMM computer communication Review, 2003.

[2] S. Ha, I. Rhee, and L. Xu, “CUBIC: a New TCP-Friendly High-Speed
TCP Variant,” ACM SIGOPS Operating Systems Review, 2008.

[3] D. Leith and R. Shorten, “H-TCP: TCP for high-speed and long-distance
networks,” in Proceedings of PFLDnet, 2004.

[4] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-based congestion control,” Queue, 2016.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. N, NO. N, MONTH YEAR 16

[5] ESnet, “ESnet Fasterdata Knowledge Base,” http://fasterdata.es.net/,
Accessed: 2018-10-31.

[6] N. S. Rao, N. Imam, J. Hanley, and S. Oral, “Wide-Area Lustre
File System Using LNet Routers,” in 2018 Annual IEEE International
Systems Conference (SysCon). IEEE, 2018, pp. 1–6.

[7] Y. Gu and R. L. Grossman, “UDT: UDP-based Data Transfer for High-
speed Wide Area Networks,” Computer Networks, 2007.

[8] R. Pan, B. Prabhakar, and A. Laxmikantha, “QCN: Quantized Conges-
tion Notification,” IEEE802, 2007.

[9] G. Vardoyan, C.V. Hollot, D. Towsley, “Towards Stability Analysis of
Data Transport Mechanisms: a Fluid Model and an Application,” arXiv
preprint arXiv:1801.02741, 2018.

[10] NS-3 Development Team. NS-3 Network Simulator, https://www.nsnam.
org/, Accessed: 2018-01-10.

[11] G. Vardoyan, C. Hollot, and D. Towsley, “Towards Stability Analysis
of Data Transport Mechanisms: a Fluid Model and an Application,” in
IEEE INFOCOM 2018-IEEE Conference on Computer Communications.
IEEE, 2018, pp. 666–674.

[12] V. Misra, W.-B. Gong, and D. Towsley, “Fluid-based Analysis of a
Network of AQM Routers Supporting TCP Flows with an Application
to RED,” SIGCOMM Comput. Commun. Rev., 2000.

[13] F. P. Kelly, A. K. Maulloo, and D. K. Tan, “Rate Control for Commu-
nication Networks: Shadow Prices, Proportional Fairness and Stability,”
Journal of the Operational Research society, 1998.

[14] R. Srikant, The Mathematics of Internet Congestion Control. Springer
Science & Business Media, 2012.

[15] C. Hollot, V. Misra, D. Towsley, and W.-B. Gong, “A Control Theoretic
Analysis of RED,” in INFOCOM 2001., 2001.

[16] X. Huang, L. Chuang, and R. Fengyuan, “Generalized Modeling and
Stability Analysis of Highspeed TCP and Scalable TCP,” IEICE trans-
actions on communications, 2006.

[17] W. Bao, V. Wong, and V. Leung, “A Model for Steady State Throughput
of TCP CUBIC,” in GLOBECOM 2010.

[18] S. Poojary and V. Sharma, “An Asymptotic Approximation of TCP
CUBIC,” arXiv preprint arXiv:1510.08496, 2015.

[19] S. Ha, Y. Kim, L. Le, I. Rhee, and L. Xu, “A step toward realistic per-
formance evaluation of high-speed tcp variants,” in Fourth International
Workshop on Protocols for Fast Long-Distance Networks, 2006.

[20] D. X. Wei, C. Jin, S. H. Low, and S. Hegde, “Fast tcp: motivation,
architecture, algorithms, performance,” IEEE/ACM transactions on Net-
working, vol. 14, no. 6, pp. 1246–1259, 2006.

[21] G. Wang, Y. Wu, K. Dou, Y. Ren, and J. Li, “AppTCP: The design and
evaluation of application-based TCP for e-VLBI in fast long distance
networks,” Future Generation Computer Systems, vol. 39, pp. 67–74,
2014.

[22] K. Gu, J. Chen, and V. L. Kharitonov, Stability of Time-Delay Systems.
Springer Science & Business Media, 2003.

[23] D. Leith, R. Shorten, and Y. Lee, “H-TCP: A framework for congestion
control in high-speed and long-distance networks,” in PFLDnet Work-
shop, 2005.

[24] D. Leith and R. Shorten, “On RTT Scaling in H-TCP,” Discussion note,
Hamilton Institute.

[25] D. Leith, “H-TCP: TCP Congestion Control for High Bandwidth-Delay
Product Paths,” Internet Requests for Comments, Tech. Rep., April 2008.
[Online]. Available: https://tools.ietf.org/id/draft-leith-tcp-htcp-06.txt

[26] R. C. Dorf and R. H. Bishop, Modern Control Systems. Pearson, 2011.
[27] D. Genin and V. Marbukh, “Bursty fluid approximation of tcp for

modeling internet congestion at the flow level,” in 2009 47th Annual
Allerton Conference on Communication, Control, and Computing (Aller-
ton). IEEE, 2009, pp. 1300–1306.

[28] C. V. Hollot, V. Misra, D. Towsley, and W. Gong, “Analysis and
Design of Controllers for AQM Routers Supporting TCP Flows,” IEEE
Transactions on automatic control, vol. 47, no. 6, pp. 945–959, 2002.

[29] C. V. Hollot, V. Misra, D. Towsley, and W.-B. Gong, “On Designing
Improved Controllers for AQM Routers Supporting TCP Flows,” in
Proceedings IEEE INFOCOM 2001. Conference on Computer Com-
munications. Twentieth Annual Joint Conference of the IEEE Computer
and Communications Society (Cat. No. 01CH37213), vol. 3. IEEE,
2001, pp. 1726–1734.

[30] R. Pan, P. Natarajan, F. Baker, and G. White, “Proportional Integral
Controller Enhanced (PIE): A Lightweight Control Scheme to Address
the Bufferbloat Problem,” Tech. Rep., 2017. [Online]. Available:
https://tools.ietf.org/html/rfc8033

[31] C. Hollot and Y. Chait, “Nonlinear stability analysis for a class of
TCP/AQM networks,” in Proceedings of the 40th IEEE Conference on
Decision and Control (Cat. No. 01CH37228), vol. 3. IEEE, 2001, pp.
2309–2314.

